

Optimization

Using Analytic Solver Platform

REVIEW BASED ON MANAGEMENT SCIENCE

FrontlineSolvers

What We'll Cover Today

- Introduction
 - Session III beta training program goals
- Automating Optimization in Excel
- Defining Optimization in Solver SDK Platform
- Dimensional Modeling

Session III Online Beta Training Goals

To familiarize you with the following concepts:

- Automating your Excel spreadsheet optimization model
- Designing custom applications
- Modeling multi-dimensional business situations

To empower you to achieve success

- State of the art tools
- Online educational training
- User guides and video demos

Typical Optimization Applications

	_		Staff planning
	Energy		Scheduling
	Chemical		Pouting
	Manufacturing		Routing
	Transportation		Blending
			Capacity planning
у	Finance	Functional Area	Media planning
	Agriculture		Supply choin
	Health		Supply chain
	Mining		Inventory optimization
			Vendor selection
	Defense		Portfolio optimization
	Forestry		
		FrontlineSolvers	Product mix

Industry

WE DEMOCRATIZE ANALYTICS

Why Automate Optimization Models?

- Run predefined Solver models and get the results.
- Solve a complex problem by optimizing a "master" model and a "slave" model.
- Automatically update data, run the model, and retrieve the results.
- Run multi-period optimizations when the output of current model is the input to the next model.
- Create an application to distribute to end users.

Why Use the Object-Oriented API?

- Create, modify and solve optimization models under the control of your custom application written in VBA.
- Work with objects that correspond to the Problem, Model, Solver, Engine, Variables, and Functions.
- You can access sets of variables and constraints in the current model directly with expressions such as myProb.VarDecision and myProb.FcnConstraint.
- You'll receive IntelliSense prompts as you write code.

Examples in the User Guide

- **Refinery.xls** at C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples.
 - Example of how to call the Solver, and how to retrieve sensitivity information from VBA.
 - Refinery Optimization Model taken from Model Building In Mathematical Programming by H.P. Williams.
 - How should the operations of the refinery be planned to maximize total profit.
- **CuttingStock.xls** at C:\Program Files\Frontline Systems\Analytic Solver Platform\Examples.
 - Example of how VBA can be used to solve a cutting stock problem, using a column-generation algorithm.
- Press the "Run Model" button to execute the RunModel macro that calls the Solver programmatically through VBA.

Automating Optimization Modeling in VBA Example

- Standard Examples Example 4 Portfolio Optimization Markowitz Method.
- Find the optimal allocation of funds to stocks that minimizes the portfolio risk, measured by portfolio Variance (a quadratic function).

	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Total
Portfolio %	20.00%	20.00%	20.00%	20.00%	20.00%	100.00%
Expected Return	7.00%	8.00%	9.50%	6.50%	14.00%	
Linear QP Terms	0	0	0	0	0	

Variance/Covariance Mat	rix				
	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5
Stock 1	2.50%	0.10%	1.00%	-0.50%	1.00%
Stock 2	0.10%	4.00%	-0.10%	1.20%	-0.85%
Stock 3	1.00%	-0.10%	1.20%	0.65%	0.75%
Stock 4	-0.50%	1.20%	0.65%	8.00%	1.00%
Stock 5	1.00%	-0.85%	0.75%	1.00%	7.00%

Summary Automating Predefined Optimization Models in VBA

- Step 1 Press Alt+F11 to open the Visual Basic Editor.
- Step 2 Add a reference to the Analytic Solver Platform COM server Analytic Solver Platform 2014 Type Library.
- Step 3 Create a new macro
- Step 4 Add two lines of code for active worksheet Dim prob As New Problem prob.Solver.Optimize

- Step 1 Create a command button on the worksheet.
- Step 2 Assign a macro to the command button.
- Step 3 Add a reference to the Analytic Solver Platform COM server.
- Step 4 Create an instance of the problem.
 Dim myProb As New RSP.Problem
- Step 5 Clear the existing model. myProb.Functions.Clear myProb.Variables.Clear
- Step 6 Set Cell or Objective Variable
 Dim objective As New RSP.Function
 objective.Init Range("Portfolio_Variance")
 objective.FunctionType = Function_Type_Objective

- Step 7 Add the Objective to the problem myProb.Functions.Add objective Set objective = Nothing
- Step 8 Set up the Variables and add the non-negativity constraint Dim vars As New Variable vars.Init Range("Allocations") vars.NonNegative
- Step 9 Add Variables to problem myProb.Variables.Add vars
 Set vars = Nothing

- Step 10 Set up the return threshold constraint Dim constraint As New RSP.Function constraint.Init Range("Portfolio_Return") constraint.LowerBound(0) = 0.095
- Step 11 Set up the budget constraint
 Dim constraint1 As New RSP.Function constraint1.Init Range("Total_Portfolio") constraint1.UpperBound(0) = 1 constraint1.LowerBound(0) = 1
- Step 12 Add the constraints to the problem myProb.Functions.Add constraint myProb.Functions.Add constraint1

