
Version 2021 for Excel, Matlab, Java, .NET, COM, Win/Linux

2021 Plug-in Solver Engines
User Guide

For Analytic Solver Desktop, Analytic
Solver Cloud and

Solver SDK Platform

Large-Scale LP/QP Solver
Large-Scale GRG Solver
Large-Scale SQP Solver

Knitro Solver
MOSEK Solver
Gurobi Solver

XPRESS Solver
OptQuest Solver

Copyright

Large-Scale LP/QP Solver Engine 2021:

Copyright © 2000-2021 by Frontline Systems, Inc.

Portions copyright © 2000-2010 by International Business Machines Corp. and others.

Large-Scale GRG Solver Engine 2021:

Copyright © 2000-2021 by Frontline Systems, Inc.;

Portions copyright © 2000-2004 by Optimal Methods, Inc.

Large-Scale SQP Solver Engine 2021:

Copyright © 2001-2021 by Frontline Systems, Inc.;

Portions copyright © 1992-2007 by the Regents of the University of California

and the Board of Trustees of Stanford University.

Artelys Knitro Solver Engine 2021:

Copyright © 2003-2021 by Frontline Systems, Inc.;

Portions copyright © 2003-2015 Artelys;

Portions copyright © 2001 Northwestern University.

MOSEK Solver Engine 2021:

Copyright © 2005-2021 by Frontline Systems, Inc.;

Portions copyright © 1998-2015 by MOSEK ApS.

Gurobi Solver Engine 2021:

Copyright © 2009-2021 by Frontline Systems, Inc.;

Portions copyright © 2008-2015 by Gurobi Optimization, Inc.

XPRESS Solver Engine 2021:

Copyright © 2000-2021 by Frontline Systems, Inc.;

Portions copyright © 1984-2015 by FICO, Inc.

OptQuest Solver Engine 2021:

Copyright © 2000-2021 by Frontline Systems, Inc.;

Portions copyright © 2000-2005 by OptTek Systems, Inc.

This User Guide:

Copyright © 2000-2021 by Frontline Systems, Inc. Neither the Software nor this User Guide may be copied,

photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without the

express written consent of Frontline Systems, Inc., except as permitted by the Software License agreement below.

Trademarks
Frontline Solvers®, XLMiner®, Analytic Solver®, Risk Solver®, Premium Solver®, Solver SDK®, XLMiner

SDK® and RASON® are trademarks of Frontline Systems, Inc. Windows and Excel are trademarks of Microsoft

Corp.

How to Order

Contact Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450.

Tel (775) 831-0300 • Fax (775) 831-0314 • Email info@solver.com • Web http://www.solver.com

Contents

Start Here: 2021 Essentials viii

Getting the Most from This User Guide ... viii
Installing Analytic Solver Cloud .. viii
Installing the Software .. viii
Upgrading from Earlier Versions ... ix
Finding the Examples ... ix
Using Existing Models and Applications ... ix
Using Existing VBA Macros .. ix
Choosing a Solver Engine .. ix
Getting and Interpreting Results .. x
Using Solver Engine Options .. x
Programming the Solver Engines .. x

Using the Plug-in Solver Engines 11

Introduction ... 11
Using Solver Engines with Microsoft Excel ... 11
Using Solver Engines with Solver SDK Platform ... 11

Choosing the Best Plug-in Solver Engine .. 12
Frontline's Large Scale Solver Engines ... 13

Summary Description of Each Solver Engine ... 14
The Large-Scale LP/QP Solver ... 14
The Large-Scale GRG Solver .. 14
The Large-Scale SQP Solver ... 15
The Artelys Knitro Solver ... 15
The MOSEK Solver .. 15
The Gurobi Solver ... 16
The XPRESS Solver .. 16
The OptQuest Solver ... 16

Special Capabilities of the Solver Engines .. 16
Conic Optimization with Solver Engines .. 17
Robust Optimization with Solver Engines .. 17
Simulation Optimization with Solver Engines .. 17
Global Optimization with Solver Engines ... 17
Analysis of Infeasible Problems .. 18
Integer, Semi-Continuous, and Alldifferent Variables .. 18
Standard and Solver Engine-Specific Reports ... 18
Programming the Solver Engines .. 19
Using Your Excel Solver Model – Outside Excel ... 19

Installation and Licensing 20

What You Need ... 20
Using the Solver Engines .. 21

Working with Licenses in Versions 2021 .. 22
Analytic Solver - Licenses Tied to You, Not Your Computer 22

Solver Result Messages 24

If You Aren’t Getting the Solution You Expect .. 24
Standard Solver Result Messages .. 25
Large-Scale GRG Solver Result Messages .. 38
Large-Scale SQP Solver Result Messages ... 39
Knitro Solver Result Messages .. 39
MOSEK Solver Result Messages .. 40
Gurobi Solver Result Messages ... 41
XPRESS Solver Result Messages .. 42
OptQuest Solver Result Messages ... 43
Problems with Poorly Scaled Models .. 43

Dealing with Poor Scaling ... 44
The Integer Tolerance Option and Integer Constraints .. 44
Limitations on Non-Convex Optimization... 45

Large-Scale GRG, SQP, and Knitro Solver Stopping Conditions 45
Limitations on Global Optimization .. 46

Multistart Search with the Large-Scale GRG, SQP and Knitro Solvers 47
Large-Scale GRG, SQP and Knitro Solvers and Integer Constraints 48

Limitations on Non-Smooth Optimization... 48
Effect on the Large-Scale GRG, SQP, and Knitro Solvers .. 49
OptQuest Solver Solutions and Stopping Conditions .. 50

Solver Engine Options 52

Setting Options Programmatically ... 52
Object-Oriented API .. 52
SDK Procedural API ... 53

Common Solver Options .. 54
Max Time .. 54
Iterations .. 54
Precision .. 54
Assume Non-Negative ... 55
Use Automatic Scaling .. 55
Show Iteration Results ... 56
Bypass Solver Reports ... 56
Max Subproblems .. 56
Max Integer Solutions ... 57
Integer Tolerance ... 57
Integer Cutoff .. 58
Solve Without Integer Constraints ... 58

Stochastic Decomposition Options .. 58
Tau ... 59
Tolerance ... 59
Compute Confidence Interval .. 59
Objective Error .. 59
Objective Improvement ... 59
Compute Recourse Statistics ... 59

Large-Scale LP/QP Solver Options ... 60
Primal Tolerance.. 60
Dual Tolerance .. 60
Presolve ... 60
Derivatives for the Quadratic Solver ... 61

Large-Scale LP/QP Mixed-Integer Options ... 61
Preprocessing ... 61
Cuts .. 61

Heuristics ... 62
Additional Options Available in VBA / SDK ... 63

Large-Scale GRG Solver Options .. 66
Convergence .. 66
Recognize Linear Variables... 67
Relax Bounds on Variables ... 67
Other Nonlinear Options ... 67

Large-Scale SQP Solver Options ... 69
Convergence .. 69
Treat Constraints as Linear/LinearConstraints .. 69
Treat Objective as Linear/Linear Objective .. 70
Derivatives... 71
Model Based Search .. 71

Large-Scale SQP Evolutionary Solver Options ... 72
Convergence .. 72
Population Size .. 72
Mutation Rate .. 72
Random Seed ... 72
Local Search .. 73
Fix Nonsmooth Variables .. 74
Global Search .. 74

Large-Scale SQP Mixed-Integer Options .. 75
Probing / Feasibility .. 75
Bounds Improvement .. 75
Optimality Fixing .. 75
Variable Ordering and Pseudocost Branching ... 76
Cut Generation .. 76
Max Knapsack Cuts ... 76
Knapsack Passes .. 77
Max Gomory Cuts ... 77
Max Gomory Passes .. 77

Knitro Solver Options .. 77
Convergence .. 78
Treat Constraints as Linear/LinearConstraints .. 78
Treat Objective as Linear/LinearObjective ... 78
Relax Bounds on Variables ... 79
Solution Method .. 79
Derivatives Options ... 80
Derivatives... 80
Second Derivatives .. 80

Options for Global Optimization ... 81
Multistart Search ... 81
Topographic Search ... 82
Require Bounds on Variables .. 82
Population Size .. 83
Random Seed ... 83

MOSEK Solver Options .. 83
Precision .. 83
Pivot Tolerance .. 83
Ordering Strategy/Ordering ... 84
Scaling ... 84
LP/QP/QCP Tolerances ... 85
Conic Tolerances ... 86
Nonlinear Tolerances... 86

