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Introduction to XLMiner SDK 

Introduction 
XLMiner® SDK is a comprehensive data mining Software Development Kit. Data mining is a discovery-driven 

data analysis technology used for identifying patterns and relationships in data sets. With overwhelming amounts of 

data now available from transaction systems and external data sources, organizations are presented with increasing 

opportunities to understand and gain insights into their data. Data mining is still an emerging field, and is a 

convergence of Statistics, Machine Learning, and Artificial Intelligence.  

Often, there may be more than one approach to a problem. XLMiner SDK provides a high-level API “tool belt” that 

offers a variety of methods to analyze data. It has extensive coverage of statistical and machine learning techniques 

for classification, regression, affinity analysis, data exploration, and reduction.  

The worlds of commerce, research, and government are huge and varied. No single data analysis pattern can 

possibly be right for everyone. The XLMiner® SDK provides a fast, solid, and well-tested foundation on which 

organizations can build and execute data analysis tasks to suit their needs precisely. Unlike its sister platform, 

Analytic Solver, XLMiner focuses on Data Mining tasks and provides robust implementations of industry-standard 

Data Mining algorithms. 

The XLMiner SDK is most commonly used in one of the following scenarios. 

 

The automation of recurring data analysis tasks 

Developers and data scientists can integrate XLMiner SDK capabilities into scripts written in their 

preferred programming environment to process data and then analyze it automatically, perhaps even 

scheduling the data analysis tasks to run without human intervention. 

 

Analyzing Large Data Volumes 

In the age of Big Data, the demands of data analysis often exceed the resources of any graphical interactive 

environment. XLMiner SDK is designed to be scalable as well as to take advantage of modern distributed 

processing techniques. 

 

Integration with other toolsets  

Teams already using a toolset, such as R, will find that XLMiner SDK’s R API supports native R 

DataFrames.    

 

Interactive processing without giving up advanced library power 

Interactive environments like R and Jupyter provide great ease and convenience, but often at the cost of 

processing power. The routines of the XLMiner SDK integrate seamlessly with these environments, giving 

data scientists the best of both worlds. .Net aficionados will be pleased to use XLMiner from the new C# 

interactive REPL command line environment XLMiner SDK supports the latest version of Visual Studio 

2017. (Supports Java 8, Python 3.6 and R 3.4.2 (Short Summer) versions) 

 XLMiner SDK Capabilities 
XLMiner SDK supports all facets of the data mining process, including data exploration and transformation, 

visualization, feature selection, text mining, time series forecasting, affinity analysis, and unsupervised and 

supervised learning. It is recommended that you test different approaches to your problem and compare the resultant 

models, to select a well performing model.   

- Data may be acquired from any source (file system, Web, data streams, databases, Big Data sources, 

ODATA, generic ODBC connection or specific DB connections for MS access, MS SQL, and Oracle) 



XLMiner SDK User Guide Page 7 
 
  

using any tool available for your desired programming language. Exception reporting helps you to quickly 

find and fix problems with your model and numerous built in output and report capabilities help you to 

evaluate its performance.   

- Clean and transform your data with a comprehensive set of data handling utilities including categorizing 

data and handling missing values.  Use Principal Components Analysis to reduce columns, and K-Means 

Clustering or Hierarchical Clustering to group data by rows.  XLMiner SDK currently contains the 

following transformation utilities.   

• Factorizing 

• Binning 

• Missing values 

• One-hot-encoding 

• Reducing Categories 

• Rescaling 

• PCA 

• Sampling 

• Canonical Variate Analysis (CVA) 

- Clusterize your data into a set of cohesive groups 

• K-Means Clustering 

• Hierarchical Clustering 

- Automatically transform free-form text into structured data, identify the most frequently occurring terms 

and extract key concepts with latent semantic indexing.  XLMiner’s SDK Text Miner supports: 

• TF-IDF vectorization 

• Latent Semantic Analysis 

- Apply the most popular exponential smoothing and Box-Jenkins ARIMA methods, with seasonality, to 

forecast time series, such as sales and inventory, from historical data.  The following time series analysis 

tools are supported in the XLMiner SDK:   

• Autocorrelations 

• Partial Autocorrelations 

• ARIMA 

• Exponential, Double Exponential, Moving Average and Holt Winters Smoothing 

- Easily partition your data into training, validation, and test datasets, with no limits on dataset size. 

- Use feature selection to automatically identify columns or variables with the greatest explanatory power for 

your desired classification or regression task. 

- Use powerful Multiple Linear Regression with variable selection, and other supervised regression 

algorithms including Ensemble methods (using any regression engine as a weak learner).  

- XLMiner SDK includes four regression algorithms and three different ensemble methods:  Bagging, 

Boosting and Random Trees.  Boosting and Bagging ensemble methods can use any prediction method as a 

base learner.  XLMinerSDK provides extensive functionality for evaluating the performance of supervised 

models, including the goodness of fit metrics and charts (Lift Charts, Gain Charts, Decile Tables, ROC 

curves). 

• Multiple Linear Regression 
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• k-Nearest Neighbors 

• Regression Trees 

• Neural Networks 

- Use classical Discriminant Analysis and Logistic Regression, and other supervised classification 

algorithms, including Ensemble methods (using any classification engine as a weak learner).  

- XLMiner SDK includes six classification algorithms.  Boosting and Bagging ensemble methods can use 

any classification method as a base learner.  XLMinerSDK provides extensive functionality for evaluating 

the performance of supervised models, including the goodness of fit metrics and charts (Lift Charts, Gain 

Charts, Decile Tables, RROC curves). 

• Discriminant Analysis 

• k-Nearest Neighbors 

• Logistic Regression 

• Classification Trees 

• Naïve Bayes 

• Neural Networks 

- Use Affinity Analysis to discover association rules and perform market basket analysis. 

- PMML model export/import for the following models: 

• Regression Models (Linear and Logistic) 

• Decision Trees (Classification and Regression) 

• Neural Networks (Classification and Regression) 

• K Nearest Neighbors (Classification and Regression) 

• Discriminant Analysis 

• Naïve Bayes 

• Random Trees (Classification and Regression) 

• Ensemble Bagging (Classification and Regression) 

• Ensemble Boosting (Classification and Regression) 

• Time Series 

• Association Rules 

• Transformations 

- JSON model export/import for all supported models 

- Feature-parity and model interoperability between XLMinerSDK and Analytic Solver Data Mining 

- Import/Export (Load/Save) for all SDK objects (data structures: Vector, DataFrame, DataFrameVector; 

algorithmic objects: Estimators, Models) to/from JSON as well as custom SDK string format 

This user guide currently only includes chapters on Time Series Analysis, Classification, Regression and 

Association Rules.  However, XLMiner SDK installs over 100 examples in five different programming languages 

(C#, C++, Java, Python, and R) to give you practice with all its features and methods.  (Scala users -  see the Java 

SDK Distribution.) If you find yourself "stuck", help and support are only a call (888-831-0333) or email 

(support@solver.com) away. 
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Using the XLMiner SDK 
XLMiner SDK offers comprehensive facilities for deep data analysis for exploration/educational purposes, as well 

as for high-performance production applications. Usage can range from a single line of code with minimal user 

intervention (XLMiner SDK finds sensible defaults when possible), to a customized workflow where users can 

manually control all parts of exploration, fitting, and scoring processes. XLMiner SDK's easy-to-use API allows the 

combination of all available data mining techniques into a single, all-inclusive application, or pipeline. For example, 

your pipeline could first draw a sample from Big Data stored across an Apache Spark cluster, then use Feature 

Selection to determine the best inputs to a supervised algorithm, partition the data, fit a model, and score new data.  

For exploration purposes, XLMiner SDK offers advanced algorithms that provide deep insights about your 

data/models. Using this information, you can fine-tune the parameters and search for optimal choices to prepare the 

application for deployment into a production application. At the deployment stage, “auxiliary” informative outputs 

might not be required, so the user can choose to remove this ancillary code for lightning fast performance.     

Although XLMiner SDK's API is very high-level, advanced users still have the power to work within the full 

capabilities of the supported programming languages:  C, C++, C#, Java, Python, R or Scala.  All XLMiner SDK’s 

high-level objects, properties and methods are supported for each language.  Example code for each of these 

languages can be found at C:\Program Files\Frontline Systems\XLMiner SDK\Examples. (Scala users can refer to 

the Java SDK distribution.)   

A successful data mining pipeline typically involves three distinct steps:  Preparing the Data, Instantiating an 

Estimator, and Fitting a Model. 

Preparing the Data 

Regardless of the source of your data, it must be brought into an XLMiner DataFrame before it can be passed to 

any of the XLMiner mining engines.  Since virtually all modern development environments can interface with the 

XLMiner SDK, your data may be prepped, cleansed and organized using the environment of your choice.  Some 

commonly encountered data sources and formats include: 

• Delimited text file formats such as CSV/TSV 

• Excel 

• ODATA 

• JSON 

• Generic ODBC connections 

• Specific data base connections for MS Access, MS SQL, Oracle (with specific simplified syntax) 

A DataFrame, in XLMiner SDK, is a collection of data organized into named columns of equal length and 

homogeneous type. XLMiner SDK uses DataFrames to deliver input data to an algorithm and to deliver the results 

of the algorithm back to the user. DataFrames hold heterogeneous data across columns (variables):  numeric, 

categorical, or textual.   

Many tools created for data analysis provide some variation of a DataFrame.  At first glance a DataFrame might 

seem to resemble a database table or SQL query result, and indeed it does, but the resemblance is superficial.  

Unlike classic database tables and SQL query results, which are specifically row-oriented, DataFrames are column-

oriented.  In XLMiner, a DataFrame column is a vector, and it is these vectors that provide input data for XLMiner 

functions.   

Data gathered in the real world is never ready for analysis “as is”.  DataFrames typically require some type of 

preprocessing, such as partitioning into training, validation, and test subsets.  XLMiner SDK developers can choose 

to manipulate their DataFrames in XLMiner SDK prior to involving data mining procedures, or you can use your 

host programming system to structure the data accordingly and load the finished product into XLMiner SDK for 

analysis.    

Examples of basic DataFrame tasks are: 
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• Creating and filling DataFrames 

• Selecting a subset of columns/rows 

• Appending columns or rows 

• Selecting subsets for training and verification models 

 

Instantiate an Estimator 

After the data is prepared, the next step is to instantiate an Estimator class, which will be specific to the particular 

data mining model of interest.  An Estimator is the underlying algorithm that “fits” a Model using training data 

stored in DataFrame(s). An Estimator accepts DataFrame(s) as input through its fit method, and returns a Model 

object. It stores parameters, but not data, required for fitting the model or performing other data manipulations. This 

Model may be used to score/transform new data, to compute evaluation metrics or to extract other information using 

the fitted model and new data. Each Estimator has an attached set of Parameters or options.   

For example, in the C# code below, the Classification Decision Tree estimator is instantiated, and two options are 

set: Minimum Number of Records in Leaves is set to 10 and Prior Probability Method is set to Empirical.  

Classification Decision Tree is instantiated and two options are set  

var estimator = new XLMiner.Classification.DecisionTree.Estimator(); 

 estimator.MinNumRecordsInLeaves = 10; 

 estimator.PriorProbMethod = PriorProbMethodType.EMPIRICAL; 

 

While in this example C++ code, a binning estimator is instantiated and 2 options are set:  number of bins is set to 

11 and Interval is set to IntervalType::Right_Closed (An example of a right closed interval is (1,3]).  

Binning estimator is instantiated and 2 options are set  

{ 

    using namespace Binning::EqualInterval; 

      Estimator estimator; 

     estimator.NumBins = 11; 

     estimator.Interval = Binning::IntervalType::RIGHT_CLOSED 

   } 

 

Fit a Model 

The XLMiner Model for each data mining class provides an interface through which the results of model-fitting can 

be explored.  Each Model contains core methods to accept a DataFrame or multiple DataFrames as input data, 

perform a scoring or transformation, and return a new DataFrame. For example, a Model fitted by a classification or 

regression estimator transforms a DataFrame with input features into a DataFrame holding predicted response (i.e., 

to predict/classify new data). A Model may have optional or required parameters for scoring or transforming the 

data. Along with that, most Models offer additional functionality to obtain deeper insights about the model’s 

performance on training and new data. 

For example, going back to our first C# example code snippet. 

Classification Decision Tree is instantiated and two options are set  

var estimator = new XLMiner.Classification.DecisionTree.Estimator(); 

 estimator.MinNumRecordsInLeaves = 10; 

 estimator.PriorProbMethod = PriorProbMethodType.EMPIRICAL; 
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To fit a Classification Decision Tree model, you would add the following line of code: 

 

Fitting a Classification Decision Tree model 

var model = estimator.fit(trainingInputColumns, trainingTargetColumn) 

 

From here you could use the fitted model object to obtain the model-specific evaluations, performance evaluations 

such as confusion matrices and metrics, or score new data.  

 

The primary purpose of any data analysis tool is to enable developers to create custom applications.  Once the 

XLMiner model fitting and scoring tasks are complete, the results, in DataFrame format, can be employed in 

virtually any task, ranging from custom data visualization to support for automatic fraud detection and response.   

XLMiner SDK Pipeline Example 
The following example illustrates how to string together various algorithms to create a Data Mining workflow or 

pipeline.  This example demonstrates how the results of one data mining function can flow seamlessly into the next.   

This example code is in C#, but you can find this same example in the installation directory under Frontline 

Systems\Examples for each of the remaining supported example code.   

Pipeline Example Code 

public static int CompleteExample() 

{ 

// 1. Read data from a file 

var data = XLMiner.Reader.textFile(PATH + 

"BostonHousingCat.txt"); 

   

// 2. [optional] Sample from data 

 var sampler = new XLMiner.Sampling.SimpleRandomSampler() 

 { 

     SampleSize = 400 

}; 

 var sampledData = sampler.transform(data); 

   

// 3. [optional, but recommended in order to compute model performance]  

Partition sampledData 

 var partitioner = new XLMiner.Partitioner(); 

 partitioner.PartitionRatio["Training"] = 0.6; 

 partitioner.PartitionRatio["Validation"] = 0.4; 

 var partitions = partitioner.partition(sampledData); 

 

//4.  Extract the input data and the output column (CAT.MEDV) for each 

//partition 

 string[] targetCol = new string[]{"CAT.MEDV"}; 
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var trainingInputColumns = partitions["Training"][Util.all, 

Util.except(targetCol)]; 

var trainingTargetColumn = partitions["Training"][Util.all, 

targetCol]; 

var validationInputColumns = partitions["Validation"][Util.all, 

Util.except(targetCol)]; 

var validationTargetColumn = partitions["Validation"][Util.all, 

targetCol]; 

 int numTrainingRows = partitions["Training"].NumRows; 

 

//5.  Instantiate an Estimator for Decision Tree Classification    

 var estimator = new CTree.Estimator() 

 { 

  MinNumRecordsInLeaves = numTrainingRows / 10; 

  PriorProbMethod = PriorProbMethodType.EMPIRICAL; 

}; 

Console.WriteLine(estimator); 

 

//6.  Fit a Model 

 var model = estimator.fit(trainingInputColumns,  

      trainingTargetColumn); 

 Console.WriteLine(model); 

 

//7. Score the validation set, then print to console the first 10 rows 

//of the new DataFrame created by binding to columns.   

 var predictedLabels = model.predict(validationInputColumns); 

Console.WriteLine(Util.head(util.colBind(new DataFrame[] 

{validationTargetColumn, predictedLabels}))); 

 

//8.  Construct and print the confusion matrix.   

using (var confusionMatrix = 

Evaluator.confusion(validationTargetColumn, predictedLabels)) 

Console.WriteLine(confusionMatrix); 

 

//9.  Compute the F1 Metric 

double f1metric = Metrics.f1(validationTargetColumn, 

predictedLabels, model.SuccessClass); 

 Console.WriteLine("F1 Metric: " + f1metric); 
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//10. Clean up memory: All custom objects should be freed at this 

//stage. 

 Util.free(ref data); 

 Util.free(ref sampler); 

 Util.free(ref sampledData); 

 Util.free(ref partitioner); 

 Util.free(ref partitions); 

 Util.free(ref trainingInputColumns); 

 Util.free(ref trainingTargetColumn); 

 Util.free(ref validationInputColumns); 

 Util.free(ref validationTargetColumn); 

 Util.free(ref estimator); 

 Util.free(ref model); 

 Util.free(ref predictedLabels); 

return 0; 

} 

 

1. First, the data from the file BostonHousingCat.txt file is imported into the SDK.  This file can be found in 

the installation directory under Frontline Systems/Examples/Datasets.   

2. A sample is taken from the dataset using simple random sampling with size = 400.  The first line calls the 

SimpleRandomSampler transformer constructor.   

While an estimator can fit models, which in turn can either transform data (such as Clustering or Principal 

Components Analysis) or classify or predict new values (such as Classification or Regression algorithms), 

simple transformers, such as Sampling or Partitioning, do not create a model.  They simply take input data 

and transform it in one step – there is no information to extract from the training data to apply to new data.  

Simple transformers such as these do not have a fitting interface, but instead have a direct method or action 

such as “transform” or “sample” or “partition”.   

The last line samples the data and the result of this transformation is assigned to the variable sampledData. 

3. The data is partitioned into training and validation partitions with 60% of the records assigned to the 

training partition and 40% assigned to the validation partition.     

The first line of code constructs the Partitioner transformer. The next two lines of code specify the Training 

and Validation partition percentages and the last line of code partitions sampledData.  The result of this 

transformation (which is two partitions) is assigned to the variable partitions.   

4. In step 4, the input data and output column (CAT. MEDV) are extracted for each partition, training and 

validation.   

5. Now, you are ready to construct an Estimator and fit a model to the data.  At this point, any classification 

algorithm could be called, but this example calls the Decision Tree Classification.  

The first line of code constructs the Classification Decision Tree Estimator, the next two lines of code set 

the options:  the minimum number of records in leaves, which is set to the number of training rows divided 

by 10, and the prior probability method type.   

6. The next line of code calls estimator.fit to fit the model with the input variables (trainingInputColumns) 

and the output variable (trainingTargetColumn). 
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7. The next line of code uses the model created by estimator.fit to score the validation partition and then prints 

to console the first 10 rows (Util.head) of a new DataFrame created by binding (Util.colBind) to columns 

validationTargetColumn, predictedLabels. 

8. This next two lines of code construct and print the confusion matrix 

9. Step 9 computes the F1 Metric. 

10. Finally, memory is freed for all the variables used in the pipeline.   

It’s time to install XLMiner SDK and get started.   

XLMiner SDK Platform and Pro 
XLMiner SDK can be purchased in two different versions:  XLMiner SDK Platform and XLMiner SDK Pro.  See 

the chart below to compare the data handling limits between the two products.  "Unlimited" indicates that no limit is 

imposed. 