- Step 13 Set the problem type myProb.Solver.SolverType = Solver_Type_Minimize
- Step 14 Perform the optimization myProb.Solver.Optimize
- Step 15 Display the Solver Objective function result MsgBox myProb.FcnObjective.FinalValue(0)
- Save the code. Now click on the command button and see the results.
- You can also set the desired engine and adjust its parameters. myProb.Engine = prob.Engines("Standard LP/Quadratic") myProb.Engine.Params("MaxTime") = 600

WE DEMOCRATIZE ANALYTICS

Solver SDK Platform

- A complete toolkit to move your optimization model from Excel to a custom desktop or web-based application.
- Enables you to develop and deploy custom applications using optimization and Monte Carlo simulation, with most popular platforms and languages: Microsoft .NET, Java, MATLAB and COM, as well as C/C++, Visual Basic and other languages.
- The SDK can load an Excel workbook containing an optimization model, solve the model on a server without using Excel, and save the solution in the Excel workbook.
- SDK exposes a standards-based Web Service API enabling you to create models in PHP and JavaScript, even in a web browser or mobile phone, solve them "over the wire," and deliver the solution in your "zero-footprint" application!

Loading and Solving Excel Optimization Models in SDK

• To load a model built with Premium Solver Platform (C#)

Step 1 - Create an instance of the problem:
 Using (Problem prob = new Problem()) {

Step 2 - Point to the problem:
 prob.Load("C:\\....",File_Format.XLStd);

Step 3 – Solve the model:

prob.Solver.Optimize();

Solver SDK Evaluators

- Use Solver SDK evaluators or callback functions for:
- Checking the progress of the Solver during the optimization process (Progress Information Evaluators)
 - Check the optimization iteration number, report the current objective, check for a user abort code, etc.
- Provide the crucial role of computing constraint function values or passing gradient or Hessian values when solving an optimization problem (Computing Evaluators).
 - Calculate the objective or constraint function values.
 - Use an evaluator of type Eval_Type_Function.

SDK Example Summary – Creating a C# Project

- Step 1 Create a new project.
 - Start Microsoft Visual Studio, select File | New Project, select C# on the left of the dialog and Windows Forms Application from the right of the dialog under Templates.
 - Type a name of your choice in the Project name field, and then click OK.
 - Construct a form of your choice using the Visual Studio Toolbox.
- Step 2 Set a reference.
 - Click References in the Solution Explorer and select Add Reference. Choose your .NET version: 1.1, 2.0-3.5, or 4.0-4.5.

SDK Example Summary – Creating a C# Project

- Step 3 add an (optional) directive
 - Using SolverPlatform
- Step 4 Choose your approach to create the model
 - In a linear model or quadratic model, you can supply the Solver SDK with the objective and constraint coefficient matrices.
 - Or you can supply an evaluator (Eval_Type.Function) to compute the function (objective and constraint) values.
 - Create and pass the function evaluator. prob.Evaluators[Eval_Type.Function].OnEvaluate +=
 - This evaluator will be called at every iteration, to compute the values of the objective and constraints.

SDK Example Summary - Creating a C# Project

- Step 5 Create the model
 - Create an instance of the Problem class.

Problem prob = new problem(Solver_Type.Minimize, nvars, ncons).

- Add variable and constraint definitions to the problem.
- Call prob.Solver.Optimize().

SDK Example Summary - Creating a C# Project

- Step 6 Write the function evaluator if used.
 Problem p = evaluator.Problem;
 - Obtain a pointer, pVar, to the variables.
 - double[] pVar = p.VarDecision.Value.Array;
 - Next, obtain a pointer to the constraint functions and calculate the constraints.
 - double[] pFcn = p.FcnConstraint.Value.Array;
 - pFcn[0]= *formula*; pFcn[1]= *formula*;
 - Calculate the objective.
 - p.FcnObjective.Value[0]= formula;
 - Pass the constraint values back to the SDK.
 - p.FcnConstraint.Value.Array = pFcn;
 - Tell the SDK to continue optimizing.
 - Return Engine_Action.Continue;

Building Multi-Dimensional Analytical Models

ASP Dimensional Modeling

WE DEMOCRATIZE ANALYTICS

Why Use Dimensional Modeling?

- Dimensional modeling turns a very complex, hard-to-maintain spreadsheet problem into a simple, well-structured, easily maintained and expandable model.
 - Where there are multiple products, projects or investments, multiple customer types, geographic regions, or time periods, multiple sources and destinations.
- Excel with PowerPivot is an industrial-strength tool for slicing and dicing multidimensional data from a variety of data sources.
- Now create multi-dimensional models, with formulas that reflect the dynamics of existing and future business situations, and easily link those models to Pivot Table data.

Elements of Dimensional Modeling – Dimensions

• A set of elements.

- Give a name ("Region") for the dimension, and provide names/labels or numbers for the elements of the dimension – "North," "South," "East" and "West."
- A dimension doesn't define the data itself it defines a structure, relevant for your business situation, for the data.