Gurobi Solver Options ... 87
Threads .. 87

Random Seed/Seed .. 88
Scaling ... 88
Assume Quadratic Objective/Assume QP ... 88
Feasibility Tolerance/FeasibilityTol .. 88
Optimality Tolerance/OptimalityTol ... 88
Integer Feasibility Tolerance/IntegralityTol .. 89
PSD Tolerance/PSDTol ... 89
QCP Tolerance/QCPTol .. 89
LP Method ... 89
LP Presolve .. 89
LP Pricing .. 89
Barrier Iteration Limit/BarIterLimit .. 90
Barrier Convergence Tolerance/BarConvTol .. 90
Crossover Strategy/CrossOver ... 90
Ordering ... 90
Node File Start/NodeFileStart ... 90
Heuristics ... 91
NoRelHeuristic .. 91
Max SubMip Nodes/SubMips ... 91
Variable Branching/VarBranching .. 91
Cut Generation/CutGeneration .. 91
Symmetry .. 92
MIP Focus/MIPFocus .. 92
Cut Passes/CutPasses ... 92
Pre Passes/PrePasses .. 92
Improve Start Gap / Solution Improvement... 93
Additional Options Available in VBA / SDK.. 93

XPRESS Solver General Options .. 93
Algorithm To Use .. 94
Scaling Options ... 94
Assume Quadratic Objective/AssumeQP .. 94
RHS Tolerance/RHSTol .. 94
Markowitz Tolerance/MarkowitzTol ... 95
Matrix Elements Zero Tolerance/MatrixTol .. 95

XPRESS Solver LP Options .. 95
Crashing Options ... 95
Slack Passes ... 95
Pricing ... 95
Use ‘Big M’ Method/UseBigM ... 96
Use Automatic Perturbation/UsePerturb ... 96
Iterations .. 96
Infeasibility Penalty ... 96
Perturbation Value/PertubTol .. 96
Markowitz Tolerance for Factorization/FactorizationTol .. 97
Invert Frequency .. 97
Minimum Number of Iterations Between Inverts/InvertMinimum 97
Reduced Cost Tolerance/ReducedTol ... 97
Eta Elements Zero Tolerance/ETATol .. 97
Pivot Tolerance/PivotTol ... 98
Relative Pivot Tolerance/RelPivotTol ... 98
Pricing Candidate List Sizing\PricingCand ... 98

XPRESS Solver Presolve Options ... 98
Presolve ... 98
Presolve Options .. 99

XPRESS Solver Newton-Barrier Options .. 99
Cross-Over Control.. 99

Relative Duality Gap Tolerance/BarrierDualityGapTol .. 100
Cache Size ... 100
Maximum Iterations/BarrierIterations ... 100
Minimal Step Size/BarrierStepSize ... 100
Cholesky Decomposition Tolerance/CholeskyTol .. 100
Primal Infeasibility Tolerance/PrimalFeasTol ... 101
Dual Infeasibility Tolerance/DualFeasTol .. 101
Column Density Factor/ColumnDensity ... 101
Max Number Indefinite Iterations/BarrierIndefLimit .. 101
Ordering Algorithm/CholeskyOrder .. 101
Check Convexity ... 102

XPRESS Solver Mixed-Integer Options .. 102
Cut Strategy Options ... 102
Absolute Integer Tolerance/AbsIntTol .. 102
Relative Integer Tolerance/RelIntTol .. 102
Maximum Number of Nodes/MaxSubProblems ... 103
Maximum Number of Solutions/MaxFeasibileSols .. 103
Amount to Add to Solution to Obtain New Cutoff/AbsAddCut 103
Percent to Add to Solution to Obtain New Cutoff/RelAddCut 103
Number of Threads/MipThreads ... 104
Integer Feasibility Tolerance/IntegerFeasTol .. 104
Cut Frequency ... 104
Default Pseudo Cost .. 104
Maximum Depth Cut Generation/CutDepth .. 105
Integer Preprocessing Options/IntPreProcessing ... 105
Strong Branching Global Entities/StrongBranchGlobal .. 106
Strong Branching Dual Iterations/StrongBranchDual ... 106
Number of Lifted Cover Inequalities at the Top/CoverCutsTree 106
Number of Gomory Cut Passes at the Top/GomoryCutsTop 106
Number of Lifted Cover Inequalities in the Tree/CoverCutsTree 107
Number of Gomory Cut Passes in the Tree/GomoryCutsTree 107

XPRESS Solver Node Selection Options .. 107
Control Options/Control .. 107
Number of Nodes for Best First/BreadthFirst.. 108
Node Selection Criterion/NodeCriterion ... 108
Integer Variable Estimates/VarSelection ... 108

XPRESS Solver Heuristics Options... 109
Heuristics Strategy... 109
Maximum Depth/HeurDepth ... 109
Frequency .. 109
Maximum Nodes/HeurMaxNodes ... 109
Maximum Solutions/HeurMaxSol ... 110

OptQuest Solver Options ... 110
Precision (Obj Fun)/ObjPrecision ... 110
Precision (Variable)/VarPrecision ... 110
Number of Solutions to Report/NumSolutions .. 111
Use a Fixed Seed/FixedSeed ... 111
Random Seed ... 111
Check for Duplicated Solutions ... 111
Auto Stop ... 112
Auto Stop Iterations/AutoStopSolutions ... 112
Auto Stop Percentage .. 112

Programming the Solver Engines 113

Introduction ... 113

Traditional VBA Functions and Object-Oriented API .. 113
Using the Traditional VBA Functions in Excel ... 114

Referencing the Traditional VBA Functions ... 114
Checking Function Return Values ... 115

Using the Object-Oriented API in Excel .. 115
Referencing the Object-Oriented API.. 115
Using IntelliSense Prompting .. 115
Accessing Object Properties .. 116
Handling Exceptions .. 117

Using the Object-Oriented API in Custom Applications ... 117
Linear and Quadratic Problems ... 117
Selecting Solver Engines ... 118

Large-Scale GRG Solver Functions ... 118
SolverLSGRGGet .. 118
SolverLSGRGOptions ... 119

Large-Scale SQP Solver Functions .. 121
SolverLSSQPGet ... 121
SolverLSSQPOptions .. 122

Knitro Solver Functions ... 124
SolverKnitroGet .. 124
SolverKnitroOptions .. 125

OptQuest Solver Functions .. 127
SolverOPTQGet .. 127
SolverOPTQOptions .. 128

Functions for Mixed-Integer Problems .. 129
SolverIntGet .. 129
SolverIntOptions .. 130

Large-Scale LP/QP Solver Functions .. 132
SolverLSLPGet .. 132
SolverLSLPIntGet ... 133
SolverLSLPOptions ... 134
SolverLSLPIntOptions .. 135

MOSEK Solver Functions ... 137
SolverMOSEKGet ... 137
SolverMOSEKIntGet ... 139
SolverMOSEKOptions .. 140
SolverMOSEKIntOptions .. 142

Gurobi Solver Basic Functions .. 143
SolverGurobiGet .. 144
SolverGurobiOptions ... 144

Gurobi Solver Barrier Functions .. 146
SolverGurobiBarrierGet .. 146
SolverGurobiBarrierOptions.. 146

Gurobi Solver Integer Functions .. 147
SolverGurobiIntGet ... 147
SolverGurobiIntOptions .. 148

XPRESS Solver Basic Functions ... 150
SolverXPRESSGet .. 150
SolverXPRESSOptions ... 152

XPRESS Solver Advanced Functions .. 156
SolverXPRESSAdvancedGet .. 156
SolverXPRESSAdvancedOptions ... 158

Appendix: Solver Engine Methodologies 161

Introduction .. 161

The Large-Scale SQP Solver Methodology ... 161
Sequential Quadratic Programming Method ... 161
Performance on LP and QP Problems ... 162
Evolutionary Solver Methods .. 162

The Artelys Knitro Solver Methodology ... 162
Interior Point Method .. 162
Active Set Method ... 163

The MOSEK Solver Methodology .. 163
Interior Point Method .. 164
Handling of Quadratic and Nonlinear Functions ... 164

The Gurobi Solver Methodology ... 164
Primal/Dual Simplex Methods and Barrier Solver .. 164
Branch and Bound ... 165
Cutting Planes and Solution Heuristics ... 165
Parallel Algorithms for Multi-core Computers .. 165

The XPRESS Solver Methodology .. 165
Primal and Dual Simplex Methods .. 165
Newton Barrier / Interior Point Method .. 165
Branch and Cut Methods ... 165
Heuristic Methods ... 166

The OptQuest Solver Methodology ... 166
Meta-heuristics .. 166
Scatter Search .. 166

Index 169

Start Here: 2021 Essentials

Getting the Most from This User Guide

Installing Analytic Solver Cloud

Analytic Solver V2021 includes our next-generation offering, Analytic Solver Cloud

– usable in the latest versions of desktop Excel for Windows and Macintosh, and in

Excel for the Web (formerly Excel Online). Analytic Solver Cloud is divided into

two add-ins that work closely together (since a JavaScript add-in currently can have

only one Ribbon tab): the Analytic Solver add-in builds optimization and simulation

models, and the Data Mining add-in builds data mining or forecasting models.