 

Feature Platform Pro 

Partitioning   

# of Records (original data) Unlimited 65,000 

# of Records (training partition) Unlimited 10,000 

# of Variables (original data) Unlimited Unlimited 

# of Variables (output) Unlimited 50 

Sampling   

# of Records (original data) Unlimited 65,000 

# of Records (output) Unlimited 65,000 

# of Variables (original data) Unlimited Unlimited 

# of Variables (output) Unlimited 50 

# of Strata (Stratified Sampling) Unlimited 30 

Database   

# of Records (table) Unlimited 1,000,000 

# of Records (output) Unlimited 65,000 

# of Variables (table) Unlimited Unlimited 

# of Variables (output) Unlimited 50 

# of Strata (Stratified Sampling) Unlimited 30 

File System   

# of Files Unlimited 100 

Text Mining   

# Documents Unlimited 100 

# Characters (per document) Unlimited 5,000 

# Terms in final vocabulary Unlimited 50 

# Text columns Unlimited 1 

Transformation   

Missing Data Handling   

# of Records Unlimited 65,000 

# of Variables Unlimited 50 

# of Missing values Unlimited 65,000 
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Binning Continuous Data   

# of Records Unlimited 65,000 

# of Variables (data range) Unlimited 50 

Transforming Categorical Data   

# of Records Unlimited 65,000 

# of Variables (data range) Unlimited 50 

# of Distinct values Unlimited 30 

# of Variables (output) Unlimited 30 

Time Series Analysis   

# of Records Unlimited 1,000 

Classification and Prediction   

# of Records (total) Unlimited 65,000 

# of Records (training partition) Unlimited 10,000 

# of Records (new data for scoring) Unlimited 10,000 

# of Variables (data range) Unlimited 50 

# of Variables (input variables) Unlimited 50 

# of Distinct classes (output 

variable) 
Unlimited 30 

# of Distinct values (categorical 

input variables) 
Unlimited 100 

k-Nearest Neighbors   

# of Nearest neighbors 50 10 

Regression/Classification Trees   

# of Splits Unlimited 100 

# of Nodes Unlimited 100 

# of Levels Unlimited 100 

# Levels in Tree Drawing Unlimited 7 

Ensemble Methods   

# Weak learners Unlimited 10 

Feature Selection   

# of Records Unlimited 10,000 

# of Variables Unlimited 50 

# of Distinct classes (output 

variable) 
Unlimited 30 

# of Distinct values (input 

variables) 
Unlimited 100 

Association Rules   

# of Transactions Unlimited 65,000 

# of Distinct items 5,000 100 

# of Items in a Transaction Unlimited 50 

# of Rules Unlimited 65,000 

Clustering   

K-Means   

# of Records Unlimited 10,000 

# of Variables Unlimited 50 
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# of Clusters Unlimited 10 

# of Iterations Unlimited 10 

Hierarchical   

# of Records Unlimited 1,000 

# of Variables Unlimited 50 

# of Clusters in a Dendrogram Unlimited 10 

Size of distance matrix Unlimited 1,000 x 1,000 

Charts   

# of Records Unlimited 65,000 

# of Variables (original data) Unlimited 50 

General   

Model pane Included Included 

Big Data sampling/summarization Included Not Included 

Model storage and scoring Included Included 
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Installation   

What you Need 
To install the XLMiner SDK 2018 software, you must be running one of the following operating systems: Windows 

10, Windows 8, Windows 7, Windows Vista, Windows Server 2016, Windows Server 2012, Windows Server 2008.  

Getting Help 
Frontline Systems technical support is available to offer assistance with installation of the XLMiner SDK by 

contacting Support by phone (888-831-0333) or email (support@solver.com).     

Installing the Software 
To install XLMiner SDK to work with 32-bit version of Microsoft Windows, run the program 

XLMinerSDKSetup.exe which contains all the XLMiner SDK files in compressed form. To install XLMiner SDK 

to work with 64-bit version of Windows, run XLMinerSDKSetup64.exe. 

Depending upon your Windows security settings, one of the following prompts (displaying Frontline Systems, Inc. 

as publisher) may appear: 

Do you want to run this software?  

Do you want to allow this app to make changes to your device?   

Click Run or Yes to proceed with installation of XLMiner SDK.  

During file decompression, the following screen is displayed. 

 

 

After the files are decompressed, the Welcome Screen will appear.  (File decompression can take up to 5 minutes.) 

mailto:support@solver.com
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Click Next to proceed. In response to the License Agreement dialog, select I accept the terms in the license 

agreement, and click Next to proceed.  

 

 

In the Destination Folder screen, click Next to install the software into the selected folder, or click Change to 

designate another destination folder. Click Next to proceed. 
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Click Next to proceed. The next screen indicates that the preliminary steps are complete and installation is ready to 

begin. To change any installation settings, click Back; otherwise click Install to proceed. 

 

 

While the SDK files and examples are being installed, the progress is displayed on the following screen. This may 

take several minutes to complete.   
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When the installation is complete, the following screen is displayed. Click Finish to exit the InstallShield Wizard. 

 

 

Once XLMiner SDK is installed, you may find examples, help and library files at: C:\Program Files\Frontline 

Systems\XLMiner SDK\Examples (32 bit location – C:\Program Files (x86)\Frontline Systems\...).   

Uninstalling the Software 
To uninstall XLMiner SDK, run the XLMinerSDKSetup or XLMinerSDKSetup64 program as outlined above. A 

prompt will ask you to confirm whether you want to uninstall the software.  
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You can also uninstall the software using the following steps: 

1. From the Start menu, select the Control Panel 

2. Double-click Program Features or Add/Remove Programs 

3. Select Frontline Systems XLMiner SDK 2018, and click Uninstall 
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Getting Started  

Introduction 
This chapter details the steps required to compile, link, and run the XLMiner SDK examples in C#, C++, JAVA, 

PYTHON, and R.   

C++/C#:  To simplify the input/output and focus on the XLMiner SDK routines and arguments, the C++ and C# 

example applications in this chapter use console calls for output, and were built as Win32 console applications in 

Microsoft Visual Studio  

JAVA:  See “Calling SDK from Java” for instructions on how to open and run the Java examples.   

PYTHON:  XLMiner SDK supports Python V3.6 and V2.7.  

R: See “Calling SDK from R” for instructions on how to open and run the R examples.   

XLMinerSDKSetup.exe installs a 32-bit XLMiner SDK into the path C:\Program Files (x86)\Frontline 

Systems\XLMiner SDK. XLMinerSDKSetup64.exe installs a 64-bit XLMiner SDK into the path C:\Program 

Files\Frontline Systems\XLMiner SDK. If using 64-bit XLMiner SDK, your application must also be 64-bit. 

Likewise, if using 32-bit XLMiner SDK, your application must also be 32-bit. The path to the XLMinerSDK 

dynamic libraries is added to the system PATH during installation.    

The following subfolders are installed into the Frontline Systems\XLMiner SDK directory: Bin, Examples, 

Include, and Lib. Note:  The Bin directory (located at …\Frontline Systems\XLMiner SDK\) is added to the PATH 

during installation.          

• Bin – Contains the XLMinerSDK.dll along with other required dynamic libraries. This folder also 

includes the _XLMiner.pyd files for both Python 3.6 and Python V2.7.  

• Examples – Example code in five different programming languages (C#, C++, Java, Python and R) is 

installed into the Examples directory, illustrating how to call each method within XLMiner SDK. Example 

data sets referenced in the code are installed into the Datasets folder. See the following sections for 

instructions on how to run each example project.   

• Include – Contains C++ header files to be used for development or included with XLMinerAPI.h 

(includes all header files).   

• Lib – XLMiner SDK library files are installed into the Frontline Systems\XLMiner SDK\Lib directory. If 

using C++, link to XLMinerSDK.lib, Evaluator.lib, and XLData.lib in your project or linkers response 

file (see Calling XLMiner SDK from C++). For JAVA, Python and R, XLMinerJavaLibrary.jar, 

XLMiner.py and XLMiner.zip are also installed into a Lib folder. 

Many of the details of using the XLMiner SDK will vary depending upon the development environment you prefer 

to use. Since it is impractical to provide examples for all techniques in all programming languages within this Guide, 

this Guide will illustrate how to call XLMiner SDK using the C# programming language.  Examples in the 

remaining supported languages can be found in the installation path at C:/Program Files/Frontline Systems/XLMiner 

SDK/Examples.   

Using Interactive Environments 
The classic edit-compile-test cycle for program code remains the only practical method for producing professional 

applications and program libraries. However, thanks largely to multicore chips and copious RAM, there has be a 

great increase in recent years in the popularity of interactive environments. Indeed, interactive environments are 

often the best way to go for preliminary evaluations and exploratory data analysis. 
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R 

R has always been an interactive environment, but the widely-used R Studio has extended the convenience of a 

graphical user interface, and more recently with support for R Notebooks. A Notebook supplements the interactivity 

of R by not only executing commands, but by recording the commands and output, including graphical output, into 

HTML format. 

Python 

Jupyter, originally dubbed “IPython”, provides a splendid way to learn XLMiner and perform interactive data 

analyses. 

C# Interactive 

C# Interactive, a relative newcomer, is available in two forms. Visual Studio 2017 includes an integrated C# 

interpreted command line, closely analogous to the F# command line introduced in earlier versions. The interactive 

C# environment within Visual Studio 2017 is a strictly 32-bit application and cannot be used with 64-bit XLMiner 

SDK. Perhaps more interesting and valuable is the standalone CSI command line REPL environment, which 

provides a fast and fun way for the C# developer to learn to manipulate XLMiner DataFrames and to perform 

interactive analyses. 

32- and 64-Bit XLMiner SDK 
The XLMiner setup program will install the SDK into C:\Program Files on a 32-bit machine, or if you install 64-bit 

XLMiner SDK on a 64-bit machine in the “Frontline Systems” folder. If you have installed 32-bit XLMiner on a 64-

bit system, the Frontline Systems folder will be found in “Program Files (x86)”. In general, administrative 

permissions are required to modify files in subdirectories of Program Files, so it is generally easier to copy the 

XLMiner SDK examples into a different directory for compilation and testing. 

Calling XLMiner SDK from C++ 
To open the example code for C++:  

Open Microsoft Visual Studio V2013 or later  

Browse to C:\Program Files\Frontline Systems\XLMiner SDK\Examples\C++ if using 64-bit XLMiner SDK, or to 

C:\Program Files (x86)\ if using 32-bit XLMiner SDK.   

Open the file Test.vcxproj.  Note:  If using 64-bit XLMiner SDK, confirm that your target platform is x64 before 

compiling and running this project file.  If using 32-bit XLMiner SDK, your target platform must be Win32.   

When creating your own application:  

To create an application that calls the XLMiner SDK in C++, you must include the import library files XLData.lib, 

XLMinerSDK.lib, and Evaluator.lib in your project or linkers response file. Alternatively, you can write code to 

use “run-time dynamic linking” by calling Windows API routines such as LoadLibrary(). Library files are installed 

into the Lib folder (see above for path).    

To access the XLMiner SDK functions, you must add an include statement for the file XLMinerAPI.h. You can 

also add an optional using namespace directive for XLMiner.  

Calling XLMiner SDK from C# 
Calling XLMiner SDK from C# is especially easy. The programming environment, whether Visual Studio 2013 or 

later or C# Interactive, need only have a reference to XLMinerCSLibrary.dll. This library calls the unmanaged code 

in the native XLMiner libraries from managed .Net code generated by C#. 

 

There is no better way to discover the many capabilities of the XLMiner SDK than to establish a reference 

in a Visual Studio project and then examine XLMiner using the Object Explorer. 



XLMiner SDK User Guide Page 24 
 
  

 

In the C# Interactive environment, this is done from the command prompt using a reference directive. 

Alternatively, C# Interactive can be invoked specifying a startup script referencing the library. This latter 

alternative is much easier if you expect to be using C# interactive frequently. 

In #r, use:  “C:\Program Files\Frontline Systems\XLMiner SDK\Bin\XLMinerCSLibrary.dll.” 

If you do not utilize “using” directives, you will have to preface class names with “XLMiner”. This is sometimes 

advantageous for beginners as a reminder of where various methods are defined. It quickly becomes tedious, 

however, and professional XLMiner developers generally add “using XLMiner;” to their code. 

To open the example code for C#: 

Open Microsoft Visual Studio V2013 or later 

Browse to C:\Program Files\Frontline Systems\XLMiner SDK\Examples\C# if using 64-bit XLMiner SDK, 

or to C:\Program Files (x86)\ if using 32-bit XLMiner SDK 

Open the file Test.csproj.   

Setting a reference—To access the objects in XLMiner SDK, you must set a reference. During installation 

of the SDK, a C# library XLMinerCSLibrary.dll is installed into the Bin directory in C:\Program 

Files\Frontline Systems\XLMiner SDK\Bin\ if using 64-bit XLMiner SDK, or to C:\Program Files (x86)\ if 

installing 32 -bit XLMiner SDK.   

Adding a directive—Adding the directive using XLMiner is optional in C#. If you choose not to add the 

directive, you must add XLMiner to the beginning of each SDK function call. 

Calling XLMiner SDK from Python  
The Python interpreter reads and parses the example script, compiles it into bytecode, and executes in run-time. To 

run the Python example, the required Python libraries must be downloaded and installed. The current version of 

Python is 3.6; however, XLMiner SDK also supports version V2.7. 

The XLMiner SDK for Python consists of native binaries compiled with certain configurations. As a result, it is 

important to install the appropriate version of Python (i.e., if using 64-bit XLMiner SDK, 64-bit Python must be 

used, if using 32-bit XLMiner SDK, 32-bit Python must be used). Before calling XLMiner SDK, confirm that 

Python DLLs are accessible using the system path.  

There are two ways to view and run the Python examples: by command prompt executing sequential commands, or 

by writing a full script and executing the full code using a Python notebook or a full Python IDE.   

Command Prompt—if using a command prompt, simply open a python.exe interpreter (or call it for each 

command) to work in “interactive shell” mode. Using this method, single commands are executed in succession.   

Using a Python IDE or Notebook—open a Python IDE to execute a full script such as PyCharm by JetBrains, 

Visual Studio 2017 (with Python tools installed), or a Python Notebook such as Jupyter.  

To call XLMiner SDK from Python, you will need the following:  

_XLMiner.pyd (for Python V3.x or V2.7) and XLMinerSDK.dll (along with other binaries that XLMinerSDK.dll 

depends upon) are installed into the Bin folder (see above for complete path). Both files must be on the 

PYTHONPATH or in the same folder. Bin folder (C:\Program Files\Frontline Systems\XLMiner SDK\Bin) are 

added to the system path during installation. Two sub-folders are contained within the Bin directory:  Python2 and 

Python3. You can copy the _XLMiner.pyd file that matches the Python installation into the Bin folder, or set the 

path to use the appropriate nested Python2 or Python3 folder. You also need XLMiner.py, which is installed into 

Lib folder.  

To import the XLMiner extension module using from XLMiner import *, see Examples.py. 
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Calling XLMiner SDK from Java 
To open the example code for Java: 

Browse to C:\Program Files\Frontline Systems\XLMiner SDK\Examples\Java (C:\Program Files (x86)\ if using 32-

bit XLMiner SDK.) 

Open Examples.java using an editor of your choice or a JAVA IDE    

See the Lib folder within C:\Program Files\Frontline Systems\XLMiner SDK (if using 32-bit XLMiner SDK, 

C:\Program Files (x86)) for the Java package file, XLMinerJavaLibrary.jar  

Import all (or a portion) of the XLMiner API using:  

import XLMiner.*; 

import XLMiner.Binning.IntervalType; 

If you choose not to import these packages, you must alter your function calls before use. For example, rather than 

sampler.setReplaceOption(ReplaceType.REPLACE_NO), you would be required to use sampler.setReplaceOption 

(XLMiner.Sampling.ReplaceType.REPLACE_NO). 

The file runJavaXLMinerSDK.bat executes a simple .bat script that compiles and runs the JAVA examples. This 

is optional; only the JAVA Development Kit (JDK) is required to run these examples.      

Calling XLMiner SDK from R  
In the XLMiner examples for R, there are two scripts, Main.R and Examples.R. The actual use of XLMiner 

functions can be studied from the Examples.R. file. Main.R exists not only to invoke the examples, but also to install 

required packages. The XLMiner package has two prerequisites, Rcpp and R6, both can be downloaded from the 

standard R mirror servers. Rcpp is the most widely used package for providing an interface between R and compiled 

code written in C++, and R6 extends R with some additional capabilities for handling object references. 

Once the prerequisites have been installed, the XLMiner package can be installed. This can be done by running 

Main.R, or it can be installed manually if you prefer. The zip file necessary for installation is XLMiner.zip and is in 

XLMiner SDK\Lib.  (If you are using the 64-bit version of XLMiner SDK, you will need to use the 64-bit version of 

R.) 

To open example code for R: 

Browse to C:\Program Files\Frontline Systems\XLMiner SDK\Examples\R if using 64-bit XLMiner SDK, or 

C:\Program Files (x86)\Frontline Systems\XLMiner SDK\Examples\R, if using 32-bit XLMiner SDK 

Examples.R contains definitions for R functions that illustrate sample usage of XLMiner SDK. Main.R contains 

the code to install the required R packages (Rcpp/R6), and defines some common data structures used for running 

the examples. 

To run all examples, R command source(file,…) can be called with Main.R. This method works when using the R 

console or any R IDE. One of the most popular IDEs for R is RStudio, which is free. Along with scripting 

capabilities similar to R console, RStudio offers GUI and interactive features to work with R. For more details 

regarding RStudio, refer to the RStudio documentation. 

Note: R has its own definition of DataFrame, which is very rich and convenient for the R environment. Therefore, 

XLMiner SDK for R provides the interface to work with native R DataFrames, performing automatic conversions. 
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Mining Data with the XLMiner 
SDK 

The XLMiner SDK Pattern 
Data Preparation | Creating the Model | Examining and Applying the Results 

The following chapters contain the information needed to call XLMiner SDK from the supported programming 

languages:  C++, C#, Java (Scala), Python and R.  While reading these chapters, keep in mind the three steps to any 

data mining pipeline:  Data Preparation, Model Creation, and Result examination and application.   

Data Preparation   

Regardless of the source of the data, it must be brought into an XLMiner DataFrame before it can be passed to any 

XLMiner mining engine.  

Model Creation 

Next, an Estimator class is instantiated for a specific algorithm such as the Classification Decision Tree.  After the 

Estimator is instantiated, the fit method will create an instance of the Model class – here is where the bulk of 

XLMiner’s work is done.  

Result Examination and Application 

The properties and methods of a Model object provide users access to all information specific to the mining model 

of interest. 

Usually, the results of a data mining task are themselves DataFrames. Not only does this ease the task of the 

developer by providing a common interface, it also makes it easy to use the output of one mining task as the input to 

another.   For example, Neural Network algorithms are powerful, but they are also computationally intensive. 

Sometimes it is advantageous to use a task such as Feature Selection, PCA, and others to reduce the work required 

by the demanding Neural Network algorithm. 

See the next chapter to examine the details of data preparation in XLMiner SDK. 
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Data Preparation 
Introduction 
Data gathered in the real world is never ready for analysis as is. Because virtually all modern development 

environments can interface with XLMiner SDK, your data can be prepped, cleansed and organized using whichever 

environment your team prefers. Regardless of whether your team works in R, C#, Python, or some other 

environment, the data itself may be available in a variety of formats.  

 

DataFrames 
Most of the XLMiner data mining engines require input data in the form of a DataFrame. Since different host 

environments deal with DataFrames each in their own way, we shall have to take a few moments to see how 

DataFrames work. We’ll compare C#, R, and Python. 

Despite the similar appearance of DataFrames across various development environments, the internal structure of 

the DataFrames included in these assorted environments is quite varied.  These variations have enormous effects on 

data mining performance, both in terms of speed and the ability to handle large data volumes. XLMiner’s 

DataFrames are crafted to take full advantage of the processing capabilities of modern CPU architectures. 

DataFrames generally require some type of preprocessing, such as partitioning into training, validation and test 

subsets.  XLMiner developers can either choose to manipulate the DataFrames in XLMiner SDK, prior to invoking 

data mining procedures, or in their host programming system.  Then structure the data accordingly and load the 

finished product into XLMiner for analysis. Many XLMiner users choose to manipulate their DataFrames into the 

desired structure in R, which has over the years acquired a rich set DataFrame tools. 

Basic DataFrame Tasks 

• Creating and filling DataFrames 

• Selecting a subset of columns or rows 

• Appending columns or rows 

• Selecting subsets for training, verification and testing of models.   

The basic operations often appear in guises critical to data mining goals 

The Dataset 
Virtually all operations in XLMiner utilize DataFrames for input and output. It is therefore convenient to develop a 

class to encapsulate the most common XLMiner DataFrame operations and specifications. Such a class, dubbed 

XLMiner Dataset, can easily be implemented in C#. An example appears below.  For an example of this class in the 

remaining supported programming languages see …/Frontline Systems/XLMiner SDK/ Examples in the installation 

path.   