Elements of Dimensional Modeling – Cubes

- Cubes are multi-dimensional arrays holding the data.
- Other names used in data warehouse and business intelligence systems, are measures and/or fact tables.
- A cube holds a single attribute or measure (a set of numbers).
- Example: create a cube named "Sales," defined over the "Regions" dimension, with numeric values representing sales in the North, South, East and West regions.
- The structure of a cube is very much like a Pivot Table, and you can create a cube by placing a PsiPivotCube() function in a cell, referencing an existing Pivot Table.

Cube Formulas – Operations and Dimensions

- You can multiply, add, subtract, divide, and perform other operations on cubes.
- If all participating cubes have the *same dimensions*, result cube will have those dimensions.
 - Cube (4 dimensions) X Cube (same 4 dimensions) = Cube (same 4 dimensions).
- Otherwise, the result cube will be a *union* of the participating dimension sets.
 - Cube B2 (2 dimensions) X Cube C3 (1 dimension that also appears in the first cube) = B2*C3 (2 dimensional).
 - Cube B2 (2 dimensions) X Cube C3 (1 dimension that doesn't appear in the first cube) = B2*C3 (3 dimensional).

Cube Formulas – Reduction

- Cube Reduction is an operation of eliminating one or more dimensions by aggregating (for example summing) values along those dimensions.
- PSI supports reduction along one dimension only or along all dimensions.
- A cube reduced along all its dimensions will be a single value, or scalar.
- A cube can be aggregated using : Average, Sum, Maximum, Minimum, Variance, std. Deviation, Element, or Index.

Elements of Dimensional Modeling – Output Cell Range

- When we want to see results of optimization of a dimensional model on the spreadsheet, we use {PsiOptData()}.
- When we want to see other computed cube results on the spreadsheet, we use {PsiCubeData()}.
- The cell range will display all the values of the cube that is an argument to PsiOptData() or PsiCubeData().
 - PsiOptData() results appear after optimizing.
 - PsiCubeData() results appear after Model Cube Result Calculate.

28

Transshipment Problem (2-Stage-Transport, Multi-Commodity)

WE DEMOCRATIZE ANALYTICS

- Minimize the costs of shipping 3 different goods from factories to warehouses and customers, and warehouses to customers.
- While not exceeding the supply available from each factory or the capacity of each warehouse, and meeting the demand from each customer.

Dimensional Modeling – Summary of Steps

• To add a dimension click Model – Cube – From Cell Range.

• Select from Cell Range. Input name, range, location, and type.

5/28/2014

	Add Dimension	×
Name:		
Specify:	Range OBounds	
Range:		•
Location:	\$H\$39	5
Type:	Structural Parametric	
	OK Cancel	

• To add a cube click on Model Tab on the RSP Ribbon. Choose Cube.

dimension/s and the location

Add Cube

OK

.

× +

Cancel

• Select the data range, related

Click Model – Reduction.

• Define Outputs.

WE DEMOCRATIZE ANALYTICS

FrontlineSolvers

Range:

Location:

Dimension(s): customer

\$M\$2

of the cube.

29

Third Session Summary

- Automating Excel spreadsheet optimization models using Analytic Solver Platform Object-Oriented API.
 - Create, modify and solve optimization models under the control of your custom application written in VBA.
- Moving optimization models from Excel to a custom desktop or web-based application using Solver SDK Platform.
 - Develop and deploy custom applications with most popular platforms and languages: Microsoft .NET, Java, MATLAB and COM, as well as C/C++, Visual Basic and other languages.
- Modeling multi-dimensional business situations.
 - Define Dimensions, Cubes, and Cube Outputs to turn a very complex, hard-to-maintain spreadsheet problem into a simple, well-structured, easily maintained and expandable model.

Final Recap

- It is increasingly important to efficiently use limited resources. Optimization can often improve efficiency with no capital investment.
- Building a model often reveals relationships and yields a greater understanding of the situation being modeled.
- Having built a model, it is possible to apply analytic methods to suggest courses of action that might not otherwise be apparent.
- Experimentation is possible with a model, whereas it is often not possible, or desirable, to experiment with the situation being modeled.
- Analytic Solver Platform is a complete toolset for creating analytic models in Excel.
- Solver SDK Platform is a complete toolset for deploying analytic applications to end users.

Contact Info

- Dr. Sima Maleki
- Best way to contact me: <u>Consulting@Solver.com</u>
- You may also download this presentation from our website at <u>www.solver.com/training/premsolver-3</u>.
- You can download a free trial version of Analytic Solver Platform at <u>Solver.com</u>.

References

• Solver SDK User Guide

C:\Program Files\Frontline Systems\Solver SDK Platform\Help

- Solver User Guide
- C:\Program Files\Frontline Systems\Analytic Solver Platform\Help
- Management Science-The Art of Modeling with Spreadsheets, 4th Edition

http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002883.html

FRONTLINE SOIVERS

Q&A

Thank You!

WE DEMOCRATIZE ANALYTICS