Both the Analytic Solver and Data Mining add-ins support existing models created in

previous versions of Analytic Solver. Your license for Analytic Solver will allow

you to use Analytic Solver Desktop in desktop Excel or Analytic Solver Cloud in

either desktop Excel (latest version) or Excel for the Web.

To use the Analytic Solver and Data Mining add-ins, you must first “insert” them

for use in your licensed copy of desktop Excel or Excel for the Web, while you are

logged into your Office 365 account. Once you do this, the Analytic Solver and Data

Mining tabs will appear on the Ribbon in each new workbook you use. See the

Analytic Solver User Guide for more information.

Installing the Software

In the past, to use the Solver Engines, you had to have Analytic Solver Platform,

Risk Solver Platform, Premium Solver Platform, or Solver SDK Platform installed.

However, starting with V2017, all Large Scale Solver Engines for desktop Excel are

now installed via the SolverSetup program, all Large Scale Solver Engines for the

SDK are installed via the SDKSetup (for 32 bit) or SDKSetup64 (for 64 bit)

program, and all Large Scale Solver Engines for Analytic Solver Cloud are installed

via the Microsoft Store.

To install Analytic Solver Comprehensive or Analytic Solver Optimization and the

Frontline Solver Engines to work with any supported version of desktop Microsoft

Excel, simply run the program SolverSetup.exe, which installs all of the Solver and

Engine programs, Help, User Guides, and example files in compressed form for both

32-bit and 64-bit Excel. SolverSetup.exe checks your system, detects what version

of Office you are running (32-bit or 64-bit) and then downloads and runs the

appropriate Setup program version. The chapter “Installation and Licensing” in the

Analytic Solver User Guide covers installation step-by-step.

The same is true if you are using Solver SDK, simply run the program

SDKSetup.exe (for 32-bit) or SDKSetup64.exe (for 64-bit), to install all of the

Solver and Engine programs, Help, User Guides, and example files in compressed

form for 32-bit or 64-bit SDK, respectively. The chapter “Installation and

Licensing” in the Solver SDK User Guide covers installation step-by-step.

Upgrading from Earlier Versions

Solver Engines 2021 work with the Platform 2021 products. You can upgrade

your Platform product as well as your external engine(s) all-at-once. Solver Engines

2021 are upward compatible with earlier versions and generally offer better

performance – your existing applications should work as-is with the new Solver

Engines.

Finding the Examples

Use Help – Examples on the Ribbon to open workbooks with a list of examples you

can open by clicking hyperlinks. In Solver SDK Platform, if you’re using Microsoft

Visual Studio, use Start – Programs – Frontline Systems – Solver SDK Platform

– Examples, then choose your programming language (C, C#, C++ or VB.NET) and

choose the example you’d like to open in Visual Studio. If you are using Visual

Basic 6, Java or MATLAB, navigate to the installation folder (for example

C:\Program Files\Frontline Systems\Solver SDK Platform \Examples).

Using Existing Models and Applications

In Analytic Solver Cloud or Desktop, just open your existing workbook, developed

in any previous version of Analytic Solver Platform, Risk Solver Platform, Premium

Solver Platform, Risk Solver, Premium Solver, or the standard Excel Solver. Your

model should appear in the Task Pane; just click the Optimize or Simulate button.

In Solver SDK Platform, open your existing project or solution and rebuild your

application. Note that Solver SDK Platform SDK 2016 supports Microsoft .NET

4.0: to use .NET 4.0, add a reference in your project to assembly

SolverSDKNet40.dll, typically found in C:\Program Files\Frontline Systems\Solver

SDK Platform\Bin.

Using Existing VBA Macros

In Analytic Solver Comprehensive and Analytic Solver Optimization (Desktop

only), macros using the Object-Oriented API such as Problem.Solver.Optimize

should work as-is, provided that you use Tools References in the VBA Editor to set

or change the reference to Analytic Solver Platform 2021 Type Library.

Standard Excel Solver macros such as SolverOK and SolverSolve should work as-

is, provided that you use Tools References in the VBA Editor to set or change the

reference to Solver. Note: You must use the Solver located in C:\Program

Files\Microsoft Office X\Root\OfficeX\Library\Solver where X is the Microsoft

Excel version number.

Choosing a Solver Engine

The chapter “Using the Solver Engines” provides guidance about choosing and using

a Solver Engine appropriate for your problem, and describes the special capabilities

of the Solver Engines (that you typically won’t find in other optimization software).

The Appendix “Solver Engine Methodologies” describes the technical methods used

in many of the Solver Engines.

Getting and Interpreting Results

The chapter “Solver Result Messages” documents in detail the meaning of the Solver

Result Messages – both standard and Solver Engine-specific messages. You’ll also

find the integer codes returned by the Problem.Solver.OptimizeStatus property and

the SolverSolve function for each message, which can be tested in your VBA or

other programming language code.

Using Solver Engine Options

The chapter “Solver Engine Options” documents in detail the various options and

parameters you can set for each plug-in Solver Engine, interactively in Analytic

Solver Platform, in your code in VBA and in Solver SDK Platform.

Programming the Solver Engines

The chapter “Programming the Solver Engines” describes how to select a Solver

Engine and set its options and parameters, using VBA in Analytic Solver Desktop

(only) or using another programming language with Solver SDK Platform. The

“legacy” SolverXxx functions for Solver Engine options are also documented here.

Solver Engine User’s Guide V2021 Using the Plug-in Solver Engines • 11

Using the Plug-in Solver Engines

Introduction
Thank you for using Frontline Systems’ large-scale Solver Engines. These Solver

Engines “plug into” Frontline’s Desktop and Cloud products: Analytic Solver

Comprehensive, Analytic Solver Optimization and Solver SDK Platform. They are

licensed as separate products, and they provide additional power and capacity to

solve problems much larger and/or more difficult than the problems handled by the

“bundled” Solver engines. They are available in both 32-bit and 64-bit versions.

Analytic Solver Comprehensive and Analytic Solver Optimization for both Desktop

and Coud, are fully compatible upgrades for the Solver bundled with Microsoft

Excel, which was developed by Frontline Systems for Microsoft. They include a

wide spectrum of enhancements to the standard Excel Solver, plus five bundled

Solver engines – the LP/Quadratic Solver, nonlinear GRG Solver, Evolutionary

Solver, SOCP Barrier Solver, and the Interval Global Solver. Solver SDK Platform

is a powerful, flexible software development kit that makes the first four of these

Solver engines available for use in your application written in C/C++ or C#, Visual

Basic or VB.NET, MATLAB, Java, or another language.

Using Solver Engines with Microsoft Excel

When the Solver Engines are used in Microsoft Excel (Online or Desktop), they

integrate seamlessly with Analytic Solver Comprehensive and Analytic Solver

Optimization – to use one, you simply select the Solver Engine by name in the

dropdown list in the Task Pane Engine tab. They produce reports as Excel

worksheets, like the bundled Solver engines; they recognize common Solver options

and provide their own options in the Task Pane Engine tab; and they can be

controlled by Excel VBA code (Analytic Solver Desktop only) in your custom

applications. With a free trial license, you can evaluate how well they perform on a

challenging Solver model that you have developed.

Using Solver Engines with Solver SDK Platform

The Solver Engines also integrate seamlessly with Solver SDK Platform, enabling

you to build custom programs in C/C++ or C#, Visual Basic or VB.NET, MATLAB,

Java, ASP or ASP.NET, that work with any Microsoft Win32/Win64, COM or .NET

application. You can either build your model as an Excel workbook and load that

workbook into your SDK-based application at runtime (without requiring Microsoft

Excel), or you can write a program that implements your model, computing values

(and optionally derivatives) for your objective function and constraints, given values

for the decision variables.

12 • Using the Plug-in Solver Engines Solver Engine User’s Guide V2021

Solver SDK Platform offers both an easy to use procedural application programming

interface (API), with functions that you call to define and solve an optimization

problem, and an even easier to use, high-level object-oriented API, where you define

objects such as a Problem, Solver, Model, Variable and Function, and set properties

and call methods to solve your problem.