Dataset class in C# 

public class Dataset : IDisposable 

{ 

public int targetColumnIndex = 0; 

public DataFrameVector input, target; 

 

public Dataset(DataFrame data, string targetColName, double[] ratios) : 
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 this(data, data.ColIndex[targetColName], ratios) 

 { } 

 

public Dataset(DataFrame data, int targetColumnIndex, double[] ratios) 

{ 

this.targetColumnIndex = targetColumnIndex; 

var partitions = Partition(data, ratios); 

int[] targetIndexSet = new int[] { targetColumnIndex }; 

  

 input = new DataFrameVector(); 

 target = new DataFrameVector(); 

  

input.push_back(partitions[TRAINING][Util.all, 

Util.except(targetIndexSet)].setName(TRAINING)); 

target.push_back(partitions[TRAINING][Util.all, 

targetIndexSet].setName(TRAINING)); 

input.push_back(partitions[VALIDATION][Util.all, 

Util.except(targetIndexSet)].setName(VALIDATION)); 

target.push_back(partitions[VALIDATION][Util.all, 

targetIndexSet].setName(VALIDATION)); 

} 

 

public Dataset(DataFrame data, int targetColIndex) : 

 this(data, targetColIndex, new double[] { 0.6, 0.4 }) 

 { } 

public Dataset(DataFrame data, string targetColName) : 

 this(data, data.ColIndex[targetColName]) 

 { } 

public int NumTrainingRows 

 { 

    get { return trainingInputColumns.NumRows; } 

 } 

public void Dispose() 

 { 

    Util.free(ref input); 

    Util.free(ref target); 

 } 

} 
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DataFrame Manipulation for R, Python, and C# 
While all development environments provide means to achieve the same goals, there are substantial differences 

among the various programming languages and host environments. 

Using DataFrames in C# 

The Microsoft .Net Framework does not have a column-oriented structure like a DataFrame, so C# developers will 

likely wish to use XLMiner’s built-in capabilities. DataFrames are easily created by reading data files directly into 

XLMiner using the XLMiner.Reader class. 

Creating DataFrame by reading data files directly into SDK using XLMiner.Reader class 

XLMiner.DataFrame df = XLMiner.Reader.textFile(PATH + "AdmissionsData- 

001.csv"); 

Once we have created an XLMiner DataFrame, we can easily manipulate it.   

The code below creates a new DataFrame, df2, using columns 0, 1, and 2 from the existing DataFrame, df.   

Creating new DataFrame using columns 0, 1, and 2 from existing DataFrame 

XLMiner.DataFrame df = XLMiner.Reader.textFile( "AdmissionsData-001.csv"); 

int[] test = { 0, 1, 2 }; 

var df2 = df[XLMiner.Util.All.value, test];  

This code snippet creates a new DataFrame, df3, by including the first and third columns from the existing 

DataFrame df, while dispensing with a separate declaration for the array containing the column indexes. 

Creating new DataFrame while dispensing with separate declaration for array containing column 

indexes 

var df3 = df[XLMiner.Util.All.value, new int[] { 1,3}]; 

Note C# does not support syntax of the sort: “MyStructure[:,3]”. As a result, XLMiner SDK provides an 

enumeration, Util.All, with only one value, the sole purpose of which is to indicate that all rows (or all columns) 

should be selected. A related method, Util.except, can be used to exclude unwanted columns when passing a 

DataFrame as an argument. 

It is also possible to select rows and columns not only by indexes, but also by name. 

Selecting rows and columns by name 

print(“Extracting a sub-DataFrame\n”, df[2:, 0:2].Value) 

print(“Extracting a sub-DataFrame\n”, df[[“Record 1”, “Record 2”], 

[“Feature 1”, “Feature3”]].Value) 

print(“Extracting a sub-DataFrame\n”, df[[“Record 1”, “Record 2”], 

[0,2]].Value) 

print(“Extracting a sub-DataFrame\n”, df[0:2, [“Feature 1”, “Feature 

3”]].Value) 
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Creating DataFrames from C# Arrays 

In previous examples, we created XLMiner DataFrames by reading data from text files. We can also create 

DataFrames directly from C# data by appending single-dimensional arrays to a new DataFrame. Each of the 

appended arrays must have the same length and must be of datatype int, double, or string. 

Create DataFrame directly from C# Data by appending single-dimensional arrays to new DataFrame 

public static void RowsToDataFrame001() 

    { 

        int i = 0; 

        int rowcount; 

        int[] educ; 

        int[] exper; 

        double[] wage; 

  string connString = "Data Source=localhost;initial catalog =  

  StatisticsTest; Integrated security = SSPI"; 

        using (SqlConnection conn = new SqlConnection(connString)) 

        { 

            using (SqlCommand cmd = new SqlCommand()) 

            { 

                cmd.Connection = conn; 

                conn.Open(); 

                cmd.CommandText = "SELECT COUNT(*) FROM [Wage-01]"; 

                rowcount = (int)cmd.ExecuteScalar(); 

                educ = new int[rowcount]; 

                exper = new int[rowcount]; 

                wage = new double[rowcount]; 

                cmd.CommandText = "SELECT wage, educ, exper FROM [Wage- 

    01]"; 

                SqlDataReader reader = cmd.ExecuteReader(); 

                while (reader.Read()) 

                { 

                    educ[i] = reader.GetInt32(1); 

                    exper[i] = reader.GetInt32(2); 

                    wage[i] = reader.GetDouble(0); 

                    i++; 

                } 

            } 

            XLMiner.DataFrame df = new XLMiner.DataFrame(); 

            df.append(wage); 
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            df.append(educ); 

            df.append(exper); 

            Console.WriteLine(df); 

        } 

    } 

   

Using DataFrames in R 

In contrast with C#, R possesses rich support for DataFrame structures. R developers using the XLMiner SDK can 

use R to manipulate DataFrames, and then supply the DataFrames to XLMiner methods as arguments. There is no 

support for directly manipulating XLMiner DataFrames within R; it would simply serve no purpose. 

In addition to the core R support for DataFrames, there are also R packages that provide additional support for 

DataFrame work in R. Among the more popular is dplyr. 

  

A note about Microsoft R… 

In 2017, Microsoft made a major commitment to R with the acquisition of Revolution Analytics. There are 

now three editions of Microsoft R. Microsoft Open R provides the same functionality as other R 

implementations. Microsoft R Client is designed for the data scientist handling data on his or her 

workstation, and Microsoft R Server provides support for greater parallelism, data files spread across 

different disks, and integrated support for Hadoop, Teradata, and of course SQL Server. Both the Client 

and the Server editions include proprietary R packages not available for open-source R versions. Among 

the proprietary features in R Client and R Server is support for xdf files which are extended data frames 

that permit the R developer to work with data frames that, in the past, have been too large to fit in RAM. 

The xdf files can be read and processed in “chunks” so that the entire file is not required to be loaded into 

memory all at once, thereby greatly increasing the data volume that can be analyzed. 

Using DataFrames in Python 

In contrast with both C# and R, Python provides for the manipulation of XLMiner DataFrames in a manner which is 

both direct and completely intuitive for the Python developer. 

In these examples, data, df02, and df03 are both XLMiner DataFrames 

Manipulating XLMiner DataFrames in Python 

df02=data[:,[1,3]] 

df03=data[:,[0,1,2,3]] 

 

You can obtain an XLMiner.DataFrameColumn using a column name. 

 Obtaining XLMiner DataFrameColumn using column name 

Dfc01 = data[:, “CRIM”] 

However, in Python you also can create a new DataFrame with multiple columns using names instead of indices.  

 Creating DataFrame using column names 

f04=data[:,['CRIM', 'INDUS']] # using column names 

f03=data[:,[0,1,2,3]] # using column indices 
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Partitioning DataFrames for Training and Validation 
One of the risks of data mining in general is the potential for “overfitting” the data. It is often possible to find an 

exceedingly detailed model that fits the training data almost perfectly and then fails miserably the first time it is 

applied to a novel data point. To avoid the danger of overfitting, it is standard practice to use only a subset of the 

available data to build the model, holding back some data for subsequent validation and testing of the model. As 

mentioned in the data preparation section, XLMiner provides methods for partitioning the data into two or more sets 

for training the model and then validating it. 

XLMiner provides a Partitioner class that makes it easy to create DataFrame subsets for training and validating 

mining models. In fact, you are not limited to two partitions, you may have several partitions as long as the sum of 

the probabilities for each partition is 1.0. 

Partitioning dataset into training and validation sets  

XLMiner.DataFrame df = XLMiner.Reader.textFile(PATH + "wine.txt"); 

Console.WriteLine("Original DataFrame NumRows: {0}", df.NumRows); 

XLMiner.Partitioner partitioner = new XLMiner.Partitioner(); 

    partitioner.PartitionRatio["Training"] = 0.6; 

    partitioner.PartitionRatio["Validation"] = 0.4; 

DataFrameVector partitions = partitioner.partition(df); 

Rows may be partitioned either randomly or based on their sequence in the DataFrame. The default is random, but 

repeated executions of the same code will always result in the same random numbers, and thus the same row 

subsets. This is generally preferable during development and testing. To achieve an unpredictable sequence in a 

production environment you must provide a random seed prior to partitioning the DataFrame. See below for an 

example of how to supply a random seed: 

Setting a random seed prior to partitioning a DataFrame 

XLMiner.Partitioner partitioner = new XLMiner.Partitioner(); 

partitioner.Seed = (new System.Random()).Next(System.Int32.MaxValue); 
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Data Transformation 

Introduction 
This chapter focuses on XLMiner SDK’s tools for data transformation.  Data Transformation (in this context) is a 

fundamental step when building a data mining model that involves determining if the dataset is in a reasonable 

condition.  It involves cleaning, preprocessing and reducing data.  With these tools you’ll be able to normalize your 

data, manage missing data, reduce the number of categories in a categorical variable, gain the knowledge to know 

when a variable is redundant, or not, etc.  XLMiner SDK includes the following data transformation utilities.   

• Scaling 

Use this utility to rescale one or more features in your data. 

• Factorizing 

Use this utility to encode the values of categorical features into factors, i.e. ordinal integers.  

• Binning 

Binning a dataset is a process of grouping continuous data into categorical groups based on the counts or 

the intervals. 

• One-Hot-Encoding 

Transforms categorical data into a numeric format appropriate for use with some Data Mining algorithms 

that require numeric features.   

• Reducing categories 

This utility allows users to create a new categorical variable that reduces the total number of categories.  

You can reduce the number of categories “by frequency” or “manually”. 

• PCA 

Principal Component Analysis (PCA) is a mathematical procedure that transforms a number of (possibly) 

correlated variables into a smaller number of uncorrelated variables called principal components. The 

objective of PCA is to reduce the dimensionality (number of variables) of the dataset but retain as much of 

the original variability in the data as possible. 

• K-Means and Hierarchical Clustering 

Cluster Analysis, also called data segmentation, has a variety of goals which all relate to grouping or 

segmenting a collection of objects (also called observations, individuals, cases, or data rows) into subsets or 

"clusters".  These “clusters” are grouped in such a way that the observations included in each cluster are 

more closely related to one another than objects assigned to different clusters. 

• Sampling 

Sampling techniques choose a representative subset of data in order to identify patterns or trends in a 

complete dataset.   

• Partitioning 

One very important issue when fitting a model is how well the newly created model will behave when 

applied to new data.   To address this issue, the dataset can be divided into multiple partitions:  a training 

partition used to create the model, a validation partition to test the performance of the model and, if desired, 

a third test partition.  Partitioning is performed randomly, to protect against a biased partition, according to 

proportions specified by the user or according to rules concerning the dataset type. 
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• Canonical Variate Analysis (CVA) 

XLMiner SDK produces the canonical variates for a dataset based on an orthogonal representation of the 

original variates. This has the effect of choosing a representation which maximizes the distance between 

classes.  

Scaling: Simple but Critical 
How does an ACT score of 30 compare with an SAT score of 670? Without further information, it’s impossible to 

say since the scores have different scales. In data mining it is common to rescale raw data so that vectors 

representing different data all share the same scale. Two commonly used methods are standardization and 

normalization. Standardization transforms data into z-scores, or data with a mean of zero and a standard deviation of 

one. Normalization, on the other hand, rescales the data to fit into the finite range from 0.0 to 1.0.  

One point of possible confusion is that, in this context, the term “normalization” is not related to a “normal” 

distribution but rather to what mathematicians call the “norm” of a vector. Vector norms can be defined in several 

ways; two of the most common are the sum of the absolute values of the vector elements and the square root of sum 

of the squares of the vector elements. These two norm definitions are referred to as the L1 and L2 norms, 

respectively. The default L2 norm represents the familiar Euclidean distance. 

In the following example code, we standardize the column vectors in the Hald dataset. A more detailed example 

may be found in the Examples folder in your Frontline installation folder. 

Using the Rescaling feature to standardize column vectors 

public static int Rescaling() 

 { 

   try 

     { 

       DataFrame data = Reader.textFile((PATH + "hald-small.txt")); 

       Console.WriteLine(data); 

       var estimator = new Scaler.Estimator() 

       { 

       Technique = Scaler.Technique.STANDARDIZATION; 

       }; 

       Console.WriteLine(estimator); 

       var model = estimator.fit(data); 

       Console.WriteLine(model); 

        

       var rescaledData = model.transform(data); 

       Console.WriteLine(rescaledData); 

       var pmmlFile = PATH + "PMML/transformation-rescaling.xml"; 

       model.toPMML(pmmlFile); 

 

       Console.WriteLine(estimator. 

            setTechnique(Scaler.Technique.NORMALIZATION). 

            setCorrection(0.01). 
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            fit(data). 

            transform(data)); 

       Console.WriteLine(estimator. 

            setTechnique(Scaler.Technique.ADJUSTED_NORMALIZATION). 

               setCorrection(0.01). 

               fit(data). 

               transform(data)); 

       Console.WriteLine(estimator. 

               setTechnique(Scaler.Technique.UNIT_NORMALIZATION). 

               setNormType(Scaler.NormType.L2). 

               fit(data). 

               transform(data)); 

      } 

       

    catch (XLMiner.Exception ex) 

     { 

Console.WriteLine("Exception has occurred at 

<Transformation.Rescaling>:\n" + ex.Message); 

       return 1; 

      } 

   return 0; 

} 

Scaling Options 

XLMiner SDK provides the following methods for feature scaling:  Standardization (Technique = 
Scaler.Technique.STANDARDIZATION), Normalization(Scaler.Technique.NORMALIZATION), Adjusted 

Normalization(Scaler.Technique.ADJUSTED_NORMALIZATION) and Unit 

Norm(Scaler.Technique.UNIT_NORMALIZATION).   

• Scaler.Technique.STANDARDIZATION 

Standardization adjusts the feature values to zero mean and unit variance.  (x−mean)/std.dev.  

• Scaler.Technique.NORMALIZATION 

Normalization scales the data values to the [0,1] range.  (x−min)/(max−min)  

The Correction option specifies a small positive number ε that is applied as a correction to the formula. The 

corrected formula is widely used in Neural Networks when Logistic Sigmoid function is used to activate 

the neurons in hidden layers – it ensures that the data values never reach the asymptotic limits of the 

activation function. The corrected formula is [x−(min−ε)]/[(max+ε)−(min−ε)].  

• Scaler.Technique.ADJUSTED_NORMALIZATION 

Adjusted Normalization scales the data values to the [-1,1] range. [2(x−min)/(max−min)]−1 

The Correction option specifies a small positive number ε that is applied as a correction to the formula. The 

corrected formula is widely used in Neural Networks when Hyperbolic Tangent function is used to activate 
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the neurons in hidden layers – it ensures that the data values never reach the asymptotic limits of the 

activation function. The corrected formula is {2[(x−(min−ε))/((max+ε)−(min−ε))]}−1. 

• Scaler.Technique.UNIT_NORMALIZATION 

Unit Normalization is another frequently used method to scale the data such that the feature vector has a 

unit length. This usually means dividing each value by the Euclidean length (L2-norm) of the vector. In 

some applications, it can be more practical to use the Manhattan Distance (L1-norm). 

The default norm is L2. 

Factorizing 
Factorizing is most often applied to data values that “sit on the fence” as it were, between string and numeric data. 

Though it is not a requirement, factors are very often ordered. For example, the strings "poor”, “fair”, “good”, and 

“excellent” have an implied order not apparent in the character data itself. 

Categorical variables can be nominal or ordinal.  Nominal variable values have no order, for example, True or False 

or Male or Female.  Values for an ordinal variable have a clear order but no fixed unit of measurement, i.e. Kinder, 

First, Second, Third, Fourth, and Fifth or a Size Chart using S, M, and L.  The strings, while not numerical, do have 

an implied order.  Factorizing converts a string variable such as S, M or L, into a new numeric, categorical variable. 

The example code below first illustrates how to create a Factor estimator, then fit a model using that estimator.  

Afterwards, the example illustrates how to create a model manually, i.e. without using estimator.fit.   

When using estimator.fit to fit a factoring model, XLMiner SDK will find unique values for the selected variable, 

sorted in lexicographical order.  Alternative, XLMiner SDK allows users to manually provide levels in any order 

desired, based on prior knowledge of the data. 

Factorizing example code 

public static int Factorizing() 

 { 

   try 

     {//Fits a model using the Factor Estimator 

      DataFrame data = Reader.textFile(PATH + "BostonHousingCat.txt"); 

 

      //Create Factor Estimator   

using (var estimator = new Factor.Estimator()) 

      { 

        //sets the base indicies to 1 for CHAS and 5 for RAD 

        estimator.BaseIndex["CHAS"] = 1; 

        estimator.BaseIndex["RAD"] = 5; 

 

        Console.WriteLine(estimator); 

 

   //Fits the model         

  using (var model = estimator.fit(data)) 

        {  

           Console.WriteLine(model); 
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     //Transforms data into factors using the fitted model 

      var factors = model.transform(data); 

           Console.WriteLine(Util.head(factors)); 

 

//Converts transformed factors back to original values (here 

for  illustration purposes only) 

     var defactorized = model.defactor(factors); 

           Console.WriteLine(Util.head(defactorized)); 

 

           //Counts the # of records assigned to each level (factor) 

           var counts = model.count(data); 

           Console.WriteLine(counts); 

 

           Util.free(ref factors); 

           Util.free(ref defactorized); 

           Util.free(ref counts); 

         } 

      } 

 

 //Example code below fits a model manually           

      Console.WriteLine("Based on previous knowledge, we set levels as  

      the order we prefer."); 

  

      //Creates a model manually, without using estimator.fit()      

      using (var model = new Factor.Model()) 

       { 

         //sets the base indicies to 1 for CHAS and 5 for RAD 

         model.BaseIndex["CHAS"] = 1; 

          model.BaseIndex["RAD"] = 5; 

   

          //Supplying levels manually           

    model.Levels["CHAS"] = new string[] { "0", "1" }; 

    model.Levels["RAD"] = new string[] { "1", "2", "3", "4", "5",  

    "6", "7", "8", "24" }; 

          Console.WriteLine(model); 

 

          var factors = model.transform(data); 
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          Console.WriteLine(Util.head(factors)); 

 

          var defactorized = model.defactor(factors); 

          Console.WriteLine(Util.head(defactorized)); 

 

          var counts = model.count(data); 

          Console.WriteLine(counts); 

 

          Util.free(ref factors); 

          Util.free(ref defactorized); 

          Util.free(ref counts); 

          } 

             Util.free(ref data); 

          } 

           

     catch (XLMiner.Exception ex) 

      {  

 Console.WriteLine("Exception has occurred at   

 <Transformation.Factorizing>:\n" + ex.Message); 

                return 1; 

      } 

     return 0; 

        } 

 

Binning 
Binning, sometimes known as bucketing, is often used to reduce large numeric ranges into a manageable number of 

“bins” or “buckets”, similar to what is done in visual form in a histogram. 

XLMiner supports the two most commonly techniques for binning: “Equal Interval” and “Equal Count”. As their 

names suggest, “Equal Interval” method creates bins of equal width, and “Equal Count” selects bin ranges so that 

each bin contains approximately the same number of data points.  

The example code below uses the Binning Estimator to fit a model using the default parameters.  Afterwards, the 

data is transformed again using modified values for parameters BinValue and RankParam.   

Note:  In general there can be two different sets of parameters:  parameters for the estimator (i.e. for fitting the 

model) and parameters for the model (i.e. for scoring/transforming new data).  In the latter case, the fitted model 

remains the same but the options may be altered for further actions performed on the new datasets.  