If you want to distribute your application, including Solver SDK Platform and

Frontline’s Solver engines, to other users – in your own company or commercially to

outside companies – or make your application available via an Intranet server, Web

server or Web service, you can do so easily with a runtime license agreement from

Frontline Systems. This makes available discounted runtime licenses for the SDK

and Solver Engines you want to include with your application. Deployment is

straightforward – typically involving just one to three files – and you can use your

own license management system, or license management software provided by

Frontline Systems. For more information, please contact Frontline Systems at (775)

831-0300 or by email at info@solver.com.

Choosing the Best Plug-in Solver Engine
The tables below give a high level overview of what each Engine is best suited for. If

you are using desktop Analytic Solver, an easy way to determine the best engine

choice is to select a specific external engine, from the Engine drop down menu on

the Engine tab of the Solver Task Pane, for which you do not have a license. The

Product Wizard will appear and recommend the selected engine, and allow you to

solve your model using this engine. Once Solver has finished solving, you will have

the option to purchase the product.

When you click “Test Run”, the Product Wizard will immediately run the

optimization or simulation model using the recommended product. (Only summary

information will be available.) At this point, you can purchase the recommended

product(s), or close the dialog.

The same behavior will occur whenever you run a simulation or optimization model

that contains too many decision variables/uncertain variables or constraints/uncertain

functions for the selected engine, the Product Wizard will automatically appear and

recommend a product that can solve your model.

Solver Engine User’s Guide V2021 Using the Plug-in Solver Engines • 13

Frontline's Large Scale Solver Engines

See the table below for problem types and limits. each engine is specially suited to

solve.

By Engine Bits Limits Especially Suited For

 32-bit/64-bit Var x Const

Large Scale LP/QP Solver

 Standard Version Both 32000 x 32000 LP/QP/MIP

 Extended Version Both Unlim x Unlim LP/QP/MIP

Large Scale GRG Solver

 Standard Version Both 4000 x 4000 Smooth nonlinear

 Extended Version Both 12000 x 12000 Smooth nonlinear

 Large Scale SQP Solver Both Unlim x Unlim Smooth nonlinear, non-smooth

Knitro Both Unlim x Unlim Smooth nonlinear

MOSEK

 Standard Both 32000 x 32000 LP/QP, QCP and SOCP

 Extended Both Unlim x Unlim + convex nonlinear

Gurobi

 LP/MIP Both Unlim x Unlim LP/MIP

 LP/QP/MIP Both Unlim x Unlim LP/QP/MIP

XPRESS

 LP/MIP Both Unlim x Unlim LP/MIP

 LP/QP/MIP Both Unlim x Unlim LP/QP/MIP

OptQuest Both 5000 x 1000 Non-smooth

Most of the engines can also handle a wider variety of problems than shown above

so the By Problem table below, and the Summary Description for each solver engine

in the next chapter, may be helpful as well.

By Problem Type Best Choices Alternatives

 Linear/MIP Gurobi, XPRESS, LS LP/QP MOSEK

Quadratic
 QP Convex Gurobi, XPRESS, LS LP/QP MOSEK
 QP Non-convex LS SQP, Knitro, LS LP/QP LS GRG
Quadratically Constrained

14 • Using the Plug-in Solver Engines Solver Engine User’s Guide V2021

 QCP Convex MOSEK, Knitro, LS GRG LS SQP
 QCP Non-convex Knitro, LS GRG, LS SQP
 QCP (unknown convexity) Knitro, LS GRG, LS SQP
Second Order Cone MOSEK, Knitro, LS GRG LS SQP
Smooth Nonlinear
 NLP Convex Knitro, LS GRG, LS SQP MOSEK
 NLP Non-convex Knitro, LS GRG, LS SQP
 NLP (unknown convexity) Knitro, LS GRG, LS SQP
Non-Smooth OptQuest, LS SQP LS GRG
Simulation-Optimization OptQuest, LS SQP LS GRG

For large-scale linear programming and quadratic programming problems, you can

choose the Large-Scale LP/QP Solver, MOSEK Solver, Gurobi Solver, or XPRESS

Solver. The MOSEK Solver and XPRESS Solver typically offer the best

performance on quadratic problems; only the MOSEK Solver handles quadratic

constraints. All of these Solvers handle linear mixed-integer problems, but the

Gurobi Solver and XPRESS Solver offer by far the best performance on difficult

MIP problems.

For conic optimization (SOCP or second-order cone programming) problems, the

MOSEK Solver is the leading choice, though the nonlinear Solver Engines can also

handle cone constraints. The MOSEK Solver is also the leading choice for solving

robust optimization problems with Analytic Solver Comprehensive or Analytic

Solver Optimization.

For large-scale nonlinear programming problems, you can choose the Large-Scale

GRG Solver, Large-Scale SQP Solver, or Knitro Solver. The MOSEK Solver can

also handle large-scale convex nonlinear problems. Each of these Solvers is

effective on large, sparse problems, but the Knitro Solver is exceptionally powerful

for smooth convex and nonconvex nonlinear problems. The LSSQP Solver is

especially suited for problems where constraints include both linear and nonlinear

terms, and it will also handle non-smooth terms with its integrated Evolutionary

Solver.

For non-smooth optimization problems, the OptQuest Solver is an excellent choice.

Summary Description of Each Solver Engine

The Large-Scale LP/QP Solver

Frontline’s Large-Scale LP/QP Solver Engine is designed to solve linear and

quadratic programming problems much larger than the 8,000 variable limit imposed

by the built-in LP/Quadratic Solver. The Large-Scale LP/QP Solver includes a state-

of-the-art implementation of the Primal and Dual Simplex methods plus a Quadratic

extension, and uses a sparse representation of the LP matrix to handle large problems

in limited memory, advanced matrix factorization and updating methods to maintain

numerical accuracy, and a Branch and Cut method for solving LP/MIP problems. It

is offered in two versions: A Standard Edition, handling problems of up to 32,000

variables and 32,000 constraints; and an Extended Edition, handling very large

problems with no fixed limits on variables and constraints (it has been used to solve

problems with millions of variables).

The Large-Scale GRG Solver

Frontline’s Large-Scale GRG Solver Engine is designed to solve smooth nonlinear

problems much larger than the 1000 variable limit imposed by the built-in nonlinear

Solver Engine User’s Guide V2021 Using the Plug-in Solver Engines • 15

GRG Solver. It uses sparse matrix storage methods, advanced methods for selecting

a basis and dealing with degeneracy, methods for finding a feasible solution quickly,

and other algorithmic methods adapted for larger problems. It is offered in two

versions, one capable of solving problems of up to 4,000 variables and 4,000

constraints, the other capable of handling large problems of up to 12,000 variables

and 12,000 constraints. Thanks to multi-core automatic differentiation in Analytic

Solver Comprehensive and Analytic Solver Optimization, large nonlinear problems

can be solved in far less time than ever before.

The Large-Scale SQP Solver

Frontline’s Large-Scale SQP Solver Engine is a state-of-the-art optimizer that is

capable of solving linear and quadratic programming problems like those handled by

the Large-Scale LP/QP Solver, and smooth nonlinear optimization problems even

larger than those handled by the Large-Scale GRG Solver. It is typically faster than

the Large-Scale GRG Solver on nonlinear problems, and it handles problems with

ten times the “degrees of freedom” (roughly, total variables minus total “active” or

binding constraints) of earlier versions. It is especially effective on nonlinear

problems with many linear constraints or linear occurrences of variables, since it can

exploit information about the model supplied by the PSI Interpreter in Analytic

Solver Comprehensive and Analytic Solver Optimization (or by your code in Solver

SDK Platform). It will also handle problems with non-smooth or discontinuous

terms in the objective or constraints. The Large-Scale SQP Solver uses a Sequential

Quadratic Programming method, combined with genetic algorithm methods in its

integrated Evolutionary Solver. It has no fixed limit on numbers of variables and

constraints.

The Artelys Knitro Solver

Frontline’s Knitro Solver Engine – developed in close cooperation with Ziena

Optimization – offers superb performance in solving smooth nonlinear problems,

with size limited only by time and memory. The Knitro Solver often outperforms

other Frontline Solvers, and nonlinear optimizers from other vendors, on large-scale

smooth nonlinear problems with thousands of “degrees of freedom.” The Knitro

Solver is the leading implementation of new state-of-the-art interior point nonlinear

methods, and it also includes state-of-the-art “active set” SLQP (Sequential Linear /

Quadratic Programming) methods that perform very well on highly constrained

problems with fewer degrees of freedom. It has no fixed limit on numbers of

variables and constraints.