Binning example code  

public static int Binning() 

  { 

    try 
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      { 

        DataFrame data = Reader.textFile(PATH + "Binning.txt"); 

        { 

 //Creates an array, eParams, to hold binning parameters                     

//for two variables in the dataset, x2 and x4  

          EstimatorParams[] eParams = new EstimatorParams[] 

          { 

     new EstimatorParams("x2", 11,     

      Binning::MethodType.EQUAL_INTERVAL,        

            Binning::IntervalType.RIGHT_CLOSED), 

new EstimatorParams("x4", 4, 

Binning::MethodType.EQUAL_COUNT,      

            Binning::IntervalType.CLOSED) 

          }; 

           

          //Constructs new Binning Estimator 

          var estimator = new Binning::Estimator(); 

           

    //for each variable apply the options specified for eParams     

    //above  

          foreach (var eParam in eParams) 

          { 

            estimator.NumBins[eParam.name] = eParam.size; 

            estimator.Interval[eParam.name] = eParam.interval; 

            estimator.Method[eParam.name] = eParam.method; 

          } 

          Console.WriteLine(estimator); 

           

          //Fit the model 

          var model = estimator.fit(data); 

          Console.WriteLine(model); 

      

          //Save the model using PMML format 

          var pmmlFile = PATH + "PMML/transformation-binning.xml"; 

          model.toPMML(pmmlFile); 

 

          //Group data into bins using the fitted model 

          var transformed = model.transform(data); 
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          Console.WriteLine(transformed); 

 

          //Specify a different set of parameters on the MODEL 

          model.BinValueOption["x2"] = Binning::BinValueType.MID_VALUE; 

          model.BinValueOption["x4"] = Binning::BinValueType.RANK; 

           

     //Specify rank parameters for BinValueType.RANK 

          var rank = new Binning::RankParam() 

          { 

            start = 1.0, 

            step = 5.0 

          }; 

           

     //Apply rank parameters to “x4” 

    model.Rank["x4"] = rank; 

     //Group data into bins using the fitted model 

          transformed = model.transform(data); 

          Console.WriteLine(transformed); 

 

      //Create the frequency table  

          var frequency = model.getFrequencyTable(data); 

          Console.WriteLine(frequency); 

         } 

         catch (XLMiner.Exception ex) 

    { 

  Console.WriteLine(“Exception has occurred at  

                <Transformation.Binning>:\n” + ex.Message); 

  return 1; 

   } 

    return 0; 

 }             

A variable can be binned in the following ways: 

• Equal Count (Binning::MethodType.EQUAL_COUNT)   

When using this method, the data is binned in such a way that each bin contains the same number of records.  When 

this option is selected, the options RANK, MID_VALUE, MEAN and MEDIAN are available.    

• Equal Interval (Binning::MethodType.EQUAL_INTERVAL)   
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Each interval is based on bin width.  When this method is selected, the entire data range is divided into a specified 

number of bins such that all bins have equal width.  The options RANK and MID_VALUE are available with this 

method.   

There are four options for the BinValueType parameter:  RANK, MID_VALUE, MEAN and MEDIAN. 

• Rank of the bin (Binning::BinValueType.RANK)   

In this option each value in the variable is assigned a rank according to the start and step values as specified by the 

user. This option may be used with both EQUAL_COUNT and EQUAL_INTERVAL. 

Using step option with BinValueType.RANK 

var rank = new Binning::RankParam() 

{ 

 Start = 1.0, Step = 5.0 

}; 

• “Middle” of the bin (Binning::BinValueType.MID_VALUE) 

The “middle” value of the bin is calculated as the average of the lower and upper break points of the bin interval.  

This option may be used with both EQUAL_COUNT and EQUAL_INTERVAL. 

• Mean of the bin (Binning::BinValueType.MEAN) 

Mean of the bin is calculated as an average value of all data points that belong to this bin. 

• Median of the bin (Binning::BinValueType.MEDIAN) 

Median of the bin is calculated as the median of all data points that belong to this bin.  

XLMiner SDK supports three Interval Types:   

• IntervalType.RIGHT_CLOSED - (1,3]  

• IntervalType.LEFT_CLOSED - [1,3)  

• IntervalType.CLOSED - [1,3] 

Principal Component Analysis 
Principal component analysis (PCA) is a mathematical procedure that transforms a number of (possibly) correlated 

variables into a smaller number of uncorrelated variables called principal components. The objective of principal 

component analysis is to reduce the dimensionality (number of variables) of the dataset but retain as much of the 

original variability in the data as possible. The first principal component accounts for most of the variability in the 

data, the second principal component accounts for most of the remaining variability, and so on.    

In a mathematical sense, PCA determines as set of eigenvectors that provide an alternative coordinate system with 

which the data can be described. This new set of coordinates is more “natural” in terms of the statistics, though it 

may not seem more natural to us humans. Viewing data in this new coordinate system can provide new insights. 

More important in terms of data transformation is the fact that some of these new coordinates will account for a 

much greater fraction of the observed variance than others. This permits us to gain a computational advantage. 

Rather than consider, say, the 42 dimensions of the original data set, we can work with the three dimensions defined 

by the three most important eigenvectors.  

Principal components can be calculated directly using the covariance matrix, or the data can first be scaled and the 

calculation performed using the correlation matrix. The correct choice depends on the characteristics of the data 

likely to be important to the analysis, so neither method is intrinsically “better” than the other. However, users 

should be aware that the covariance matrix method is likely to exaggerate the importance of data values that are 

numerically larger. For example, in data about athletic performance, 500-meter race times would end up being 

weighted more heavily than 100-meter race times, for no reason other than the times are larger. 



XLMiner SDK User Guide Page 42 
 
  

Principal Components Analysis example code  

public static int PrincipalComponentsAnalysis() 

  { 

    try 

        { 

          DataFrame data = Reader.textFile(PATH + "Irisfacto.txt"); 

 

     //create PCA estimator using the correlation method type 

          var estimator = new PCA::Estimator() 

          { 

            MatrixMethod = PCA.MatrixMethodType.CORRELATION 

          }; 

          Console.WriteLine(estimator); 

 

          //Score new data using the fitted model 

    //var scores = estimator.fitTransform(data); 

 

          //Fit the model 

    var model = estimator.fit(data); 

 

          // option 1: 

          model.NumPrincipalComponents = 2; 

 

          // option 2: 

          // setting VarianceCutoff will compute and set  

          //NumPrincipalComponents accordingly. 

    //model.VarianceCutoff = 0.98; 

 

          Console.WriteLine(model); 

 

          //Create the Explained Variance Report 

    var explainedVar =   

    XLMiner.Convert.toDoubleVector(model.Principal 

    ExplainedVariances).setName("Var. %"); 

          Console.WriteLine(explainedVar); 

 

          // User may compute cumulative variance percentages as  
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          //follows: 

          Console.WriteLine(Util.partialSum(explainedVar).setName 

    ("Cum. Var. %")); 

 

          //Transform the data using the model 

          var scores = model.transform(data); 

          Console.WriteLine(Util.head(scores)); 

 

     //Generate PCA statistics 

          var qStatistic = model.qStatistic(data, scores); 

          Console.WriteLine(Util.head(qStatistic)); 

 

          var tSquaredStatistic = model.tSquaredStatistic(scores); 

          Console.WriteLine(Util.head(tSquaredStatistic)); 

 

          //Free memory 

          Util.free(ref data); 

          Util.free(ref estimator); 

          Util.free(ref model); 

          Util.free(ref scores); 

          Util.free(ref qStatistic); 

          Util.free(ref tSquaredStatistic); 

          } 

          catch (XLMiner.Exception ex) 

          { 

             Console.WriteLine("Exception has occurred at  

 <Transformation.PrincipalComponentsAnalysis>:\n" +   

 ex.Message); 

             return 1; 

          } 

 

             return 0; 

        } 

Pros: Principal Component Analysis can reduce the computational complexity of 

problems by projecting the problem into a data space with fewer dimensions. It achieves 

this by considering only those dimensions in a new virtual data space that contribute most 

to explaining the observed variance. 

Cons: The virtual data space of the PCA can be very abstract and is likely to be difficult to relate the dimensions in 

the virtual space back to dimensions in the original data. 
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Classification Methods 

Introduction 
XLMiner SDK supports all facets of the Data Mining process, including data exploration, visualization, 

transformation, feature selection, text mining, time series forecasting, affinity analysis, and unsupervised and 

supervised learning. This chapter focuses on the supervised learning technique, classification. Classification 

methods are pervasive in the world of data mining. Indeed, many parts our awareness is devoted to observing and 

classifying the form and function of objects around us in the real world. Therefore, it should not be surprising that 

classification methods are wide and varied. For example, scientists may wish to classify video images of fish into 

species for automatic sorting, or the postal service might need to classify handwritten postal codes for automatic 

sorting, and yet these two problems may require quite different approaches. 

A great many goals of data mining can be framed as classification questions. Can this loan application be classified 

as “high” or “low” risk? Will this student become a member of the “graduating” class? Such applications of 

classification illustrate that the data mining techniques themselves cannot be sorted into rigid and mutually exclusive 

categories. For example, we can obtain classification discriminants for fish of known species based on some 

algorithm; that’s a classification task. The minute we apply our discriminants to a new fish, it’s a classification 

method. 

In this section we will take an overview of the classification algorithms provided by XLMiner and get a feel for the 

characteristics of our data which should be considered when selecting a particular data mining model. 

A Neural Network Classification Example 
The following C# example, illustrates how to fit a classification model and score new data using the Neural Network 

algorithm. To run a similar example, compile and run the project, Test.csproj located in …\Frontline 

Systems\XLMiner SDK\Examples\C#. See the function NeuralNetwork defined in the class, Classification.   

This data set uses the wine.txt data set, which contains the results of a chemical analysis of wines grown in the same 

region of Italy. Each wine type, A, B, or C is derived using a different cultivar. The analysis found the following 

thirteen elements in each sample:  Alcohol, Malic_Acid, Ash, Ash_Alcalinity, Magnesium, Total_Phenols, 

Flavonoids, Nonflavanoid_Phenols, Proanthocyanins, Color_Intensity, Hue, OD280_0D315, and Proline.   

Data Preparation 

1. The textFile utility is a simple delimited file reading facility. Users could obtain data from other sources using 

XLMinerSDK data connectors or any desired tool available for the target programming language.   

This example uses the Dataset constructor to partition the dataset, data, into two partitions:  a training partition 

containing 60% of the records and a validation partition containing 40% of the records.  (See line 120 in Test.cs 

for an example of the constructor.) 

Using Dataset constructor to partition the data 

Dataset data = new Dataset(Reader.textFile(PATH + "wine.txt"),  

targetColumnName); 

Building the Model 

2. Due to the somewhat abstract nature of a neural network algorithm, there are more property values to work with 

compared to more conventional mining models. WeightDecay, LearningRate all relate to the way a learning 

network approaches its new “more knowledgeable” state during training. At first, it might seem that a fast 

learning rate would be a good thing, but it’s generally not a good idea to chase the input data too wildly. Fast 
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learning also means fast forgetting if some input data does not support a developing pattern. Good neural 

networks need time to be exposed to enough training data so that a pattern can emerge. 

Neural networks require the definition of an activation function that determines how artificial neurons are 

influenced by their input. In the early days of neural network research, scientists were discouraged by the fact 

that neural networks could not classify all but the most trivial input. They realized that severe limitations are 

imposed if the activation function is linear. LOGISTIC_SIGMOID, TANH, and SOFTMAX are among the 

more commonly used nonlinear activation functions; all three are supported by XLMiner. 

In the following example, one “hidden” layer is defined, consisting of 4 nodes. There is no universally agreed 

upon rule of thumb for choosing the number of hidden layers and the number of nodes within each layer – this 

is discussed in further detail later in this chapter. 

Defining Neural Network Estimator 

var estimator = new NeuralNetworkClassification.Estimator() 

{ 

  NumNeurons = new int[] { 4 }, 

  NumEpochs = 100, 

  ErrorTolerance = 0.01, 

  WeightDecay = 0.0, 

  LearningRate = 0.4, 

  WeightMomentum = 0.7, 

  HiddenLayerActivation = ActivationType.LOGISTIC_SIGMOID, 

  OutputLayerActivation = ActivationType.SOFTMAX, 

  WeightInitSeed = 12345, 

    

  LearningOrder = LearningOrder.RANDOM, 

  LearningOrderSeed = 12345 

}; 

Note:  During online (stochastic) learning, the Learning Order parameter (XLMiner.LearningOrder) allows to present 

the training records to a neural network in a random order.  This might have a dramatic effect on a network's training, 

especially when the training data is arranged according to some order.   

3. It’s important to know when to quit. You can tell the network to quit when there doesn’t seem to be any 

changes, when the model has become close to the data, or simply when a certain amount of time has elapsed. It 

is common to place a limit on the number of times the neural network algorithm will pass through the data. A 

single pass through the data is usually referred to as an “epoch”.  In this example, the NumEpochs property has 

been set to 30. 

Setting Stopping Rules   

{ 

      DataForErrorComputation =       

      StoppingRule.DataForErrorComputation.TRAIN_AND_VALID, 

     MaxNumEpochsWithNoImprovement = 30, 

     MinRelativeErrorChange = 0.00001, 

     MinRelativeErrorChangeComparedToNullModel = 0.0001, 

     MaxTrainingTimeSeconds = 5.0, 
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} 

 

4. XLMiner SDK supports categorical variables as input variables when using a classification technique. Since none of 

the output variables in this example are categorical, these two lines of code are not used and are shown for 

informational purposes only.  Note:  Any non-numeric variables are automatically considered as categorical (nominal) 

variables.  

Example code for specifying categorical variables 

//CategoricalFeaturesOffsets = new int[] { 0, 1 }; 

//or 

//CategoricalFeaturesNames = new string[] { "X1", "X2" }; 

5. A new estimator, Scaler, is constructed using the Scaler.Estimator object.  Data is rescaled to values of [0,1] (so 

that values for each variable are in [0,1] range) using the NORMALIZATION scaling technique.  A new 

DataFrame, rescaledData is created to hold the rescaled data for both partitions.   

Using Scaler estimator to rescale values using NORMALIZATION technique 

Scaler.Estimator scaler = new Scaler.Estimator() 

{ 

    Technique = estimator.HiddenLayerActivation ==  

    XLMiner.NeuralNetwork.ActivationType.LOGISTIC_SIGMOID ? 

      Scaler.Technique.NORMALIZATION: 

   Scaler.Technique.ADJUSTED_NORMALIZATION 

   }; 

   //fit a model to the training set using the scaler estimator 

var scalerModel = scaler.fit(data.input[TRAINING]);    

    

   //create new Dataset, rescaledData, from data Dataset 

   Dataset rescaledData = data; 

    

   //Apply rescaling model to both the Training and Validation partitions      

   (transforming the data)  

   rescaledData.input[TRAINING] =  

   scalerModel.transform(data.input[TRAINING]).setName(TRAINING); 

   rescaledData.input[VALIDATION] =    

   scalerModel.transform(data.input[VALIDATION]).setName(VALIDATION); 

6. The model is fit using the training partition for neural network learning and the validation partition for 

evaluating the errors and examining stopping conditions.   

Fitting a Model 

var model = estimator.fit(rescaledData.input[TRAINING], 

  rescaledData.input[VALIDATION], 

  rescaledData.target[TRAINING], 
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 rescaledData.target[VALIDATION]); 

 

//Setting the successClass and successProbability parameters 

model.SuccessClass = rescaledData.successClass; 

model.SuccessProbability = rescaledData.successProbability; 

a) The fitted model is exported into PMML format. 

 

Saving model to PMML file format 

var pmmlFile = PATH + “PMML/classification-neural-network.xml”; 

model.toPMML(pmmlFile,scalerModel); 

 

Examining the Results and Applying the Model 

7. The fitted Classification model is used to score the rescaled training partition.   

• Two columns, trainingTargetColumn and predictedLabels, are merged into a new DataFrame, then the two 

columns are printed side-by-side.   

• The fitted model is used to compute posterior probabilities for each record (wine instance) to belong to one 

of the classes denoting the wine type.   

• The function printClassificationMetrics prints the confusion matrix using the trainingTargetColumn and 

predictedLabels.   

See Test.csproj at //Frontline Systems/XLMiner SDK/Examples/C# for the full example.   

Printing the confusing matrix 

   using (var predictedLabels =      

   model.predict(rescaledTrainingData.input[TRAINING])) 

   { 

     Console.WriteLine(Util.tail(Util.colBind(new DataFrame[]  

     {data.target[TRAINING], predictedLabels }))); 

     Console.WriteLine(Util.tail(model.posteriorProbability 

     (rescaledData.input[TRAINING]))); 

     PrintClassificationMetrics(data.target[TRAINING], predictedLabels); 

   } 

8. The fitted Classification model is used to score the rescaled validation partition.   

• Two columns, validationTargetColumn and predictedLabels, are merged into a new DataFrame, then the 

two columns are printed side-by-side.   

• Again, the fitted model is used to compute posterior probabilities for each record (wine instance) to belong 

to one of the classes denoting the wine type.   

See Test.csproj at //Frontline Systems/XLMiner SDK/Examples/C# for the full example.  

Fitted Classification model used to score rescaled validation partition 

   using (var predictedLabels =   

   model.predict(rescaledData.input[VALIDATION])) 

   { 

    Console.WriteLine(Util.tail(Util.colBind(new DataFrame[]  
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    {   

      data.target[VALIDATION], predictedLabels }))); 

      Console.WriteLine(Util.tail(model.posteriorProbability 

      (rescaledData.input[VALIDATION]))); 

      PrintClassificationMetrics(data.target[VALIDATION], predictedLabels); 

    } 

Classification Algorithms 
As mentioned in the Introduction, the selection of the classification method is based on several factors such as the 

number of variables (or features) in the data set, the number of records in the dataset, the speed of the algorithm, and 

the desired level of interpretability. XLMiner SDK includes six core classification algorithms along with three 

ensemble methods:  

• Classification Trees 

• Discriminant Analysis 

• k-Nearest Neighbors 

• Logistic Regression 

• Naïve Bayes 

• Neural Networks 

• Ensembles (Bagging, Boosting, Random Trees) 

A complete discussion of each method is beyond the scope of this guide; however, a brief discussion of each is 

contained in the following sections.   

Discriminant Analysis 

Linear Discriminant Analysis (LDA) uses a linear combination of input (predictor) variables to classify a categorical 

output variable into two or more classes. LDA employs these linear combinations (discriminant functions) to 

maximize the uniformity within each class while at the same time differentiating the classes as much as possible. For 

each record, the linear combinations are used to compute scores that measure the distance of an observation to each 

class. The observation is assigned to the class with the highest classification score. LDA depends on two leading 

assumptions when calculating classification scores:  that input variables are roughly from a multivariate normal 

distribution and variability between class members is consistent across the class. LDA can be susceptible to outliers, 

and the size of the smallest class must be larger than the number of input variables. In addition, the predictive power 

of this method is reduced when the input variables are correlated.  

Users of XLMiner's Discriminant Analysis classification method can specify prior probabilities.  This might be 

useful if the percentage of observations belonging to a specific class is known.  If the prior probabilities are known, 

this method can use these probabilities when calculating the posterior probabilities.   

Pros: Discriminant Analysis is very fast, even for large data.  This technique is especially 

useful and well-interpretable when the number of features is not large.  If group 

distributions are indeed normal, Discriminant Analysis will produce a perfect fit. 

Discriminant Analysis produces a stable model when groups are well-separated and 

allows multiclass learning which can explain data in lower dimensions. 

Cons: Discriminant Analysis does not apply when the number of features exceeds the number of records.  For high-

dimensional data, a Discriminant Analysis model becomes overcomplicated and less stable.  For highly non-Normal 

distributions, Discriminant Analysis may fail to capture the structure of the data. 
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Logistic Regression 

Logistic Regression measures the relationship between the categorical dependent variable and one or more 

independent variables by estimating probabilities using a logistic function.  This method is viewed as a special case 

of a generalized linear model, and is thus analogous to linear regression. Examples of binary responses are 

“success/fail,” “survive/die,” “yes/no,” “buy/don’t buy,” or default/don’t default.”  

XLMiner’s Logistic Regression allows users to specify several parameters including the presence of an intercept 

term, confidence level for the calculated odds, and the maximum number of iterations. Collinearity diagnostics and 

other evaluations can be obtained from the Logistic Regression model.    