The MOSEK Solver

Frontline’s MOSEK Solver Engine – developed in close cooperation with MOSEK

ApS – offers breakthrough performance in solving linear (LP), quadratic (QP),

quadratically constrained (QCP), second order cone programming (SOCP), and (in

its Extended Edition) smooth convex nonlinear problems. Its performance is

competitive with the Large-Scale LP/QP and even the Gurobi and XPRESS Solvers

on large-scale LP and QP problems, and unlike these other Solvers, it can handle

quadratic constraints and second order cone constraints – solving such ‘nonlinear’

problems with speed and reliability comparable to LP and QP problems. The

MOSEK Solver includes both Simplex and interior point methods – the latter is a

state-of-the-art implementation of the homogeneous self-dual method, as described

in the Appendix under “The MOSEK Solver Methodology.” It is offered in two

versions: A Standard Edition, handling problems of up to 32,000 variables and

16 • Using the Plug-in Solver Engines Solver Engine User’s Guide V2021

32,000 constraints, and an Extended Edition, handling very large problems with no

fixed limits on variables and constraints, as well as convex nonlinear problems.

The Gurobi Solver

Frontline’s Gurobi Solver Engine, developed in close cooperation with Gurobi

Optimization, is the fastest linear programming (LP), quadratic programming (QP),

and mixed-integer linear programming (LP/MIP) optimizer available today,

according to several independent third-party benchmarks. The Gurobi Solver,

developed by three former leaders of the CPLEX development team, has been

engineered from the ground up to exploit multi-core processors more effectively

than other Solvers. It has no fixed limit on problem size, and has been used to solve

problems with millions of variables and constraints. There are two versions

available, one for LP/MIP problems and another which also solves QP problems.

The XPRESS Solver

Frontline’s XPRESS Solver Engine, developed in close cooperation with FICO, Inc.,

brings the lightning-fast performance, and virtually unlimited problem solving

capacity of the XpressMP mixed-integer linear optimizer to Excel, MATLAB and

Java users. The XPRESS Solver can also solve quadratic programming (QP)

problems, and mixed-integer quadratic (QP/MIP) problems. It offers more than 60

Solver Options, described in “XPRESS Solver Options” in the chapter “Solver

Options.” It has no fixed limit on numbers of variables and constraints. There are

two versions available, one for LP/MIP problems and another which also solves QP

problems. Please note that special considerations apply to distribution of the

XPRESS Solver with a custom application; contact Frontline Systems for details.

The OptQuest Solver

Frontline’s OptQuest Solver Engine, developed in close cooperation with OptTek

Systems, is designed to work with all types of models. Your Excel model or custom

program can use any standard or user-written (numeric) functions – even

discontinuous functions such as IF, CHOOSE, LOOKUP, and COUNT that cause

difficulty for the Large-Scale GRG, Large-Scale SQP and Knitro Solvers. Also, the

OptQuest Solver may find a globally optimal (or near-optimal) solution to a problem

with multiple locally optimal solutions (though it cannot give any assurance of

finding the globally optimal solution). The OptQuest Solver uses advanced methods

including tabu search and scatter search, as described later in this chapter under “The

OptQuest Solver Methodology.” It supports up to 5,000 variables and 1,000

constraints, though the practical size of problems that can be solved to near-global

optimality may be less than these limits.

Special Capabilities of the Solver Engines
Each of the Solver Engines offers more than just classical linear programming or

nonlinear optimization. By leveraging the capabilities of the Analytic Solver

Comprehensive, Analytic Solver Optimization and the Solver SDK Platform as well

as their own strengths, many of these Solvers can be used to tackle conic

optimization, robust optimization, simulation optimization, and global optimization

problems, analysis of infeasible problems, mixed-integer nonlinear problems, and

even basic constraint programming problems.

Solver Engine User’s Guide V2021 Using the Plug-in Solver Engines • 17

Conic Optimization with Solver Engines

In all Analytic Solver Comprehensive, Analytic Solver Optimization and Solver

SDK Platform, Frontline Systems is first to offer broad support for conic

optimization in a commercial product line. Second order cone programming (SOCP)

problems can be solved with the SOCP Barrier Solver or the MOSEK Solver, with

remarkable speed. In addition, second order cone constraints can be used in linear or

nonlinear problems that are solved with the standard GRG, Large-Scale GRG, Large-

Scale SQP, and Knitro Solvers. Both standard and “rotated” second order cone

constraints may be specified. Conic optimization – the natural generalization of

linear and quadratic optimization – has many applications in finance and engineering

design.

Robust Optimization with Solver Engines

In Analytic Solver Comprehensive and Analytic Solver Optimization, Frontline

Systems is again first to offer general-purpose support for robust optimization in a

commercial product line. All of Frontline’s Solver Engines can be applied to solve

robust counterpart problems, created automatically by Analytic Solver, since these

are normally linear, quadratic, or second-order cone programming problems.

The MOSEK Solver is an especially good match for Analytic Solver Comprehensive

or Optimization, because it can solve – with high performance – problems generated

by Analytic Solver’s Robust Counterpart Transformation for all four choices of

norms, including the L2 norm (which creates large-scale SOCP robust counterpart

problems).

Simulation Optimization with Solver Engines

Frontline Systems offers “best in class” support for simulation optimization, using

the Solver Engines with Analytic Solver Comprehensive, Analytic Solver

Optimization with Analytic Solver Simulation, and Solver SDK Platform. You can

solve simulation optimization problems up to hundreds of times faster than

competitive products for Microsoft Excel. Solver SDK Platform includes both

optimization and Monte Carlo simulation capabilities in one package – it provides

pre-written examples of simulation optimization in C++, C#, Visual Basic, VB.NET,

Java, and MATLAB.

The Large-Scale GRG, Large-Scale SQP, Knitro, and OptQuest Solvers can be

applied to simulation optimization problems. The OptQuest Solver is an especially

popular choice for this purpose, since it can find solutions to difficult non-smooth

optimization problems that can arise in simulation optimization.

Global Optimization with Solver Engines

Most nonlinear optimizers are guaranteed only to find a locally optimal solution to a

nonconvex problem. Imagine a graph of the objective function with “hills” and

“valleys:” Such optimizers will typically find the peak of a hill near the starting point

you specified (if maximizing), but they may not find an even higher peak on another

hill that is far from your starting point. In some problems this is sufficient, but in

other cases you may want or need to find a globally optimal solution. Frontline’s

Solver Engines offer you several different approaches to global optimization.

The OptQuest Solver, like the Evolutionary Solver bundled in Analytic Solver

Comprehensive, Analytic Solver Optimization and Solver SDK Platform, is designed

from the ground up to search for globally optimal, or near-optimal solutions of

18 • Using the Plug-in Solver Engines Solver Engine User’s Guide V2021

problems with non-smooth functions. It uses a search strategy that moves

aggressively past locally optimal solutions towards better solutions, ultimately

towards the globally optimal solution.

You can also use the Large-Scale SQP Solver engine to solve problems with non-

smooth functions, using its integrated Evolutionary Solver. This Solver Engine is

often the best choice for large problems that are mostly smooth or even linear, but

include some non-smooth terms in the objective or constraints.

Using an alternative approach, the bundled nonlinear GRG Solver, the Large-Scale

GRG Solver, the Large-Scale SQP Solver, and the Knitro Solver can make use of

multistart methods for global optimization: They can be run automatically many

times from judiciously chosen starting points, and the best solution found (the

“highest peak” if maximizing) will be returned as the best estimate of a globally

optimal solution. Using the multistart methods is as simple as setting the Multistart

Search option to True in the Task Pane Engine tab, or setting a property or calling an

API function in the Solver SDK Platform.

Analysis of Infeasible Problems

When the normal optimization process finds no feasible solutions, all Solver Engines

except those aimed at non-smooth problems (the Evolutionary and OptQuest

Solvers) can be used to analyze your model and find an Irreducibly Infeasible Subset

(IIS) of the constraints. The “IIS Finder” in Analytic Solver Comprehensive,

Analytic Solver Optimization and Solver SDK Platform will automatically run the

Solver Engine on problems with different subsets of the constraints to isolate an IIS.

The results can be displayed in the Excel products’ Feasibility Report, or obtained

via properties or API functions for further use in your application program.

Integer, Semi-Continuous, and Alldifferent
Variables

Each of the Solver Engines handles general integer and binary integer variables.

Binary or 0-1 integer variables are often used to represent yes/no decisions in an

optimization model. Integer variables make it possible to model and solve a wide

range of problems that could not be handled with conventional continuous variables.

You can also specify that a decision variable is semi-continuous. At the optimal

solution, a semi-continuous variable is either zero, or a continuous value in a range

that you specify. Semi-continuous variables can serve some of the common

purposes of binary integer and continuous variables, and they can be handled very

efficiently in the solution process. They are supported by all of the Solver Engines.