Pros: Logistic Regression is a very popular classification method (especially for 

problems with 2 classes) which works extremely well in real-world applications.  This 

method makes no assumptions about the distribution of independent variables or 

concerning the linear relationship between independent and response variables.  Unlike 

Linear Regression, error terms are not assumed to be normally distributed.  Logistic 

Regression performs well with data containing categorical predictors (1-of-C encoded 

using XLMiner) and is able to handle large high-dimensional datasets. Efficient convex 

optimization algorithms exist. 

Cons: No closed-form solution exists for logistic regression.  For low dimensional data where classes are well-

separated, this method may yield to Discriminant Analysis in stability.  Logistic regression suffers from low rank 

matrices (such as in linear models), for example when the number of records is less than the number of features or 

when collinearity is present.  XLMiner SDK provides embedded variable selection and best subset techniques to 

overcome this issue.   

k-Nearest Neighbors 

The k-Nearest Neighbors classification method is a very simple but powerful algorithm which makes classification 

decisions for a given record based on information provided by neighboring records.  Using the Euclidean distance 

measure, this method identifies the 𝑘 observations in the training data that are most similar to a given observation 

and performs majority voting – choosing the most frequent group among the 𝑘 nearest neighbors.  The learning 

stage is absent for this algorithm, the training data is the model.   This classification technique requires independent 

variables to be scaled appropriately.  The best model can be chosen by assessing the classification error for various 

values of 𝑘.   Using the validation error is more appropriate in order to decrease the chance of overfitting. 

Pros: The k-Nearest Neighbors algorithm very often performs well in practice, producing 

stable and easily interpretable results.  It is a “Lazy Learning” method -- the “model” is 

immediately available.   

Cons: The k-Nearest Neighbors algorithm is computationally and memory-wise expensive.  It focuses on local 

structure of data and can fail to capture the global picture.   This method can suffer from the “Curse of 

dimensionality” which, in this case, refers to the phenomena that occurs in high dimensional datasets where the 

“nearest neighbors” become more and more blurry.  The k-Nearest Neighbor method is extremely sensitive to 

outliers and noise and may demonstrate poor performance on data with undersampled or oversampled groups. 

Classification Tree 

Classification Trees, also known as Decision Trees, is a classification method that generates easily understood 

“rules” (i.e., “If INCOME  >  75,000 AND NUM FAMILY MEMBERS  >  4 AND YRS OF EDU  <  12 THEN 

class  =  PURCHASER).  

Initially, a Training Set is created where the classification (“purchaser” or “non-purchaser”) is known for each 

record. Next, the algorithm systematically assigns each record to one of two subsets based on an input variable 

condition (i.e., INCOME >= $75,000 or INCOME < $75,000). This process is repeated for each subset using a new 

condition until no more useful splits are found in each subset.    

https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Linear_regression
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In the example classification tree below, the Training Set is initially split using the rule, INCOME >= 75,000. This 

opening split is referred to as the root node. Following the tree down the right “branch,” the next splitting rule is 

“FAMILY MEMBERS >= 4.” Any records with greater than four family members are again split on the rule 

“YEARS of EDUCATION >= 12.” The “leaves” hold the final classification of “purchaser” or “non-purchaser.”   

The final classification rule for the non-purchaser using the right branch would be: If Income >= $75,000 AND 

Family Members >= 4 AND Years of Education >=12 THEN Class = 0 (Non-Purchaser).   

 

XLMiner uses the Gini index as the splitting criterion. A Gini index of 1 indicates that each record in the node 

belongs to a different category, while a Gini index of 0 indicates that each record belongs to the same category. For 

a complete discussion of this index, see Classification and Regression Trees (3) by Leo Breiman and Richard 

Friedman.   

Pruning is the process of removing leaves and branches to improve the performance of the decision tree. The tree-

building algorithm splits at the root node, where the largest number of records and the most information are known. 

Each subsequent split has a smaller and less representative population of records from which to gain information. As 

a result, towards the bottom of the tree, a particular node might display information specific only to the records 

assigned to that node. Sometimes these rules can become meaningless and the tree must be “pruned”.  Decision trees 

are typically pruned using the Validation Set.  

XLMiner SDK allows users to limit tree growth by levels, splits, or nodes or by specifying the number of records in 

a terminal node.   

Classification Trees produce easy-to-understand rules as their output. This can be a big advantage as users typically 

understand these models after only a brief study and can simply “follow the rules” to understand the class 

assignments. Since this technique does not require the data to be normalized or the removal of blank values, the 

amount of data preparation is normally minimal. Classification trees can be used with large data sets using standard 

computing resources to produce a model in a reasonable amount of time.     

Pros: Classification trees produce well-interpretable models with transparent results 

comprised of explicit if-then rules by non-expert users.  This method works well with raw 

data having different scales, missing values and outliers.  Classification trees are 

computationally efficient for moderate size datasets and possess implicit feature selection 

where top nodes correspond to the most informative, important features.  The 

classification tree method does not impose explicit assumptions about underlying 

relationships in data. 

Cons: Classification Trees provide a greedy heuristic approach for generally NP-Hard problems. The solution 

corresponds to a local optimum.  Often the predictive accuracy of classification trees is weaker than with other 

classification techniques.   

Naïve Bayes 

This classification method uses the Bayes Theorem to classify observations into two or more classes. Bayes 

Theorem estimates the probability of event A occurring given the probability that event B has already occurred or:  
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For example, if we were to calculate the probability of a 1st grade student enrolled in public school allergic to 

peanuts, and there are 1,000 students in the Training Set and 50 are allergic to peanuts, then Prob (A and B) is 5%. If 

there are 500 1st graders in the Training Set, then Prob (A) is 50%. According to Bayes Theorem, the possibility of a 

1st grader being allergic to peanuts is 10% (50/500). The naïve Bayes classifier assumes that each input variable is 

conditionally independent of all other input variables.  

A disadvantage of this method is that it requires a large number of records to obtain accuracy. In addition, naïve 

Bayes is unable to determine or “learn” interactions between features (i.e., it is unable to “understand” that you love 

avocados and tomatoes, but not both in the same dish). 

In some circumstances, the distribution of a specific input variable is not characteristic of the larger population (i.e., 

if there were only a few 1st graders in the training partition). For cases such as these, XLMiner SDK allows users to 

specify Prior Probabilities to compensate for the difference between the distribution of records in the training data 

set and the true population.   

Common uses of this method include document classification (i.e., classifying an email as spam, classifying 

newspaper articles as technology, politics, or sports, or classifying a review as negative or positive).   

Pros: The Naïve Bayes classification method is applicable to very high-dimensional data, 

where other more complex models may fail.  A small training sample is usually sufficient 

for parameter estimation.  This method can be applied to discrete (categorical) and 

continuous data and is computationally and memory-wise efficient. Naïve Bayes is robust 

in terms of handling irrelevant features and is a perfect classifier when the independence 

assumption holds true. 

Cons: In the Naïve Bayes algorithm, the independence assumption is rather strong.  Naïve Bayes will not adjust for 

the case when features are strongly related to each other.  For multinomial models, features in new patterns must 

contain values which the model has already observed during the training phase. Otherwise, the probability is 

undefined. 

Neural Networks 

Artificial neural networks (ANNs) have been said by some to work “like the brain works”. It is more accurate to say 

that the design of artificial neural networks is biologically inspired but the implementation is purely digital. 

Artificial neural networks are still a subject of active research. An ANN architecture commonly used in data mining 

has an input layer which receives user data, an output layer that indicates the classification, and a variable number of 

“hidden layers” which get their name from the fact that the values for each of the hidden nodes is used only by the 

neural network itself. As the network is trained, connections between nodes change weight. Connections that are 

often reinforced gain weight (or become stronger), and others weaken. 

Loosely speaking, we can say that the first hidden layer discerns patterns in the input data. A second hidden layer 

discerns patterns in the first hidden layer, or patterns within the patterns of the input data. A third layer, if it exists, 

would detect patterns within the second hidden layer, or patterns, within the patterns, within the patterns, of the 

input data, and so forth. Complex and subtle data could be analyzed with many hidden layers, but at the cost of large 

calculation time. 
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As mentioned in the discussion of the example code at the beginning of this chapter, there are no simple rules for 

selecting the optimal number of hidden layers and the optimal number of nodes within each layer. Very, very 

generally, we can say that the number of nodes in the hidden layers need not exceed the number of inputs. One 

hidden layer is probably sufficient for most classification problems encountered in the world of business and 

commerce. Detecting subtle effects may require adding additional layers, and will also require a greater volume of 

data for training and testing to avoid the ever-present hazard of overfitting. 

Many parameters can be varied to tune a neural network mode. The three most important are the number of nodes, 

or “neurons” in a hidden layer, the number of hidden layers, and the definition of the activation function that 

determines how the numerical values for nodes and connections will be calculated. 

There are many additional parameters that can be changed to control the behavior of the artificial neural network. 

While this control can be valuable, it also increases the risk of overfitting the data. In other words, a neural network 

could be developed that fits the input data almost perfectly but has no generality and cannot effectively categorize 

new data. While all data mining models must be carefully validated, validation is especially critical for neural 

networks. 

 

Pros: Neural Networks are “Universal Approximators” and can be used when the nature 

of the data is barely interpretable.  These methods can detect highly nonlinear 

relationships between independent and dependent variables and also can recognize and 

take into account relationships between predictors.  Learning is automated to some extent 

in neural networks so less formal modeling is required.  Neural networks provide robust 

models for large high-dimensional datasets, overcoming many problems of conventional 

learning techniques. Lastly, no strong explicit assumptions are involved in neural 

networks.   

Cons: Neural networks are considered a “Black-box” learning method, meaning that the models are almost not 

interpretable and they can be computationally expensive.  These methods are prone to overfitting, unless necessary 

steps are taken to prevent this drawback.  Neural networks greatly depend on chosen architecture, optimization 

parameters, choice of activation and error functions. However, general rules do exist to simplify selection of these 

options or automatic selection can be used. 

 

Ensemble Methods 

Some data mining models are sensitive to the effects of outliers, a small number of points far away from the mean 

can have a disproportionate effect on the resulting model. The untoward effects of outliers can be reduced using 

ensemble methods. For example, we can create a set of decision trees, rather than a single tree, by randomly 



XLMiner SDK User Guide Page 53 
 
  

sampling again and again from our input data. The “average” of these output trees is likely to be a better 

representation of the data than any of the individually calculated trees. 

XLMiner offers three powerful ensemble methods:  Boosting, Bagging, and Random Trees (also known as Random 

Forests). Both Bagging and Boosting accept any of the following classifiers as their base learner:  Discriminant 

Analysis, Logistic Regression, k-Nearest Neighbors, Classification Trees, Naïve Bayes, or Neural Networks. The 

Random Trees ensemble method uses the Classification Tree as a weak learner internally.   

The six classification methods can be used to find one model resulting in good classifications of the new data. 

Ensemble methods, however, allow us to combine multiple “weak” classification models that, when taken together, 

form a new, more accurate “strong” classification model. These methods work by creating multiple diverse 

classification models, by taking different samples of the original data set, and then combining their outputs.  

(Outputs may be combined by several techniques including majority vote for classification and averaging for 

regression.) This combination of models effectively reduces the variance in the “strong” model. The three types of 

ensemble methods offered in XLMiner SDK (Bagging, Boosting, and Random Trees) differ on the following three 

items:  

1) the selection of training data for each classifier or a weak learner;  

2) how the “weak” models are generated; 

3) how the outputs are combined. In all three methods, each weak learner is trained on the entire training 

dataset to become proficient in some portion of the data set.   

Bagging, or bootstrap aggregating, was one of the first ensemble algorithms developed. It is a simple, effective 

algorithm. Bagging generates several training sets by using random sampling with replacement (bootstrap 

sampling), applies the classification algorithm to each data set, then takes the majority vote among the models to 

determine the classification of the new data. The biggest advantage of bagging is the relative ease in which the 

algorithm can be parallelized, making this method a better selection for very large data sets.   

In comparison, Boosting successively trains models to concentrate on the misclassified records in previous models. 

Once completed, all classifiers are combined by a weighted majority vote. XLMiner SDK offers three different 

variations of Boosting as implemented by the AdaBoost algorithm—one of the most popular ensemble algorithms in 

use today:  M1 (Freund), M1 (Breiman), and SAMME (Stagewise Additive Modeling using a Multi-class 

Exponential).   

For Classification Trees, a third ensemble method is available, Random Trees. This method is a variation of Bagging 

that works by training multiple “weak” classification trees using a fixed number of randomly selected features 

(square root of the number of features for classification and one third of the number of features for regression), then 

takes the mode of each class to create a “strong” classifier.  Using this method, the number of “weak” trees 

generated could range from several hundred to several thousand depending upon the size and difficulty of the 

training Set. Random Trees are parallelizable because they are a variant of Bagging. However, since Random Trees 

selects a limited number of features in each iteration, the performance of Random Trees is typically faster than that 

of Bagging.   
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Regression Methods 

Introduction 
Regression is the goal of much of data mining. We not only wish to model existing data, we want to predict whether 

individuals are likely to become customers, whether loan applicants are likely to default, and whether economic 

conditions favor continued growth. XLMiner provides a rich set of methods to apply data mining models to 

regression. 

As mentioned, the categorization of data mining tasks is not rigid or exclusive, and the regression methods are a 

clear example of this. An economist might, for example, develop a model for local consumer prices using Multiple 

Linear Regression. This same model could very well be used in the prediction of future cost of living indexes for 

varied geographical areas. 

After the model is fit, or after the regression algorithm has determined the association between the predictor 

variables and output variable, the model may be used to score new data or predict future values for the output 

variable based on new input values. XLMiner SDK offers several performance metrics for evaluating the accuracy 

and predictive power of a model.   

The regression algorithm selection depends upon several factors, including the size of the data set, the nature of the 

data (continuous or discrete), and algorithm speed. As a result, along with examining fundamental properties and 

rules of thumb, data scientists will often try several different regression algorithms to see which one performs best 

on their data set. XLMiner SDK features the following four regression methodologies:  

• Multiple Linear Regression,  

• k-Nearest Neighbors,  

• Regression Trees,  

• Neural Networks 

• Ensembles (Bagging, Boosting, Random Trees) 

 

Regression Algorithms 
The following C# example illustrates how to fit a regression model and score new data using the Bagging ensemble 

method with the Regression Tree algorithm as the base learner. To run a similar example as the one shown below, 

compile and run the project, Test.csproj, located in …\Frontline Systems\XLMiner SDK\Examples\C#. See the 

function Example.Regression.Ensemble.Bagging().   

This example uses the BostonHousingReg.txt example dataset, which contains 14 variables and concerns the 

housing values of owner-occupied homes in census tracts within the Boston area. A description of each variable is 

provided in the table below.     

This example: 

• Reads data from the text file BostonHousingReg.txt 

• Partitions the data set into Training and Validation Sets. 

• Constructs a new Bagging ensemble estimator object for regression using a regression tree estimator as the 

base leaner. Various options are set for both estimators.   

• Fits a Bagging ensemble model using the estimator’s fit() method  
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• Scores new data (the Validation dataset in this example) using the predict() method of the model   

Data Preparation 

1. The textFile utility is a simple delimited file reading facility. Users could obtain data from other sources using 

XLMinerSDK data connectors or any desired tool available for the target programming language.   

This example uses the Dataset constructor to partition the dataset, data, into two partitions:  a training partition 

containing 60% of the records and a validation partition containing 40% of the records.  (See line 120 in Test.cs 

for an example of the constructor.) 

Using Dataset constructor to partition the data 

   string targetColumnName = “MEDV”; 

Dataset data = new Dataset(Reader.textFile(PATH + "BostonHousingReg.txt"), 

targetColumnName); 

 

Building the Model 

2. A new Bagging regression estimator is constructed.  Afterwards, the regression tree algorithm is specified as the 

base learner using estimator.setBaseEstimator().  

Defining Bagging estimator with basic parameters 

//construct regression bagging estimator 

var estimator = new RBagging.Estimator() 

{ 

 NumWeakLearners = 2, 

 BootstrapSeed = 10 

}; 

//insert any estimator as a weak learner to be bagged.  In this example  

//the regression tree algorithm is used   

estimator.setBaseEstimator(new   

RTree.Estimator()).setMinNumRecordsInLeaves(data.NumTrainingRows/10));  

   

3. The model is fit using the Training Set input and target columns.   

Fitting a Model 

//Fit the model 

var model = estimator.fit(data.input[TRAINING], data.target[TRAINING]); 

//save model to PMML file format 

var pmmlFile = PATH + “PMML/regression-bagging.xml”; 

model.toPMML(pmmlFile); 

 

Examining and Applying the Results 

4. First the predicted labels for the validation partition are computed.  Next, two columns, 

validationTargetColumn and predictedLabels, are merged into a new DataFrame, then the two columns are 

printed side-by-side.     
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Scoring Validation Partition 

var predictedLabels = model.predict(data.input[VALIDATION]); 

Console.WriteLine(Util.head(Util.colBind(new DataFrame[] 

{data.target[VALIDATION], predictedLabels}))); 

Regression Algorithms 
As mentioned in the Introduction, the selection of the regression method is based on several factors such as the 

number of variables (or features) in the data set, the number of records in the data set, the speed of the algorithm, 

and desired level of interpretability.  

A complete discussion of each method is beyond the scope of this guide. However, a brief discussion of each, along 

with common applications, may be found below.   

Multiple Linear Regression Method 

Multiple linear regression has a long and venerable history in data mining and in statistics in general. It starts by 

assuming a linear relationship between n independent variables and a dependent variable indicated by “Y” in the 

following equation: 

𝑌 = 𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ 𝛽𝑛𝑥𝑛 +  𝜖 

The values in the equation above are often taken directly from the data of interest, but this need not be the case. For 

example, x1 might be the square or the logarithm of an actual data point. Thus “linear” algorithms can describe 

relationships that are decidedly non-linear. 

A great benefit of linear regression is the tremendous transparency of the result. One ends with coefficients of an 

equation. Not only is it possible to plug in values to make predictions, but one can easily see the contribution of each 

input by examining the equation. This characteristic has made multiple linear regression a favorite among many 

scientists, including economists who need to develop mathematical models.  The XLMiner SDK linear regression 

algorithms accept both numerical and categorical input. 

Pros: Multiple Linear Regression offers two key advantages.  The first is the algorithm’s 

ability to uncover relationships between one or more of the predictor variables to the 

output variable and the second is the algorithm’s ability to identify outliers or anomalies 

in the data.   

Cons: Care must be taken to ensure the data does not violate the underlying statistical  

assumptions of linearity and normal distribution of the error terms. Considerable 

experimentation is often required to transform the input data to approximate linearity. 

k-Nearest Neighbors Method 

In the previous chapter, the k-Nearest Neighbors classification method is described. This method can also be 

extended to predict the value of a continuous output variable as well as a categorical output variable. When used for 

regression, neighboring observations are again selected based on the Euclidean similarity measure. However, in this 

case, the measure calculates the distance between the observations and the k existing observations. A weighted 

average of the output variables for the k-nearest neighbors is calculated. This calculated value becomes the 

observation’s predicted output value.  See the k-Nearest Neighbors Method in the Classification Methods chapter for 

this algorithm’s advantages and disadvantages.   

Regression Tree Method 

Regression Trees behave similarly to classification trees in that they produce easy-to-understand and interpret 

“rules.” However, where classification trees predict the class for a given observation (i.e., purchaser/non-purchaser), 

Regression Trees predict a continuous value for the output variable. For more information on Regression Trees, see 

Classification Trees Method in the Classification Methods chapter.  See the Classification Tree Method in the 

Classification Methods chapter for this algorithm’s advantages and disadvantages.      
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Neural Network Method 

We encountered artificial neural networks in the classification section. There is nothing fundamentally different 

about the neural networks we encounter in the regression chapter. But while the inner workings are essentially the 

same, classification neural networks output a categorical value that suggests the class membership of the input, 

regression neural networks output a continuous variable representing a prediction of some numerical value such as 

securities prices, inflation rate, or housing prices. In this way, the applications of neural networks are analogous to 

those of linear regression, with the obvious exception that neural networks can be used in situations where simple 

mathematical assumptions about the input data simply do not apply.  See the Neural Network Method in the 

Classification Methods chapter for this algorithm’s advantages and disadvantages.   