You can also specify that a set of integer variables must be “alldifferent.” Such

variables will then have integer values from 1 to N (the number of variables), all of

them different at the solution. You can use such “alldifferent” constraints to model

problems involving ordering or permutations of choices, such as the well-known

Traveling Salesman Problem.

The Solver Engines take very different approaches to solving problems containing

“alldifferent” constraints – so you can model the problem in a high-level way, and

try a variety of Solver engines to see which one yields the best performance.

Standard and Solver Engine-Specific Reports

In addition to the optimal solution (final values for the decision variables) found for

your problem, the Solver Engines offer further information in the form of reports. In

Solver Engine User’s Guide V2021 Using the Plug-in Solver Engines • 19

Analytic Solver Comprehensive and Analytic Solver Optimization reports are

produced as Excel worksheets that can be read, modified, or used as the basis for

further calculations in Excel or VBA. In both Excel and Solver SDK Platform, the

report information is returned via object properties, for further analysis by your

application program.

Analytic Solver Comprehensive and Analytic Solver Optimization offer eight types

of standard reports for Solver engines: The Answer, Sensitivity, and Limits Reports

(also present in the standard Excel Solver), and the new Scaling Report, Linearity

Report, Feasibility Report, Solutions Report, and Population Report. In addition,

Analytic Solver’s PSI Interpreter offers the Structure Report and Transformation

Report. In Solver SDK Platform, you can access the information found in the

Answer, Sensitivity, Linearity, Feasibility, Solutions, and Population Reports.

The Large-Scale LP/QP Solver and the XPRESS Solver support the first seven types

of reports, and the Large-Scale GRG Solver, Large-Scale SQP Solver, and Knitro

Solver support all of these except the Linearity Report. The MOSEK Solver

supports the Answer, Sensitivity, Limits, Scaling, and Solutions Reports. The

OptQuest Solver supports the Answer, Scaling, Solutions, and Population Reports.

The Analytic Solver User Guide describes the standard reports in more detail, and

provides examples.

Programming the Solver Engines

Analytic Solver Comprehensive and Analytic Solver Optimization and the Solver

Engines are fully programmable from VBA (Visual Basic Application Edition) in

Excel. Two comprehensive APIs (Application Programming Interfaces) are

supported: a legacy VBA macro interface that is upward compatible from the Excel

Solver, and a new object-oriented interface that is compatible with Frontline’s

Solver SDK Platform, and is easy to use from C# and VB.NET.

If you prefer to deliver your application to end users in Excel, this means you can

easily build an application using a bundled Solver or a plug-in, large-scale Solver

Engine, hide the Solver user interface, and (using VBA) present a customized user

interface for your end users.

Using Your Excel Solver Model – Outside Excel

If you prefer to deliver your application to end users outside Excel – for example on

an Intranet or Web server, or even on Linux instead of Windows – you can still build

your optimization model in Excel! Solver SDK Platform can load your Excel

workbook, interpret the model you’ve defined in Excel, enable you to control this

model – using object-oriented API calls almost identical to the ones in VBA – and

solve the model with very high performance.

You can obtain new data from a database, another application or the end user, use it

to update your Excel model, and solve a new problem instance. And you can do all

of this in a self-contained Windows or Linux program that’s very easy to deploy.

With just a little care, you can create your SDK-based application so it can work

with updated and improved versions of your Excel workbook model, or even with

several different Excel workbooks, without having to be modified or even

recompiled! This makes for a very flexible and powerful deployment solution.

At any point if you wish, you can rewrite your Excel formulas in C++, C#, VB.NET,

Java or other programming language code, and move your entire optimization or

simulation model into your SDK application.

20 • Installation and Licensing Solver Engine User’s Guide V2021

Installation and Licensing

What You Need
The Solver engines covered in this Guide are Dynamic Link Libraries on Windows,

and Shared Libraries on Linux. They do not run as “stand-alone” programs; instead

they are designed to “plug into” Analytic Solver Comprehensive (Desktop or Cloud),

Analytic Solver Optimization (Desktop or Cloud) or Solver SDK Platform.

You can use Analytic Solver Cloud in Excel for the Web through a Web browser

(such as Edge, Chrome, Firefox or Safari), without installing anything else. This is

the simplest and most flexible option, but it requires a constant Internet connection.

To use Analytic Solver Cloud in Excel Desktop on a PC or Mac, you must have a

current version of Windows or iOS installed, and you will need the latest Excel

version installed via your Office 365 subscription – older non-subscription

versions, even Excel 2019, do not have all the features and APIs needed for modern

JavaScript add-ins like Analytic Solver Cloud.

To use Analytic Solver Desktop (Windows PCs only), you must have first installed

Microsoft Excel 2013, 2016, 2019, or the latest Office 365 version on Windows 10,

Windows 8, Windows 7, or Windows Server 2019, 2016 or 2012. (Windows Vista

or Windows Server 2008 may work but are no longer supported.). It’s not essential

to have the standard Excel Solver installed.

To install Analytic Solver Desktop and all Large Scale engines to work with any

version of Microsoft Excel, simply run the program SolverSetup.exe, which installs

all of the Solver program, Help, User Guide, and example files in compressed form

for both 32-bit and 64-bit Excel. SolverSetup.exe checks your system, detects what

version of Office you are running (32-bit or 64-bit) and then downloads and runs the

appropriate Setup program version. See the chapter "Installation and Licensing"

within the Analytic Solver User Guide for step-by-step installation instructions.

To install Solver SDK Platform and all Large Scale engine, simply run either

SDKSetup.exe (for 32-bit) or SDKSetup64.exe (for 64-bit), to install all of the

Solver and Engine programs, Help, User Guides, and example files in compressed

form for 32-bit or 64-bit SDK, respectively. The chapter “Installation and

Licensing” in the Solver SDK User Guide covers installation step-by-step.

Solver engines will run on the same hardware and system software configuration that

you’ve used to run the related Analytic Solver Desktop product. If you solve very

large models, however, performance may depend on the amount of main memory

(RAM) in your system. Large models with many integer constraints can take

substantially more time to solve, and require more memory than models without such

constraints. If you are solving in the Cloud, the amount of RAM your system

contains is not an issue.

Solver Engine User’s Guide V2021 Installation and Licensing • 21

Solver SDK Platform is most often used with Microsoft Visual Studio, but it can also

be used with Sun Java, MATLAB, Visual Basic 6.0, and older versions of Visual

Studio. For installation instructions for Solver SDK Platform see the "Installation

and Licensing" chapter within the Solver SDK Platform User Guide.

Solver Engines 2021 work with Analytic Solver V2021 (or Solver Engines V2018

work with Solver SDK Platform V2018). If you’ve been using an earlier version,

you’ll need to upgrade to Version 2021 at the same time that you upgrade your

existing license for Analytic Solver Comprehensive and Analytic Solver

Optimization. Solver Engines 2021 are upward compatible with earlier versions

and generally offer better performance – your existing applications should work as-is

with the new Solver Engines. If you are using Analytic Solver Cloud, you will

always be using the most recent version of our software.

Using the Solver Engines

To use the Solver Engines after installation with Analytic Solver Desktop or Cloud,

simply start Microsoft Excel (Online or Desktop) and click the Analytic Solver tab

on the Ribbon. In the Task Pane Engine tab, click the Solver Engine dropdown list.

If you select one of the new Solver Engines from the dropdown list, it will be used

when you next run an optimization, and its Solver Options will appear on the Engine

tab, where you can examine or change them.

To use a Solver Engine with Solver SDK Platform, simply add it to the Engines

collection and then select it as the current Solver engine, as described in the SDK

User Guide. For example, you could write in C++:

CProblem myProb;

CEngine myEngine ("Knitro Solver", "Knitroeng.dll");

myProb.Engines.Add (myEngine);

to add the Knitro Solver Engine to myProb’s Engines collection, and:

myProb.Engine = myProb.Engines["Knitro Solver"];

myProb.Solver.Optimize();

to select the Knitro Solver and use it to solve a problem:

22 • Installation and Licensing Solver Engine User’s Guide V2021

Working with Licenses in Versions 2021
The Analytic Solver products V2021 and plug-in Solver Engines V2021 use a new

license manager that simplifies the handling of licenses and license codes for both

you and Frontline Systems. Solver SDK Platform V2018 and V2018 plug-in Solver

Engines use a different type of license manager.

A license is a grant of rights, from Frontline Systems to you, to use our software in

specified ways. As we learned in the last chapter, when you run the SolverSetup

program to install Analytic Solver Desktop, software for the full Analytic Solver

product family is installed. However, the product features you see in Analytic

Solver Desktop and Analytic Solver Cloud, and the size of models you can solve,

depends on the license you have. Analytic Solvers V2021 uses a licensing system,

developed in V2017-R2, that offers you more flexible ways to use the software, both

desktop and cloud.

Analytic Solver - Licenses Tied to You, Not Your
Computer

When you first use Analytic Solver either in the cloud or on a new computer, you

will be prompted to login. Enter the email address and password that you used to

register on Solver.com. Once you’ve done this in Analytic Solver Desktop, your

identity will be “remembered,” so you won’t have to login every time you start

Excel, and go to one of the Analytic Solver tabs. If you are using Analytic Solver

Cloud, you will need to login at the beginning of each session.

You can login and logout at any time, using Login/Logout on the License menu. If

you share use of a single physical computer with other Analytic Solver users, be

careful to login with your own email and password, and log out when you’re done –

if you don’t, other users could access private files in your cloud account, or use up

your allotted CPU time or storage.

When you move from one computer to another, you should log out on one and log in

on the other. As a convenience, if you log in to Analytic Solver on a new computer

when you haven’t logged out on the old computer, Analytic Solver will let you

know, and offer to automatically log you out on the other computer.

Upgrading from Earlier Analytic Solver Versions

A new license will not be required for V2021 if you’re upgrading from Analytic

Solvers V2017/V2018. Old license codes for V2016 and earlier have no negative

effect in 2018. If they exist in the obsolete Solver.lic file (located at

C:\ProgramData\Frontline Systems), they will be ignored. A new license will be

issued at the time of purchase.

Managing Solver Licenses Outside Excel

When you install the SDK Platform product, the SolverLicMan utility program is

also installed. SolverLicMan.exe is installed at C:\Program Files\Frontline

Systems\Engines (substitute “Program Files (x86)” for “Program Files” if you’ve

installed 32-bit SDK Platform on a 64-bit operating system). Use this utility to

manage all of your licenses in one convenient place.

Solver Engine User’s Guide V2021 Installation and Licensing • 23

24 • Solver Result Messages Solver Engine User’s Guide V2021

Solver Result Messages

If You Aren’t Getting the Solution You Expect
This chapter documents the Solver Result Messages that can be returned when you

optimize a model, and discusses some of the characteristics and limitations of the

Solver Engines. You should read this chapter in conjunction with the Analytic

Solver User Guide chapter “Getting Results: Optimization.”

The most important step you can take to deal with potential Solver problems is to

start out with a clear idea of the type of optimization model you are creating, how it

relates to well-known problem types, and whether yours is a linear, quadratic,

nonlinear or non-smooth optimization problem – as discussed in depth in the chapter

“Mastering Conventional Optimization Concepts” in the Analytic Solver User

Guide. If you then build your model in a well-structured, readable and efficient

form, diagnosing problems should be relatively easy. But at times you may be

“surprised” by the results you get from your Solver engine.

If the Solver stops or returns with a solution (set of values for the decision variables)

that is different from what you expect, or what you believe is correct, follow the

suggestions below. You can usually narrow down the problem to one of a few

possibilities.

• Check the Solver Result Message shown in the Task Pane Output tab, or the

corresponding value of Problem.Solver.OptimizeStatus in VBA (value of

SolverSolve if you’re using the legacy VBA functions) or Solver SDK Platform.

Users sometimes contact Frontline Systems about “wrong solutions”, but they

don’t know which result they received – this is crucial to diagnosing the

problem. Read carefully the discussion of your Solver Result Message or

OptimizeStatus code in the following sections.

• In Analytic Solver Comprehensive and Analytic Solver Optimization, review

the solution log messages in the Task Pane Output tab. Set Task Pane

Platform tab General group Log Level option to Verbose before you solve, to

obtain maximum information from the solution log.

• In Analytic Solver Comprehensive and Analytic Solver Optimization, examine

the available optimization reports – notably the Linearity Report, Structure

Report, Feasibility Report, and Scaling Report. In Solver SDK Platform, you

can call the Problem.Model.DependCheck or DependTest method to obtain

the same information as the Linearity Report, and call the

Problem.Solver.IISFind method to obtain the same information as the

Feasibility Report.

Solver Engine User’s Guide V2021 Solver Result Messages • 25

• Consider carefully the possibility that the solution found by the Solver is

correct, and that your expectation is wrong. This may mean that what your

model actually says is different from what you intended.

• In Analytic Solver Comprehensive and Analytic Solver Optimization, many

messages from the PSI Interpreter refer to a specific problem at a specific cell

address in your worksheet. You may have to modify the formula in this cell to

use the PSI Interpreter, or else you’ll have to set the Task Pane Optimization

Model group Interpreter option to Excel Interpreter.

• In Solver SDK Platform, the object-oriented API will raise a specific

SolverException, and the procedural API will return specific exception codes,

when the Solver detects errors or inconsistencies in your use of SDK properties,

methods or API functions. Your application code should include try/catch

blocks for SolverExceptions, or tests for nonzero return values from procedural

API function calls.

• For a detailed look at the solution process, set the Show Iteration Results option

to True and re-solve, or in VBA or Solver SDK Platform, define an Evaluator

to be called on every iteration, and inspect the current trial solution in your

Evaluator code. The iterations show you the path taken towards the solution.

• Consider the impact of a poorly scaled model, the role of the Tolerance option

for integer problems, and any limitations or special considerations for your

Solver Engine as outlined in this chapter.

Standard Solver Result Messages
The bundled Solver engines in Analytic Solver Comprehensive, Analytic Solver

Optimization and Solver SDK Platform, and the plug-in Solver Engines covered by

this Guide, return the standard result codes and display the Solver Result Messages

described in this section. Some of these messages have a slightly different

interpretation depending on which Solver Engine you are using; see the explanations

of each message, particularly for return code 0, “Solver found a solution.” Please

note that the Branch & Bound and multistart methods usually return result codes 14

through 17, which are documented later in this section.

In addition, the Large-Scale GRG Solver, Large-Scale SQP Solver, Knitro Solver,

MOSEK Solver, Gurobi Solver, XPRESS Solver, and OptQuest Solver each return

certain engine-specific result codes and display related Solver Result Messages in

special circumstances. These are described in sections for each Solver Engine.

-1. A licensing problem was detected, or your trial license has expired.

This message appears if a product cannot find its licensing information, if the

licensing information is invalid, or if you have a time-limited evaluation license that

has expired. You need a license for both Analytic Solver Comprehensive, Analytic

Solver Optimization, or Solver SDK Platform and the plug-in Solver Engine you are

using. In Excel, click the Help button for further information about the licensing

problem. Please call Frontline Systems at (775) 831-0300, or send email to us at

info@solver.com for further assistance.

0. Solver found a solution. All constraints and optimality conditions are satisfied.

This means that the Solver has found the optimal or “best” solution under the

circumstances. The exact meaning depends on the type of problem you are solving,

as outlined below. In general, for smooth convex problems (including all linear and

certain quadratic problems), the Solver has found a globally optimal solution, but for

non-convex problems, this message guarantees only a locally optimal solution.

26 • Solver Result Messages Solver Engine User’s Guide V2021

If you are using the Large-Scale LP/QP Solver, Large-Scale SQP Solver, MOSEK

Solver, XPRESS Solver or Gurobi Solver to solve a linear or convex quadratic

problem with no integer constraints, or you are using the MOSEK Solver to solve an

SOCP or convex nonlinear problem with no integer constraints, the Solver has found

the globally optimal solution: There is no other solution satisfying the constraints

which has a better value for the objective. It is possible that there are other solutions

with the same objective value, but all such solutions are linear combinations of the

current decision variable values.

If you are using the Large-Scale GRG Solver, Large-Scale SQP Solver, or Knitro

Solver to solve a smooth nonlinear optimization problem with no integer constraints,

the Solver has found a locally optimal solution in the neighborhood of the starting

values of the variables: There is no other set of values for the decision variables

close to the current values and satisfying the constraints that yields a better value for

the objective. You can assume that the solution is globally optimal only if you know

that the problem is convex; otherwise there may be other sets of values for the

variables, far away from the current values, that yield better values for the objective

and still satisfy the constraints.

If you are solving a mixed-integer programming problem (any problem with integer

constraints), this message means that the Solver has found a solution satisfying the

constraints (including the integer constraints) with the best possible objective value –

it has ‘proved optimality’ by searching for all possible alternative integer solutions,

finding none better. If the problem (without the integer variables) is convex, the true

integer optimal solution has been found. If the problem is non-convex, the Solver

has found the best of the locally optimal solutions found for subproblems by the

Large-Scale GRG, Large-Scale SQP, or Knitro Solver.