Ensemble Methods 

XLMiner offers three powerful ensemble methods: Boosting, Bagging, and Random Trees, also known as Random 

Forests. Both Bagging and Boosting accept any predictor as its base learner: Multiple Linear Regression, k-Nearest 

Neighbors, Regression Trees, or Neural Networks. The Random Trees ensemble method uses the Regression Tree 

method internally. For more information on Ensemble Methods, please see the Classification Methods chapter.   
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Clustering Methods 

Introduction 

Clustering methods share many features in common with classification techniques.  In general, classification 

techniques assign data elements to categories that are known in advance, such as handwritten numerals between 0 

and 9 or successful graduation from a university. In contrast, clustering methods attempt to discern similarities and 

differences among data points which may not be previously known. Some of the greatest successes, both in terms of 

statistical success and impact on public health, have been cluster analyses of disease outbreaks. 

k-Means Method 
One disadvantage of this algorithm occurs when the majority of observations belong to one class. In this case, the 

records of the dominant class could skew the prediction of the new record.   

Pros: Fast and efficient even for large data. Easy to analyze and interpret the results. 

Works well in practice even if the assumptions are not met. 

 

Cons: K-Means algorithms require the number of clusters to be specified in advance. The 

result is locally-optimal and depends on the choice of initial centers. Sensitive to outliers 

and non-uniform clusters with different densities. 

The example below uses k-Means to perform a cluster analysis on the Hald dataset contained within hald-small.txt.  

Three clusters are created (NumClusters = 3).    

K-Means clustering example code 

public static int KMeans() 

        { 

            try 

            { 

                var data = Reader.textFile(PATH + "hald-small.txt"); 

       

                //construct new k-Means clustering estimator 

                var estimator = new KMeans.Estimator() 

                { 

                    NumClusters = 3, 

                    MaxIterations = 10, 

                    NumStarts = 1, 

                    RandomSeed = 12345 

                }; 

                Console.WriteLine(estimator); 
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                //Fit a model to Dataframe, data 

  var model = estimator.fit(data); 

                Console.WriteLine(model); 

 

                // model info output, based on training data 

                Console.WriteLine(model.ClusterCenters + "\n"); 

                Console.WriteLine(model.InterClusterDistances + "\n"); 

                Console.WriteLine(model.RandomCentersSummary + "\n"); 

 

                // applying model to new data 

                Console.WriteLine(model.clustersSummary(data) + "\n"); 

                // record-to-cluster distances 

                Console.WriteLine(model.recordToClusterDistance(data) +   

                "\n"); 

                // predicted cluster labels 

                Console.WriteLine(model.predict(data) + "\n"); 

 

                Util.free(ref estimator); 

                Util.free(ref model); 

            } 

            catch (XLMiner.Exception ex) 

            { 

                Console.WriteLine("Exception has occurred at  

      <Clustering.KMeans>:\n" + ex.Message); 

                return 1; 

            } 

 

            return 0; 

        } 

Hierarchical Clustering 
As its name implies, hierarchical clustering builds a tree graph which clusters more closely related data points into 

nodes of the graph. Hierarchical clustering algorithms can start by considering the data points as one large cluster 

which is divided again and again, or they can start by considering each data point as an individual node and then 

iteratively collecting together the most closely related nodes. The former method is referred to as divisive and the 

latter as agglomerative. 

Pros: The tree graph into which hierarchical clustering organizes data makes 

relationships among the data easy to visualize. In contrast with the K-means methods, 

hierarchical clustering does not demand the specification of the number of clusters and 

can yield as few or as many clusters as approximate the desired result.  
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Cons: Hierarchical clustering does not scale well and is sometimes not practical for larg data sets. 

The example below uses Hierarchical Clustering applied to the Hald dataset.  This code creates a new Hierarchical 

Clustering estimator, sets several parameters, fits a model to the data, then creates a dendrogram using the results.   

Hierarchical clustering example code 

public static int Hierarchical() 

{ 

    try 

    { 

        var data = Reader.textFile(PATH + "hald-small.txt"); 

 

        //create new estimator 

        var estimator = new Hierarchical.Estimator() 

        { //set hierarchical clustering options 

            Linkage = LinkageType.SINGLE_LINKAGE, 

            Dissimilarity = DissimilarityType.EUCLIDEAN, 

            InputDataType = InputType.RAW_DATA 

        }; 

        Console.WriteLine(estimator); 

 

        //fit the model to the data DataFrame 

        var model = estimator.fit(data); 

 

        //set two model options 

        model.NumClusters = 3; 

        model.NumDendrogramLeaves = 5; 

 

        Console.WriteLine(model); 
 

        // score new data 

        Console.WriteLine(model.predict()); 

 

        //create a dendrogram using the results from fitted model 

        using (var dendrogram = model.dendrogram()) 

        { 

            Console.WriteLine(dendrogram); 

            Console.WriteLine(dendrogram.getDendrogramLeafMembers(0)); 
        } 

 

        //Free memory 

        Util.free(ref estimator); 

        Util.free(ref model); 

    } 

    catch (XLMiner.Exception ex) 

    { 

  Console.WriteLine("Exception has occurred at  

<Clustering.Hierarchical>:\n" + ex.Message); 
        return 1; 

    } 

 

    return 0; 

} 
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Time Series Analysis 

Introduction 
XLMiner SDK supports the analysis and forecasting of data sets that contain observations generated sequentially 

through partitioning, autocorrelations, ARIMA models, and smoothing techniques.  It is impossible to imagine a 

serious business analysis that does not include some examination of a time series dataset. Retail stores must 

anticipate how many winter coats should be on the shelves long before the weather turns cold and airlines must be 

able to allocate resources to handle changing demand during peak vacation months. 

Time series analysis faces some special problems not found in other areas of data mining such as the possible effects 

of seasonality (think bathing suit sales every May). Individual values in a time series are not independent; there is a 

strong chance that today’s values are correlated with past values. 

XLMiner SDK includes the most popular techniques for performing a time series analysis including autocorrelation 

techniques, smoothing methods (exponential, double exponential, moving average and Holt Winters) and Box-

Jenkins (ARIMA) methods, with and without seasonality.   

Smoothing Methods 

Probably the simplest of the techniques brought to bear on time series datasets are the techniques of smoothing. 

Random, or apparently random, fluctuations are present and may obscure trends or seasonal changes important to the 

analyst. XLMiner supports industry-standard methods of smoothing, which are implemented in SDK’s Smoothing 

classes.  

These include: 

• Moving averages 

• Exponential smoothing 

• Double exponential smoothing 

• Holt-winters:  Additive, Multiplicative or No Trend 

Autocorrelation Techniques 

As its name suggests, autocorrelation techniques look for correlation between values representing different points in 

time. Most modern time series analyses include both moving average smoothing techniques and autocorrelation. 

One of the most commonly applied time series analysis techniques is ARIMA, which not only uses both moving 

averages and autocorrelation, but also attempts to take into account the fact that the underlying probability 

distribution of the data may itself change over time. 

• Autocovariance (ACV) is the covariance of a variable with previous values of itself measured at some 

specific time lag.   

• Autocorrelation (ACF) is a normalized version of autocovariance, that is, with the values adjusted to a 

mean of zero and a variance of one. When determining if an autocorrelation exists, the original time series 

is compared to the “lagged” series. This lagged series is simply the original series moved one time-period 

forward ahead (xn vs xn+1).  Suppose there are five time-based observations: 10, 20, 30, 40, and 50. When 

lag = 1, the original series is moved forward one time-period. When lag = 2, the original series is moved 

forward two time-periods.   

 

Day Observed Value Lag-1 Lag-2 

1 10   
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2 20 10  

3 30 20 10 

4 40 30 20 

5 50 40 30 

 

• Partial Autocorrelation Function (PACF) - This technique computes and plots the partial 

autocorrelations between the original series and the lags. PACF eliminates all linear dependence in the time 

series beyond the specified lag.   

• ARIMA (Autoregressive Integrated Moving Average) model is a regression-type model that includes 

autocorrelation. The basic assumption in estimating the ARIMA coefficients is that the data is stationary 

(i.e., the trend or seasonality cannot affect the variance). This is generally not true. To achieve the 

stationary data, XLMiner applies ordinary or seasonal “differencing” (or both).   

After XLMiner fits the model, various results are available. The quality of the model is evaluated by comparing the 

time plot of the actual values with the forecasted values. If both curves are close, the model can be assumed a good 

fit. The model should expose any trends and seasonality, if any exist. If the residuals are random, the model is a 

good fit; however, if the residuals exhibit a trend, the model should be refined. Fitting an ARIMA model with 

parameters (0, 1, 1) will give the same results as exponential smoothing. Fitting an ARIMA model with parameters 

(0, 2, 2) provides the same results as double-exponential smoothing.   

Time Series Example 
This example uses stock closing prices to illustrate a time series analysis. A plot of the data illustrates many 

common time series features. Of course, quantitative analysis is always required when making a decision, but a clear 

plot can help guide your thinking. When considering the plot above, we would not be at all surprised if there were a 

statistical correlation between, say, points X1, X2, and X3. The distance along the horizontal time axis between 

these points is the lag.  Calculating correlations between data points and other data points differing by some lag is 

how our graphical impressions begin to become quantitatively confirmed. 

 



XLMiner SDK User Guide Page 63 
 
  

 

Plot of the data in close.txt, the sample data for the XLMiner time series example. 

Notice also that the three labelled points seem to be part of an upward trend. A critical part of time series analysis is 

the isolation and separation of periodic lagged values from trends. Not shown in the above plot is seasonality, in 

which periodic changes are related to the seasons or time of year. 

Time series analysis usually makes use of a very general technique known as smoothing. Virtually all real-world 

data is noisy; smoothing, as its name implies, smooths out short-term noise that might be obscuring important 

trends. 

The distinction between autocorrelation and partial autocorrelation is not always clear. We might, for example, 

expect a strong correlation between today’s stock market data and that from yesterday. We would expect that there 

would be a correlation between today’s data and data from two days ago. But is there some sort of two-day cycle? If 

correlation is seen for a two-day lag, how much of that correlation comes from the simple fact that today is 

correlated with yesterday, and yesterday was correlated with the day before yesterday. Autocorrelation merely 

calculates the statistical correlation between points separated by some lag. The partial correlation method, would, in 

this example, eliminate the trivial correlation. Whatever correlation is left may be attributable to some actual two-

day cycle. 

Time Series Example 
The following C# example illustrates how to thread together various XLMiner SDK objects to fit a model to time 

series data using Autocovariance, Autocorrelation, Partial Autocorrelation, and ARIMA. To run a similar example, 

compile and run the project, Test.csproj located in …\Frontline Systems\XLMiner SDK\Examples\C#. See the 

function TimeSeriesAnalysis defined in the class, TimeSeries.   

This time series example: 

• Reads data from close.txt, and populates a DataFrame with the data  

• Calculates the autocovariance  

• Calculates the autocorrelation   

• Calculates the partial autocorrelation  

• Uses ARIMA to fit a model using the training partition  

• Reports the number of iterations and -2Log-Likelihood 
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• Reports residuals and their standard deviation 

• Generates a forecast using the fitted model  

Data Preparation 

1) The example starts by creating an XLMiner DataFrame from the data source of interest. In the case of time 

series analysis, however, we want to use a very simple data structure consisting of a single column of values 

with row names containing the dates or timestamps. The XLMiner.Convert class has a method specifically for 

this purpose. 

As in previous chapters, this example uses the Dataset constructor to partition the dataset, data, into two 

partitions:  a training partition containing 60% of the records and a validation partition containing 40% of the 

records.  (See line 120 in Test.cs for an example of the constructor.) 

XLMiner.Convert.toTimeSeries creates a DataFrame with a single column with dates as rows.   

Creating DataFrame 

var data = XLMiner.Convert.toTimeSeries(Reader.textFile(PATH + 

"close.txt")); 

 

Building the Model 

2) XLMiner.TimeSeries.Estimator.difference() takes time series data and applies the lag operator to it. For more 

information on lag operator, see Introduction to Time Series and Forecasting 2nd Edition by Peter Brockwell 

and Richard Davis.1 

Applying Lag Operator to Time Series Data 

int diff = 1, seasonalDiff = 1, period = 12; 

var differencedData = XLMiner.TimeSeries.Estimator.difference(data, diff, 

seasonalDiff, period);  

 

3) Calculates the autocovariance of the time series using the minimum and maximum lags.   

Calculating Autocovariance 

int minLag = 4; 

int maxLag = 10; 

var acvf = XLMiner.TimeSeries.Estimator.autocovariance(data, minLag, 

maxLag); 

 

4) Calculates the autocorrelation of the DataFrame, data, using the minimum and maximum lags.   

Calculating Autocorrelation 

var acf = XLMiner.TimeSeries.Estimator.autocorrelation(data, minLag, 

maxLag); 

 

5) Calculates the partial auto-correlation of the DataFrame, data, using the minimum and maximum lags.   

 

1 Brockwell, Peter J, and Richard A. Davis.  Introduction to Time Series and Forecasting, Second Edition.  New York:  Springer-

Verlag, 2002.   
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Calculating Partial Auto-correlation 

var pacf = XLMiner.TimeSeries.Estimator.partialAutocorrelation(data, minLag, 

maxLag); 

Construct a new TimeSeries estimator passing the required parameters for the ARIMA model: p = 2, d = 1, q = 

2, P = 1, D = 1, Q = 1 and period = 12.     

Construct a New Time Series Estimator 

XLMiner.TimeSeries.Estimator estimator = new 

XLMiner.TimeSeries.Estimator() 

 { 

   AutoRegressiveOrder = 2, 

MovingAverageOrder = 2, 

Difference = 1, 

Period = 12, 

SeasonalAutoRegressiveOrder = 1, 

SeasonalMovingAverageOrder = 1, 

SeasonalDifference = 1 

}; 

 

6) Fits the model using the TimeSeries estimator with the number of forecasts equal to 5 and the required 

confidence level equal to 95%.   

Fit the Model 

var model = estimator.fit(data); 

model.NumForecasts = 5; 

model.ConfidenceLevel = 0.95; 

 

7) Saves the model to PMML File Format. 

Save the Model to PMML Format 

model.toPMML(PATH + “PMML/arima.xml”); 

 

Examining and Applying the Results 

8) Reports the number of iterations performed by the internal optimization methods, the -2Log-Likelihood and the 

statistics from the Ljung-Box Test.     

Display Number of Iterations 

Console.WriteLine("Number of iterations: " + model.NumIterations); 

Console.WriteLine("-2 * Log-likelihood: " + -2.0 * model.LogLikelihood); 

Console.WriteLine(model.LjungBoxInfo); 

 

9) Uses the fitted ARIMA model to score the time series data represented as a DataFrame in XLMiner SDK.  
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Score Time Series Data 

var fitted = model.transform(data); 

 

10) Constructs a new DataFrame, residuals, which holds the residuals calculated by subtracting the fitted values 

from the actual values.    

Compute the Residuals 

var residuals = Util.subtract(data, fitted).setColName(0, "Residuals"); 

 

11) Computes the standard deviation of the vector of residuals. 

Compute the Standard Deviation of the Residuals 

var stdDevResiduals = 

Util.standardDeviation(XLMiner.Convert.toDoubleVector(residuals)); 

12) Creates a new Dataframe, standardizedResiduals, to hold the standardized residuals calculated as 

residual/stdDevResiduals. 

Create new DataFrame to Hold Standardized Residuals 

//Creates new DF and initially fills the one column with “regular” 

//residuals 

DataFrame standardizedResiduals = new DataFrame(residuals); 

//Column is transformed by dividing “regular” residuals by the standard 

//deviation, resulting in a Dataframe with one column, which is the 

//standardized residual 

standardizedResiduals.setColName(0, “Std. Residuals”); 

for (var i = 0; i < residuals.getNumRows(); i++) 

 standardizedResiduals[i,0].AsDouble =   

   residuals[i,0].AsDouble/stdDevResiduals; 

 

13) Displays the standard deviation of the vector or residuals.   

Display Standard Deviation of Residuals 

Console.WriteLine(“Residuals Standard Deviation: “ + stdDevResiduals); 

 

Prints the actual value, the fitted value, the residual and the standardized residuals side-by-side.   

Print Results 

Console.WriteLine(Util.tail(Util.colBind(new DataFrame[] { data, fitted, 

residuals, standardizedResiduals }).setName("Fitted Values"))); 

 

14) Prints the actual data and fitted values side by side.   

Print Actual and Predicted Values 

Console.WriteLine(model.errorMeasures(data, fitted)); 

 

15) Generates a forecast using the fitted ARIMA model.   
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Generate Forecast 

var forecast = model.forecast(data).setName("Forecast Table”); 

Console.WriteLine(forecast); 

 

16) Generate the variance covariance matrix.  

Generate Variance Covariance Matrix 

var varCovar = model.getVarCovarMatrix(); 

Console.WriteLine(varCovar); 
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Association Rules 

Introduction 
Unlike many of the techniques used in XLMiner, association rules do not involve any sort of inference. Association 

rules are simply calculations of probability based on observations. For example, given that a customer has purchased 

a bag of potato chips, what is the probability they will also purchase a bottle of cola?  

Retail stores can use association rules to plan shelf layout, for example making sure that one cannot pick up a bag of 

chips without seeing the tempting bottle of cola. Association analysis is ubiquitous on websites, where so-called 

“recommender” systems will suggest books of potential interest to a customer, based on probabilistic associations 

with a book the customer already has in their shopping cart. 

The fact that there is no statistical inference involved in association rules does not mean that there is no 

interpretation involved or that care in interpretation need not be taken. For example, is the calculated probability 

based on a small or a large number of observations? This is referred to as the support. Is the probability interesting? 

(Some people actually refer to a characteristic they call interestingness!) For example, many people might stop at a 

small corner grocery store for a quart of milk on their way home. If many people buy milk, a conditional probability 

that includes milk purchase may not be of particular value. In other words, while people who buy a bag of candy 

may have a high probability of buying milk, there is also a high probability of buying milk among folks who do not 

buy candy. This concept relates to a calculated value called lift, discussed in the advanced topics section. 

 

A Little Twist with the Input Data 
Most of the data to which XLMiner methods will be applied are appropriately structured as DataFrames. Not so with 

the input data for association rules. For an association rules analysis, XLMiner expects input in a form representing 

individual transactions or events, but each transaction may involve a variable number of values. This is not 

surprising since some people buy ten books and others only two. It does, however, constrain the ways we can 

present the data to XLMiner. 

The XLMiner binary format, similar to a DataFrame in many ways, is a rectangular matrix in which each row 

represents a transaction and each column represents, say, a product which may have been purchased. The format 

gets its name from the fact that the columns contain a one if the product was purchased and contain a zero if it was 

not. This format does not lend itself to an association analysis when there are large numbers of products which may 

be purchased, how many columns would Walmart require, and how many zeros would there be in such a matrix? 

More useful in many real-world applications is the itemset format. In this format, each row represents a tab-

separated list containing the individual items purchased by a single customer in one transaction. 

An Association Rules Example 
The following C# example illustrates how to use the Association Rules algorithm to recognize associations and 

correlations in a dataset.  To run a similar example as the one shown below, compile and run the project, Test.csproj, 

located in …\Frontline Systems\XLMiner SDK\Examples\C#. See the function 

Example.AffinityAnalysis.AssociationRules(). 

This example: 

• Begins by reading data from a text file, AssociationsItemList.txt and populates a DataFrame with this data  

• Constructs a model 

• Extracts rules from the data.   
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1) Read data into DataFrame 

Read Data into DataFrame 

var data = Reader.itemsetToBinary(PATH + "AssociationsItemList.txt"); 

Note:  If the data contained in binary format, the data could be read in using:   

var data = Reader.textFile(PATH + "Associations.txt"); 

 

2) A new Association Rules estimator, is constructed and two parameters, MinSupport and Method, are set. Use 

MinSupport to specify the minimum number of transactions in which a particular itemset must appear for it to 

qualify for inclusion in an association rule here.  The default value is 10% of the total number of rows.  Method 

can be of type APRIORI or T_TREE.   

Construct Association Rules Estimator 

var estimator = new Association.Estimator() 

{ 

  MinSupport = 100.0/data.NumRows, 

Method = Association.MethodType.APRIORI 

   }; 

 

3) Fit model to the data. 

Fit the Model 

var model = estimator.fit(data); 

 

4) Set the option, MinConfidence, on the fitted model. 

Set an Option 

model.MinConfidence = 0.5; 

 

5) Saved model to PMML file format. 

Save Model to PMML Format 

model.toPMML(PATH + “PMML/association-rules.xml”); 

 

6) Extract rules from the data. 

Extract Rules 

var rules = model.transform(data); 

 

7) Use utility sorting function to sort by passing column names in descending order.   

Use Utility Sorting Function 

rules = Util.sort(rules, new string[] { “Lift-Ratio”, “Confidence” }, new 

int[] {SortType.DESCENDING, SortType.DESCENDING }); 

 

8) Display the results. 
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Display Results 

rules.Name = "Rules Sorted by Lift-Ratio then by Confidence"; 

Console.WriteLine("Number of transactions: " + data.NumRows); 

Console.WriteLine("Number of items: " + data.NumCols); 

Console.WriteLine("Number of rules: " + rules.NumRows + "\n"); 

Console.WriteLine(Util.head(rules, 100)); 

 

9) Free memory. 

Free Memory 

Util.free(ref data); 

Util.free(ref model); 

Util.free(ref rules); 

Advanced Topics: Association Rules 

Support 

Support is the fraction of sales in which two items were purchased together 

Support = 0.05 implies N(A,B)/N = 0.05 

Confidence 

Confidence provides a measure of the strength of the probabilistic relation between two events. For example, if 95% 

of the people who purchased A also purchased B, we would have a confidence of 0.95. 

Confidence = 0.95% implies N(A,B)/N(A) =.95 

Notice that support is not involved in this calculation. In this sense, the term “confidence” must not be confused with 

“confidence” in the statistical inference sense. In association rules, a high confidence might arise from a small 

number of observations. 

Expected Confidence 

Expected confidence is the number of times we would expect two items to be purchased together simply based on 

random chance. For example, if half of all customers purchased A and half of all customers purchased B, we would 

expect that 25% of customers would purchase both A and B solely by chance. 

Lift 

Lift is an indicator of how useful the confidence might be. It is the ratio between the actual number of pairings of A 

and B and the number of pairings to be expected from chance alone. That is, lift is the observed confidence divided 

by the expected confidence. 

lift = (sup(A U B)) / (sup(A)*sup(B) ) 
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XLMiner Text Mining 

Introduction 
Text mining is the practice of automated analysis of one document, or a collection of documents (corpus), and 

extracting non-trivial information from those documents. In addition, Text Mining usually involves the process of 

transforming unstructured textual data into structured representation by analyzing the patterns derived from the text. 

The results can be analyzed to discover interesting knowledge, some of which would only be found by a human 

carefully reading and analyzing the text. Typical widely-used tasks of Text Mining include but are not limited to 

Automatic Text Classification/Categorization, Topic Extraction, Concept Extraction, Documents/Terms Clustering, 

Sentiment Analysis, Frequency-based Analysis and many more. Some of these tasks could not be completed by a 

human, which makes Text Mining a particularly useful and applicable tool in modern Data Science.   

XLMiner SDK takes an integrated approach to text mining as it does not totally separate analysis of unstructured 

data from traditional data mining techniques applicable for structured information. While XLMiner SDK is a very 

powerful tool for analyzing text only, it also offers automated treatment of mixed data, i.e. combination of multiple 

unstructured and structured fields. This is a particularly useful feature that has many real-world applications, such as 

analyzing maintenance reports, evaluation forms, insurance claims, etc. XLMiner SDK uses the “bag of words” 

model – the simplified representation of text, where the precise grammatical structure of text and exact word order is 

disregarded. Instead, syntactic, frequency-based information is preserved and is used for text representation. 

Although such assumptions might be harmful for some specific applications of Natural Language Processing (NLP), 

it has been proven to work very well for applications such as Text Categorization, Concept Extraction and others, 

which are the particular areas addressed by XLMiner SDK’s capabilities. It has been shown in many 

theoretical/empirical studies that syntactic similarity often implies semantic similarity. One way to access syntactic 

relationships is to represent text in terms of Generalized Vector Space Model (GVSP). Advantage of such 

representation is a meaningful mapping of text to the numeric space, the disadvantage is that some semantic 

elements, e.g. order of words, are lost (recall the bag-of-words assumption).   

Input to Text Miner (the Text Mining tool within XLMiner SDK) could be of two main types – few relatively large 

documents (e.g. several books) or relatively large number of smaller documents (e.g. collection of emails, news 

articles, product reviews, comments, tweets, Facebook posts, etc.). While XLMiner SDK is capable of analyzing 

large text documents, it is particularly effective for large corpuses of relatively small documents. Obviously, this 

functionality has limitless number of applications – for instance, email spam detection, topic extraction in articles, 

automatic rerouting of correspondence, sentiment analysis of product reviews and many more.   The input for text 

miner is a dataframe, with at least one column that contains free-form text (or file paths to documents in a file 

system containing free-form text), and, optionally, other columns that contain traditional structured data.   

The output for the text mining is a set of reports that contain general explorative information about the collection of 

documents and structured representations of text (free-form text columns are expanded to a set of new columns with 

numeric representation. The new columns will each correspond to either (i) a single term (word) found in the 

“corpus” of documents, or, if requested, (ii) a concept extracted from the corpus through Latent Semantic Indexing 

(LSI, also called LSA or Latent Semantic Analysis).  For more on Latent Semantic Analysis, see the example below.   

The statistics produced and displayed in the Term-Document Matrix contain basic information on the frequency of 

terms appearing in the document collection.  With this information we can “rank” the significance or importance of 

these terms relative to the collection and particular document.   

Text Mining Example Code 
In the example below, XLMiner SDK Text Miner will be applied to the DataFrame constructed in TMData() 

function in the subsequent examples below.   
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Construction of TMData Function 

public static DataFrame TMData() 

  { 

    try 

     { 

       DataFrame df = new DataFrame("Romeo"); 

 

       String[] vec = new String[] 

 {  

        "Romeo and Juliet.", 

        "Juliet: O happy dagger!", 

        "'Romeo died by dagger.'", 

        "'Live free or die', that's the New-Hampshire's motto.", 

        "'Did you know, New - Hampshire is in New - England.'"  

        }; 

 

        df.append(vec); 

 

       return df; 

      } 

       catch (XLMiner.Exception ex) 

       { 

        Console.WriteLine("Exception has occurred at  

        <TextMining.tmData>:\n"   

        + ex.Message); 

        return null; 

       } 

   } 

Term Document Text Mining Example 
In the example below, you will learn how to use Text Miner in XLMiner SDK to process/analyze approximately 

1000 text files and use the results for automatic topic categorization.  

Processing/Analyzing text files for automatic topic categorization 

public static int Vectorizing() 

 { 

   try 

     { 

       //Create new dataframe, romeoCorpus, from TMData dataframe (created  
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//in example above 

       DataFrame romeoCorpus = TMData(); 

 

       //Create TFIDF estimator 

       var estimator = new TfIdf.Estimator() 

       { 

         //Set estimator options 

         Preprocessing = 

           TM.Preprocessing.REMOVE_STOPWORDS | 

           TM.Preprocessing.NORMALIZE_CASE | 

           TM.Preprocessing.STEM | 

           TM.Preprocessing.NORMALIZE_URL | 

           TM.Preprocessing.NORMALIZE_EMAIL | 

           TM.Preprocessing.NORMALIZE_NUMBER | 

           TM.Preprocessing.NORMALIZE_MONEY | 

           TM.Preprocessing.REMOVE_HTML_TAGS, 

           MaxVocabulary = 5, 

           MaxTermLength = 10, 

           MinStemmedTermLength = 2, 

           MinDocumentFrequency = 5, 

           MaxDocumentFrequency = 95, 

 

           // If these options are used, text appearing before the first   

           //occurrence of the Start Phrase will be disregarded and     

           //similarly, text appearing after End Phrase (if used) will be   

           //disregarded 

     //StartPhrase = "startPhrase", 

           //EndPhrase = "endPhrase", 

 

           // These next 4 lines of code allow the replacement or removal  

     //of nonsensical terms such as HTML tags, URLs, Email addresses,  

     //etc. from the document collection.  For example, any URL  

     //tokens will be replaced with “urltoken” 

     UrlToken = "urltoken", 

           EmailToken = "emailtoken", 

           NumberToken = "numbertoken", 

           MoneyToken = "moneyamountterm", 

 

           //Specify terms to be excluded 
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           //ExclusionTerms = new string[] { "exclusionTerm1",  

           //"exclusionTerm2",  

           //"exclusionTerm3" }, 

            

           // When used, all other terms will be disregarded except those  

           //added here.  i.e. to mine each document for a specific word  

           //such as “dagger”  

     //ExclusiveInclusionTerms = new string[] {   

     //"exclusiveInclusionTerm1",           

           //"exclusiveInclusionTerm2" }, 

           //Specify additional stopwords 

           //StopwordsExtraTerms = new string[] { "stopword1" } 

        }; 

       

      //Combine synonyms i.e. replace “coupe”, “sedan”, “convertible” with  

      //“auto” 

      //estimator.setSynonyms("rootTerm1", new string[] { "synonym1",  

      //"synonym2" }); 

      //estimator.setSynonyms("rootTerm2", new string[] { "synonym1",  

      //"synonym2" }); 

 

      //Combine phrases i.e. replace “station wagon” with “wagon” 

//estimator.setPhraseReplacement("phrase1", "phraseReplacement"); 

      //estimator.setPhraseReplacement("phrase2", "phraseReplacement"); 

 

      Console.WriteLine(estimator); 

      Console.WriteLine("TF-IDF Estimator: chosen preprocessing -- " +  

      estimator.Preprocessing); 

      Console.WriteLine(); 

       

      //Fit the model 

      var model = estimator.fit(romeoCorpus); 

 

      //set term document matrix scheme options on “model” 

      model.WeightingSchemeTerm = TM.WeightingScheme.Term.LOGARITHMIC; 

      model.WeightingSchemeDocument = TM.WeightingScheme.Document.INVERSE; 

      model.WeightingSchemeNormalization =  

      TM.WeightingScheme.Normalization.NONE; 
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      Console.WriteLine(model); 

       

//Save model to PMML file format 

var pmmlFile = PATH + "PMML/text-mining-tfidf.xml"; 

      model.toPMML(pmmlFile); 

 

      //display output to the console  

      Console.WriteLine(model.DetailedVocabulary); 

      Console.WriteLine(model.TermCountInfo); 

      Console.WriteLine(model.DocInfo); 

      Console.WriteLine(model.getTopTermsInfo(5, 3)); 

 

      //Perform transformation on remeoCorpus dataframe 

using (var tfRomeo = model.transform(romeoCorpus)) 

      Console.WriteLine(tfRomeo); 

                

      //Free memory 

      Util.free(ref estimator); 

      Util.free(ref model); 

    } 

      catch (XLMiner.Exception ex) 

    { 

      Console.WriteLine("Exception has occurred at  

      <TextMining.Vectorizing>:\n" +  

      ex.Message); 

      return 1; 

    } 

 return 0; 

} 

Preprocessing Parameter Descriptions  

Analyze Specified Terms Only 

ExclusiveInclusionTerms = new string[] { "exclInclTerm1","exclInclTerm2" } 

Using the keyword, ExclusiveInclusionTerms, terms to be considered for text mining can be added and removed.  

All other terms will be disregarded.  For example, if wanting to mine each document for a specific part name such as 

“dagger”, use: ExclusiveInclusionTerms = new string[] { "dagger" }. 



XLMiner SDK User Guide Page 76 
 
  

Start Phrase/End Phrase 

StartPhrase = "startPhrase" 

EndPhrase = "endPhrase" 

If used, text appearing before the first occurrence of the Start Phrase will be disregarded and similarly, text 

appearing after End Phrase (if used) will be disregarded. For example, if text mining the transcripts from a Live Chat 

service, you would not be particularly interested in any text appearing before the heading “Chat Transcript” or after 

the heading “End of Chat Transcript”.  Thus, you would enter “Chat Transcript” into the Start Phrase field and “End 

of Chat Transcript” into the End Phrase field.    

Stopword removal  

TM.Preprocessing.REMOVE_STOPWORDS  

Set this preprocessing flag to remove over 300 commonly used words/terms (such as a, to, the, and, etc.) from the 

document collection during preprocessing.   

Exclusion list  

ExclusionTerms = new string[] { "exclusionTerm1", "exclusionTerm2"} 

Terms entered into the Exclusion list will be removed from the document collection.  This is beneficial if all or a 

large number of documents in the collection contain the same terms, for example, “from”, “to”, “subject” in a 

collection of emails. If all documents contain the same terms, including these words in the analysis will not provide 

any benefit and could bias the analysis.   

Synonym Reduction 

estimator.setSynonyms("rootTerm1", new string[] { "synonym1", "synonym2" }) 

estimator.setSynonyms("rootTerm2", new string[] { "synonym1", "synonym2" }) 

Use setSynonyms to replace synonyms such as “car”, “automobile”, “convertible”, “vehicle”, “sedan”, “coupe”, 

“subcompact”, and “jeep” with “auto”.   During pre-processing, XLMiner SDK will replace the terms “car”, 

“automobile”, “convertible”, “vehicle”, “sedan”, “coupe”, “subcompact” and “jeep” with the term “auto”.   

Phrase Reduction  

estimator.setPhraseReplacement("phrase1", "phraseReplacement") 

estimator.setPhraseReplacement("phrase2", "phraseReplacement") 

XLMiner SDK also allows the combining of words into phrases that indicate a singular meaning such as “station 

wagon” which refers to a specific type of car rather than two distinct tokens – station and wagon.   

Maximum vocabulary size  

MaxVocabulary = 5 

Use this keyword to reduce the number of terms in the final vocabulary to the most frequently occurring in the 

collection. The default is “1000”.    

Perform stemming 

TM.Preprocessing.STEM   

Stemming is the practice of stripping words down to their “stems” or “roots”, for example, stemming terms such as 

“argue”, “argued”, “argues”, “arguing”, and “argus” would result in the stem “argu”.  However, “argument” and 

“arguments” would stem to “argument”.   The stemming algorithm utilized in XLMiner SDK is “smart” in the sense 

that while “running” would be stemmed to “run”, “runner” would not.  XLMiner SDK uses the Porter Stemmer 2 

algorithm for the English Language.  For more information on this algorithm, please see the Webpage:   

http://tartarus.org/martin/PorterStemmer/  
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Normalize case  

TM.Preprocessing.NORMALIZE_CASE 

When this flag is turned on, XLMiner SDK converts all text to a consistent (lower) case, so that Term, term, TERM, 

etc. are all normalized to a single token “term” before any processing, rather than creating three independent tokens 

with different case. This simple method can dramatically affect the frequency distributions of the corpus, leading to 

biased results.  

Term Normalization  

Term normalization flags allow users to replace or remove nonsensical terms such as HTML tags, URLs, Email 

addresses, etc. from the document collection.   

Note: It’s possible to remove normalized terms completely by including the normalized term (for example, 

“emailtoken”) in the Exclusion list.    

Minimum Stemmed Term Length 

MinStemmedTermLength = 2 

If stemming reduced a term’s length to 2 or less characters, Text Miner will disregard the term.  This option 

is selected by default.    

Remove HTML tags  

TM.Preprocessing.REMOVE_HTML_TAGS 

If this option is turned on, HTML tags will be removed from the document collection.  HTML tags and text 

contained inside these tags contain technical, computer-generated information that is not typically relevant 

to the goal of the text mining application.  This option is not turned on by default.  

Normalize URL’s  

TM.Preprocessing.NORMALIZE_URL 

If this option is turned on, URLs appearing in the document collection will be replaced with the term, 

“urltoken”.  URLs do not normally add any meaning, but it is sometimes interesting to know how many 

URLs are included in a document.  This option is not selected by default.  

Normalize email addresses  

TM.Preprocessing.NORMALIZE_EMAIL 

If this option is turned on, email addresses appearing in the document collection will be replaced with the 

term, “emailtoken”.  This option is not selected by default.  

Normalize numbers 

TM.Preprocessing.NORMALIZE_NUMBER 

If this option is turned on, numbers appearing in the document collection will be replaced with the term, 

“numbertoken”.  This option is not selected by default.  

Normalize monetary amounts  

TM.Preprocessing.NORMALIZE_MONEY 

If this option is turned on, monetary amounts will be substituted with the term, “moneytoken”.  This option 

is not selected by default.  

Minimum Document Frequency 

MinDocumentFrequency = 5 
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If specified, Text Miner will remove terms that appear in less than the percentage of documents specified.  For most 

text mining applications, rarely occurring terms do not typically offer any added information or meaning to the 

document in relation to the collection.  The default percentage is 2%.  

Maximum Document Frequency 

MaxDocumentFrequency = 95 

If specified, Text Miner will remove terms that appear in more than the percentage of documents specified.  For 

many text mining applications, the goal is identifying terms that have discriminative power or terms that will 

differentiate between a number of documents.  The default percentage is 98%.    

Maximum term length  

MaxTermLength = 10 

If selected, Text Miner will remove terms that contain a set number of characters.  This option can be extremely 

useful for removing some parts of text which are not actual English words, for example, URLs or computer-

generated tokens, or to exclude very rare terms such as Latin species or disease names, i.e. 

Pneumonoultramicroscopicsilicovolcanoconiosis.   

Latent Semantic Analysis 
As discussed above, the output for Text Miner is a set of reports that contain general explorative information about 

the collection of documents and structured representations of text (free-form text columns are expanded to a set of 

new columns with numeric representation. The new columns will each correspond to either (i) a single term (word) 

found in the “corpus” of documents, or, if requested, (ii) a concept extracted from the corpus through Latent 

Semantic Indexing (LSI, also called LSA or Latent Semantic Analysis). 

Latent Semantic Indexing uses singular value decomposition (SVD) to map the terms and documents into a common 

space to find patterns and relationships.  For example:  if we inspected our document collection, we might find that 

each time the term “dagger” appeared in a document, the document also included the terms “sharp” and “shiny”.  Or 

each time the term “Juliet” appeared in a document, the terms “beautiful” and “lovely” also appeared.  However, 

there is no detectable pattern regarding the use of the terms “dagger” and “Juliet”.  Documents including “dagger” 

might not include “Juliet” and documents including “Juliet” might not include “dagger”.  Our four terms, lovely, 

beautiful, sharp, and shiny describe two different issues:  a knife and an attractive lady.  Latent Semantic Indexing 

will attempt to 1.  Distinguish between these two different topics, 2.  Identify the documents that deal with daggers, 

beautiful women or both and 3.  Map the terms into a common semantic space using singular value decomposition 

(SVD).  SVD is a tool used by Text Miner to extract concepts that explain the main dimensions of meaning of the 

documents in the collection.   

Processing/Analyzing text files using Latent Semantic Analysis 

public static int LatentSemanticAnalysis() 

  { 

    try 

       { 

         DataFrame tdmRomeo; 

          

           //Using romeoCorpus, create a new TFIDF estimator, fit the  

   //model, transform the romeoCorpus dataset (apply model to),  

   //then assigns resultant dataset to tdmRomeo 

           using (DataFrame romeoCorpus = TMData()) 

         { 
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          Console.WriteLine(romeoCorpus); 

          tdmRomeo = (new TfIdf.Estimator()). 

                            fit(romeoCorpus). 

                      transform(romeoCorpus); 

         } 

 

         Console.WriteLine(tdmRomeo); 

     

         //Create a new LSA estimator  

   var estimator = new LSA.Estimator() 

           { 

            //Set various options – see below for explanations 

            MaxNumConcepts = 4, 

            //MinPercentExplained = 50, 

            ComputeTermImportance = true, 

            ComputeConceptImportance = true 

           }; 

           Console.WriteLine(estimator); 

 

           //Fit the model on tdmRomeo 

           var model = estimator.fit(tdmRomeo); 

           Console.WriteLine(model); 

            

           //Save the model to PMML File format 

           var pmmlFile = PATH + "PMML/text-mining-lsa.xml"; 

           model.toPMML(pmmlFile); 

 

      //Print Concept Importance, Term Importance, and Term  

           //Concept Matrices to the console 

           Console.WriteLine(model.ConceptImportance); 

           Console.WriteLine(model.TermImportance); 

           Console.WriteLine(model.getTermConceptMatrix(tdmRomeo)); 

 

           //score tdmRomeo dataframe using fitted model 

     using (var tfRomeo = model.transform(tdmRomeo)) 

           Console.WriteLine(tfRomeo); 
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           //Free memory 

           Util.free(ref estimator); 

           Util.free(ref model); 

         } 

            catch (XLMiner.Exception ex) 

            { 

                Console.WriteLine("Exception has occurred at  

                <TextMining.LatentSemanticAnalysis>:\n" + ex.Message); 

                return 1; 

            } 

 

            return 0; 

        } 

    } 

Latent Semantic Analysis Parameter Descriptions 

This section describes the options available for the latent semantic analysis estimator.   

Maximum number of concepts or Minimum percentage explained 

MinPercentExplained = 50 

If the option MinPercentExplained is specified, XLMiner SDK will identify the concepts with singular values that, 

when taken together, sum to the minimum percentage explained, 75% is the default. 

MaxNumConcepts = 4 

If MaxNumConcepts is specified, XLMiner SDK will identify the top number of concepts according to the value 

entered here.  The default is 1 concept.    

Term Importance  

ComputeTermImportance = true 

Set this option to True to produce the Term Importance matrix.  This table displays each term along with its 

Importance as calculated by singular value decomposition.  This option is not selected by default.    

Concept Importance  

ComputeConceptImportance = true 

Set this option to True to produce the Concept Importance matrix.  This table displays the total number of concepts 

extracted, the Singular Value for each, the Cumulative Singular Value and the % of Singular Value explained which 

is used when Minimum percentage explained is selected for Concept Extraction – Latent Semantic Indexing on the 

Representation tab.  This option is not selected by default.    

 

 

              

 



XLMiner SDK User Guide Page 81 
 
  

XLMiner and Big Data 

Big Data 
“Big data” has sometimes been characterized by what are known as the “Three V’s”, Volume, Velocity, and Variety. 

Volume, of course, is what gave big data its name; the sheer quantity of data prevents the more conventional 

methods of data storage from being effective. The Hadoop distributed file system is far and away the most 

commonly used platform for dealing with big data volumes. “Velocity” refers to the speed at which the data arrives, 

and the speed at which it may need to be evaluated. Few conventional transactional databases must deal with new 

data as fast as, say, a big data platform examining Twitter feeds. “Variety”, of course, refers to the fact that unlike 

traditional relational data, big data presents itself in a wide variety of formats and structures, not all of them 

designed to make life easier for the analysts. 

Some technology commentators have felt the need to add yet two more V’s, Veracity and Value. Data within big 

data stores does not always share the same degree of reliability as traditional relational data. Value, of course, is the 

small flakes of gold we can obtain by panning the large volumes of sand and silt. 

Apache Spark 
XLMiner’s big data abilities build upon the computational strength of Apache Spark. Spark is a distributed 

computational environment that is regarded by many as superior to the minimal map-reduce capabilities built into 

the basic Hadoop architecture. If you wish to use XLMiner with your in-house Hadoop system, you must be running 

Spark as a part of your big data system, and it must be possible for XLMiner to submit tasks to Spark using the 

Spark Job Server. 

Connecting to an Apache Spark Cluster  

The XLMiner SDK software communicates over the network with a Frontline Systems supplied, server-side 

software package that runs on one of the computers in the Spark cluster.  The first step in connecting XLMiner SDK 

to your organization's own Apache Spark cluster is to contact Frontline Systems Sales and Technical Support at 775-

831-0300.   

After the server-side software package is installed, the proper entries for the cluster options can be used.  For 

university instructors teaching courses in business analytics to MBA and undergraduate business students, using 

methods such as data mining, optimization and simulation, who would like to give their students hands-on 

experience with the use of Big Data in decision-making, without a need for programming expertise or other "data 

science" preparation, Frontline Systems operates an Apache Spark cluster "in the cloud" on Amazon Web Services, 

preloaded with a set of interesting, publicly available Big Data datasets (such as the Airline dataset illustrated in this 

chapter), and sample exercises and case studies using the datasets, that we can make available at a nominal cost for 

student use. For further information about this option, please contact Frontline Systems Academic Sales and Support 

at 775-831-0300 or academic@solver.com.   

Storage Sources and Data Formats  

XLMiner SDK can process data from Hadoop Distributed File System (HDFS), local file systems that are visible to 

Spark cluster, and Amazon S3. Performance is best with HDFS, and it is recommended that you load data from a 

local file system or Amazon S3 into HDFS.  If the local file system is used, the data must be accessible at the same 

path on all Spark workers, either via a network path, or because it was copied to the same location on all workers.  

At present, XLMiner SDK can process data in Apache Parquet and CSV (delimited text) formats.  Performance is 

far better with Parquet, which stores data in a compressed, columnar representation; it is highly recommended that 

you convert CSV data to Parquet before you seek to sample or summarize the data 
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The Big Data Sampler  
This example illustrates how to use the latest XLMiner SDK using Data stored across an Apache Spark compute cluster 

where the Frontline Systems access server is installed.  By drawing a representative sample of Big Data from all the nodes 

in the cluster, Excel users can easily train data mining and text mining models directly on their desktops. 

Sampling from Big Data 

public static int Sampling() 

{ 

  try 

    { 

     //create new Big Data Sampler, sampler 

     XLMiner.BigData.Sampler sampler = new XLMiner.BigData.Sampler(); 

 

     // server settings for custom Apache Spark clusters 

     // port for the Spark REST server must be 8090 

     //sampler.SparkServer = <endpoint for Spark cluster> 

 

     // -- if data source is HDFS or network-mounted file system 

     //sampler.FileLocation = <file location URL - hdfs://...> 

 

     // -- if data source is AWS S3 

     //sampler.AWSS3 = true; 

     //sampler.FileLocation = <file location URL - s3n://...> 

     //sampler.AWSS3AccessKey = <AWS S3 access key> 

     //sampler.AWSS3SecretKey = <AWS S3 access key> 

 

     // -- if you have access to Frontline's cluster: 

     // see available datasets preloaded on the cluster 

     //var solverDatasets = sampler.solverDatasets(); 

     //Console.WriteLine(solverDatasets); 

 

     // -- If Apache Parquet – which this example uses 

     sampler.DataFormat = XLMiner.BigData.Format.PARQUET; 

 

     // -- if delimited text 

     //sampler.DataFormat = XLMiner.BigData.Format.CSV; 

     //sampler.HeaderExist = true; 

     //sampler.Delimiter = "\t"; 
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     // Set general Sampling options 

     sampler.TrackRowID = true; 

     sampler.WithReplacement = false; 

     sampler.RandomSeed = 12345; 

 

     // If using approximate sampling, set these options 

     sampler.SamplingType = XLMiner.BigData.Sampling.Type.APPROXIMATE; 

     sampler.SampleFraction = 0.01; 

 

     // -- if using exact sampling, set these options 

     //sampler.SamplingType = XLMiner.BigData.Sampling.Type.EXACT; 

     //sampler.SampleSize = 15; 

 

     // Infer schema from data source 

     var schema = sampler.inferSchema(); 

     Console.WriteLine("Schema: [" + String.Join(",", schema) + "]"); 

 

     // -- optionally set variables to be included in a sample 

     //sampler.SelectedVariables = schema; 

     // or 

     sampler.SelectedVariables = new string[] { "Var1", "Var2", "Var3"  

     }; 

     // or if not set - all variables would be included in a sample 

 

     Console.WriteLine(sampler); 

 

     // -- submit Big Data job synchronously: get results immediately 

     //var sample = sampler.run(); 

     //Console.WriteLine(sample); 

 

     // Submit Big Data job asynchronously: get Job ID for later  

     //retrieval 

     var jobID = sampler.submit(); 

     Console.WriteLine("Job ID: " + jobID); 

 

     //... and later retrieve results 
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     var status = XLMiner.BigData.JobStatus.RUNNING; 

     while (status != XLMiner.BigData.JobStatus.FAILED || status !=     

     XLMiner.BigData.JobStatus.FINISHED) 

     { 

       status = sampler.jobStatus(); 

       if (status == XLMiner.BigData.JobStatus.FAILED || status ==  

       XLMiner.BigData.JobStatus.JOB_ERROR) 

       { 

         Console.WriteLine("Job failed to complete"); 

         break; 

       } 

         else if (status == XLMiner.BigData.JobStatus.RUNNING) 

       { 

         Console.WriteLine("Job is still running. Waiting for 1  

         millisecond..."); 

         System.Threading.Thread.Sleep(10); 

       } 

         else if (status == XLMiner.BigData.JobStatus.FINISHED) 

       { 

         Console.WriteLine("Job is completed..."); 

         var sample = sampler.results(); 

         Console.WriteLine(sample); 

         break; 

       } 

      } 

       

     // Get cluster info 

     Console.WriteLine(sampler.clusterInfo()); 

 

     // Get duration info 

     Console.WriteLine(sampler.durationInfo()); 

 

     // Get # rows in original BD source 

     Console.WriteLine(sampler.numRows()); 

     } 

 
   catch (XLMiner.Exception ex) 

            { 

                Console.WriteLine("Exception has occurred at   
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                <BigData.Sampling>:\n" + ex.Message); 

                return 1; 

            } 

 

     return 0; 

} 

  

Parameter Explanations 

See below for explanation of parameters for Big Data Sampling. 

Track record IDs  

sampler.TrackRowID = true 

If this option is set to True, data records in the resulting sample will carry the correct ordinal IDs that correspond to 

the original data records, so that records can be matched. Note: Selecting this option may significantly increase 

running time so it should be applied only when necessary.  

Sample with Replacement  

sampler.WithReplacement = true 

When set to True, records in the dataset may be chosen for inclusion in the sample multiple times.    

Random Seed  

sampler.RandomSeed = 12345 

If an integer value is passed for Random seed, XLMiner SDK will use this value to set the feature selection random 

number seed.  Setting the random number seed to a nonzero value ensures that the same sequence of random 

numbers is used each time the dataset is chosen for sampling.  The default value is “12345”.  If left blank, the 

random number generator is initialized from the system clock, so the random sample would be represented by 

different records from run to run.  If you need the results from successive samples to be strictly comparable, you 

should set the seed. To do this, type the desired number you want into the box. This option accepts positive integers 

with up to 10 digits.  

Exact Sampling   

sampler.SamplingType = XLMiner.BigData.Sampling.Type.EXACT 

When this option is selected, XLMiner SDK will return a fixed – size sampled subset of data according to the setting 

for Desired Sample Size.  

Desired Sample Size  

sampler.SampleSize = 15 

When Exact Sampling is used, enter the number of records to be included in the sample using this parameter. 

Approximate Sampling   

sampler.SamplingType = XLMiner.BigData.Sampling.Type.APPROXIMATE 

When this option is selected, the size of the resultant sample will be determined by the value entered for Desired 

Sample Fraction.   Approximate sampling is much faster than Exact Sampling. Usually, the resultant fraction is very 

close to the Desired Sample Fraction so this option should be preferred over exact sampling as often as possible.   

Even if the resultant sample slightly deviates from the desired size, this would be easy to correct in Excel.    

Desired Sample Fraction  

sampler.SampleFraction = 0.01 
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When Approximate Sampling is used, enter the expected size of the sample as a fraction of the dataset's size using 

this parameter. 

 If Sampling with Replacement is selected, the value for Desired Sample Fraction must be greater than 0.  If 

Sampling without replacement (i.e. Sampling with Replacement is not selected), the Desired Sample Fraction 

becomes the probability that each element is chosen and, as a result, Desired Sample Fraction must be between 0 

and 1.  

The Big Data Summarizer 
The Big Data Summarization feature in XLMiner SDK is useful for rapid extraction of key metrics contained in 

data, which can be immediately used by data analysts and decision makers.  This feature provides similar 

functionality as standard SQL engines, but for the data, volume and complexity which extends far beyond your 

desktop or laptop computer. This tool is a great assistant for composing reports, constructing informative 

visualizations, building prescriptive and predictive models that can drive the directions of consequent analysis.    

Using XLMiner SDK’s Big Data Summarizer 

public static int Summarizing() 

{  

  try 

      { 

       //Create new summarizer 

       XLMiner.BigData.Summarizer summarizer = new  

       XLMiner.BigData.Summarizer(); 

 

       // server settings for custom Apache Spark clusters 

       // port for the Spark REST server must be 8090 

       //summarizer.SparkServer = <endpoint for Spark cluster> 

 

       // -- if data source is HDFS or network-mounted file system 

       //summarizer.FileLocation = <file location URL - hdfs://...> 

 

       // -- if data source is AWS S3 

       //summarizer.AWSS3 = true; 

       //summarizer.FileLocation = <file location URL - s3n://...> 

       //summarizer.AWSS3AccessKey = <AWS S3 access key> 

       //summarizer.AWSS3SecretKey = <AWS S3 access key> 

 

       // -- if you have access to Frontline's cluster: 

       // see available datasets preloaded on the cluster 

       //var solverDatasets = summarizer.solverDatasets(); 

       //Console.WriteLine(solverDatasets); 
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       // -- if Apache Parquet as in this example 

       summarizer.DataFormat = XLMiner.BigData.Format.PARQUET; 

 

       // -- if delimited text 

       //summarizer.DataFormat = XLMiner.BigData.Format.CSV; 

       //summarizer.HeaderExist = true; 

       //summarizer.Delimiter = "\t"; 

 

//General summarization options [Sum, Average, Standard  

Deviation,   

//Min, or Max] 

 summarizer.AggregationType =       

 XLMiner.BigData.Summarization.AggregationType.AVG; 

       summarizer.ComputeGroupCounts = true; 

 

       // infer schema from data source 

       var schema = summarizer.inferSchema(); 

       Console.WriteLine("Schema: [" + String.Join(",", schema) + "]"); 

 

       // -- optionally set variables to be included in a summary 

       //summarizer.SelectedVariables = schema; 

       // or 

       summarizer.SelectedVariables = new string[] { "Var1", "Var2",  

       "Var3" }; 

       // or if not set - all variables would be included in a summary 

 

       // -- optionally set grouping variables 

       //summarizer.GroupingVariables = schema; 

       // or 

       summarizer.GroupingVariables = new string[] { "Var4", "Var5" }; 

       // or if not set - there would be no grouping 

     

       Console.WriteLine(summarizer); 

 

       // -- submit Big Data job synchronously: get results immediately 

       //var summary = summarizer.run(); 

       // or 
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       //var summary = summarizer.summarizeAndCount(); 

       //Console.WriteLine(summary); 

 

       // Submit Big Data job asynchronously: get Job ID for later  

             //retrieval 

       var jobID = summarizer.submit(); 

       Console.WriteLine("Job ID: " + jobID); 

 

       //... and later retrieve results 

       var status = XLMiner.BigData.JobStatus.RUNNING; 

       while (status != XLMiner.BigData.JobStatus.FAILED || status !=  

       XLMiner.BigData.JobStatus.FINISHED) 

       { 

         status = summarizer.jobStatus(); 

         if (status == XLMiner.BigData.JobStatus.FAILED || status ==   

XLMiner.BigData.JobStatus.JOB_ERROR) 

            { 

              Console.WriteLine("Job failed to complete"); 

              break; 

            } 

              else if (status == XLMiner.BigData.JobStatus.RUNNING) 

            { 

        Console.WriteLine("Job is still running. Waiting for 1  

millisecond..."); 

              System.Threading.Thread.Sleep(10); 

             } 

               else if (status == XLMiner.BigData.JobStatus.FINISHED) 

             { 

               Console.WriteLine("Job is completed..."); 

               var summary = summarizer.results(); 

               Console.WriteLine(summary); 

               break; 

             } 

        } 

 

        // Get cluster info 

        Console.WriteLine(summarizer.clusterInfo()); 
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        // Get duration info 

        Console.WriteLine(summarizer.durationInfo()); 

 

        // Get # rows in original BD source 

        Console.WriteLine(summarizer.numRows()); 

       } 
   catch (XLMiner.Exception ex) 

            { 

                Console.WriteLine("Exception has occurred at   

                <BigData.Summarizing>:\n" + ex.Message); 

                return 1; 

            } 

 

     return 0; 

} 
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Glossary 
 
Activation Function – Virtually all practical artificial neural networks require a nonlinear activation function if they 

are to work on any but the most trivial classification problems. Among the most commonly used activation functions 

are logistic sigmoid, the hyperbolic tangent (tanh), and the SOFTMAX function. 

 

ANOVA – Analysis of variance. This ubiquitous technique for statistical hypothesis testing is built on the same 

mathematical foundation as multiple regression. While ANOVA itself is not a data mining technique, it is used in 

XLMiner to report the statistical summary and significance levels for XLMiner’s linear regression mining models. 

 

ARIMA – Autoregressive integrated moving average; one of the more common algorithms for the analysis of time 

series 

 

Bagging – “Bagging”, short for “bootstrap aggregating”, is a technique most commonly used for obtaining more 

stable models from weak learners, which can be unduly affected by outliers. A component of many ensemble 

techniques, bagging consists of creating models on multiple randomly selected subsets of the original training 

dataset. 

 

Binning – Binning takes an essentially continuous variable and breaks it into categorical bins. For example, rows 

containing a column for age could be “binned” in groups 20-29, 30-39, etc. Binning can also improve analysis by 

reducing the effect of small observational errors and can help identify outliers. Binning is also called discretization. 

 

Boosting – Boosting is a set of ensemble methods in which the results of individual weak learners are combined to 

yield a stronger learner. XLMiner uses the ls boost algorithm, based on least-squares optimization. 

 

Ensemble methods – Ensemble methods integrate multiple data mining models to produce a more stable and 

reliable model. Often, ensemble methods use bagging to resample the training data and produce multiple closely 

related models from a single data set. 

 

Epoch – In artificial neural network models, a single pass of the data through the model is referred to as an epoch. 

 

Exponential smoothing – In a moving average, all values within the averaged interval are given equal weight in the 

calculation. In exponential smoothing data values close to a data point are weighted more strongly than those further 

away. For example, in a five-day exponentially smoothed average of stock prices, the price two day previous would 

carry less weight in the average than the previous day’s value, and the previous day’s value would carry less weight 

than that day’s price. Several different methods of calculation can be used for exponential smoothing. 

 

MAD -  Mean Absolute Deviation 

 

Moving average – A moving average, also called a running average, calculates for each data point the average of 

that point and other points within some interval. For example, a moving average of stock prices over time could 
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calculate the average price of a stock including the previous and subsequent 30 minutes. This has the net effect of 

smoothing fluctuation that occur on smaller time scales. 

 

Multicollinearity - When two predictors in a regression analysis are strongly correlated it may be difficult or 

impossible to obtain a unique reliable regression solution. The Variance Inflation Factor is an indicator of potential 

problems. A VIF greater than 10 is regarded as cause for concern; a VIF greater than 1 indicates the potential for 

biased results. 

 

One-hot encoding – A protocol for turning categorical variables with N possible values into an N-dimensional 

binary vector where only one bit, the one corresponding to the variable value, is set to one. One-hot encoding gets its 

name from its format, since only one bit can be set to one, the remaining bits are zero. This is used to avoid potential 

problems using categorical values for classification and regression. For example, an encoding scheme that set “red” 

to 4 and “cyan” to 8 would be a problem for regression since it implies that cyan is somehow twice red. 

 

PMML -  The XML markup language Predictive Model Markup Language  

 

TF-IDF – Term frequency – inverse document frequency. A common technique for assigning weights to the 

importance of specific words in documents relative to the set to which a document belongs. For example, “heart” 

might be a significant word in a document part of a body of documents about food, but would be less significant in a 

document belonging to a set of documents about heart disease. 

 

 

 

 

 

 

 

 