If you are using the OptQuest Solver, this message means that the best solution

found so far is available. Since it is designed to handle complex, non-smooth

functions, the OptQuest Solver can prove optimality only in the (rare) case where all

variables are integer and have relatively tight lower and upper bounds, making

complete enumeration of all trial solutions possible.

1. Solver has converged to the current solution. All constraints are satisfied.

This means that the Large-Scale GRG Solver, Large-Scale SQP Solver, Knitro

Solver, or MOSEK Solver has found a series of “best” solutions that satisfy the

constraints, and that are very similar to each other; however, no single solution

strictly satisfies the Solver’s test for optimality. The Convergence tolerance in the

Task Pane Engine tab controls how similar the solutions must be. More precisely,

the Large-Scale GRG Solver stops with this message if the absolute value of the

relative change in the objective function is less than this tolerance. The Large-Scale

SQP Solver stops if the maximum normalized complementarity gap of the variables

is less than this tolerance, for the last few iterations. The Knitro Solver stops if no

further progress can be made and the optimality conditions are satisfied to within a

factor of 100. A poorly scaled model is more likely to trigger this stopping

condition, even if the Use Automatic Scaling option in the Task Pane Engine tab is

set to True. If you are sure that your model is well scaled, you should consider why

it is that the objective function is changing so slowly. For more information, see the

discussion of “Large-Scale Nonlinear Solver Stopping Conditions” below.

When the Evolutionary Solver in the Large-Scale SQP Solver Engine is being used,

this message means that the “fitness” of members of the current population of

candidate solutions is changing very slowly. More precisely, the Evolutionary

Solver stops if 99% or more of the members of the population have “fitness” values

whose relative (i.e. percentage) difference is less than the Convergence tolerance in

the Task Pane Engine tab. The “fitness” values incorporate both the objective

function and a penalty for infeasibility, but since the Solver has found some feasible

Solver Engine User’s Guide V2021 Solver Result Messages • 27

solutions, this test is heavily weighted towards the objective function values. If you

believe that the Solver is stopping prematurely when this test is satisfied, you can

make the Convergence tolerance smaller, but you may also want to increase the

Mutation Rate and/or the Population Size, in order to increase the diversity of the

population of trial solutions.

2. Solver cannot improve the current solution. All constraints are satisfied.

This means that the Large-Scale GRG Solver, Large-Scale SQP Solver, or Knitro

Solver has found solutions that satisfy the constraints. However, the respective

Solver has been unable to further improve the objective, even though the tests for

optimality (“Solver found a solution”) and convergence (“Solver converged to the

current solution”) have not yet been satisfied. This message rarely occurs. It means

that the Solver has encountered numerical accuracy or stability problems in

optimizing the model, and it has tried all available methods to overcome the

numerical problems, but cannot reach an optimal solution. One possibility worth

checking is that some of your constraints are redundant, and should be removed. For

more information, see the discussion of “Large-Scale Nonlinear Solver Stopping

Conditions” below.

When the Evolutionary Solver in the Large-Scale SQP Solver Engine is being used,

this message is much more common. It means that the Solver has been unable to

find a new, better member of the population whose “fitness” represents a relative

(percentage) improvement over the current best member’s fitness of more than the

Tolerance value in the Task Pane Engine tab, in the amount of time specified by the

Max Time without Improvement option in the same option group. Since the

Evolutionary Solver has no way of testing for optimality, it will normally stop with

either “Solver converged to the current solution” or “Solver cannot improve the

current solution” if you let it run for long enough. If you believe that this message is

appearing prematurely, you can either make the Tolerance value smaller (or even

zero), or increase the amount of time allowed by the Max Time without

Improvement option.

3. Stop chosen when the maximum iteration limit was reached.

This message appears when (i) the Solver has completed the maximum number of

iterations, or trial solutions, allowed by the Iterations option in the Task Pane Engine

tab and (ii) you clicked on the Stop button when the Solver displayed the Show Trial

Solution dialog. For the Gurobi Solver, when its Barrier (interior point) algorithm is

used, this message appears when the Barrier Iteration Limit is exceeded.

You may increase the value of the Iterations option, or click on the Continue button

instead of the Stop button in the Show Trial Solution dialog. But you should also

consider whether re-scaling your model or adding constraints might reduce the total

number of iterations required. If you are solving a mixed-integer programming

problem (any problem with integer constraints), this message is unlikely to appear.

4. The objective (Set Cell) values do not converge.

This message appears when the Solver is able to increase (if you are trying to

Maximize) or decrease (for Minimize) without limit the value calculated by the

objective or Set Cell, while still satisfying the constraints. Remember that, if you’ve

selected Minimize, the objective may take on negative values without limit unless

this is prevented by the constraints or bounds on the variables. Set the Assume Non-

Negative option in the Task Pane Engine tab to True to impose >= 0 bounds on all

variables.

If the objective is a linear function of the decision variables, it can always be

increased or decreased without limit (picture it as a straight line), so the Solver will

seek the extreme value that still satisfies the constraints. If the objective is a

28 • Solver Result Messages Solver Engine User’s Guide V2021

nonlinear function of the variables, it may have a “natural” maximum or minimum

(for example, =A1*A1 has a minimum at zero), or no such limit (for example,

=LOG(A1) increases without limit).

If you receive this message, you may have forgotten a constraint, or failed to

anticipate values for the variables that allow the objective to increase or decrease

without limit. The final values for the variable cells, the constraint left hand sides

and the objective should provide a strong clue about what happened.

The Evolutionary Solver in the Large-Scale SQP Solver Engine and the OptQuest

Solver never display this message, because they have no way of systematically

increasing (or decreasing) the objective function, which may be non-smooth. If you

have forgotten a constraint, these Solvers may find solutions with very large (or

small) values for the objective – thereby making you aware of the omission – but this

is not guaranteed.

5. Solver could not find a feasible solution.

This message appears when the Solver could not find any combination of values for

the decision variables that allows all of the constraints to be satisfied simultaneously.

Generally speaking, if you are solving a linear problem with any Solver Engine, or

solving a convex nonlinear problem with a Solver Engine other than the OptQuest

Solver, and the model is well scaled, then the Solver has determined for certain that

there is no feasible solution. But the interior point methods used in the MOSEK

Solver and Knitro Solver may sometimes have difficulty determining feasibility if

there are many equality constraints, especially if the model is not well scaled.

If you are using the Evolutionary Solver in the Large-Scale SQP Solver Engine or

the OptQuest Solver and the model has nonlinear constraints, or if you are using the

Large-Scale GRG Solver, Large-Scale SQP Solver, or Knitro Solver, the Solver was

unable to find a feasible solution; however it is possible that there is a feasible

solution outside of the region(s) searched. In general, the Solver’s search depends

heavily on the starting point (i.e. the initial values of the variables); if you start this

Solver from a very different starting point, it might find a feasible solution.

If you are solving a mixed-integer programming problem (any problem with integer

constraints), this message means that there are no solutions that satisfy all of the

constraints, including the integer constraints on variables. You can try solving the

“relaxation” of the original problem (which ignores the integer constraints), to see if

a feasible solution to this simplified problem can be found. In VBA and Solver SDK

Platform, you can do this by calling Problem.Solver.Optimize with argument

Solve_Type_NoIntegers.

If you are solving a problem with chance constraints using simulation optimization,

this message means that the Solver could find no solution that satisfies these

constraints to the chance measures (such as 95%) that you specified. If you ‘relax’

the chance measures (to say 90%) and solve again, it’s possible that a feasible

solution will be found. For robust optimization, see result codes 26 through 29.

In any case, you should first look for conflicting constraints, i.e. conditions that

cannot be satisfied simultaneously. Most often this is due to choosing the wrong

relation (e.g. <= instead of >=) on an otherwise appropriate constraint. The easiest

way to find conflicting constraints in Analytic Solver Comprehensive or Analytic

Solver Optimization is to select the Feasibility Report, shown in the Reports –

Optimization gallery when this Solver Result Message appears, and click OK. In

Solver SDK Platform, call Problem.Solver.IISFind and use the OptIIS property, or in

the procedural API call SolverOptIISFind to get the same information.

Solver Engine User’s Guide V2021 Solver Result Messages • 29

6. Solver stopped at user’s request.

In Analytic Solver Comprehensive and Analytic Solver Optimization, this message

appears if you press ESC to display the Show Trial Solution dialog, and then click

the Stop button. If you are controlling the Solver from a VBA program, remember

that the user may press ESC while your VBA program is running. In Solver SDK

Platform, this result code is returned if you’ve defined an Evaluator to be called on

each iteration or subproblem, and your Evaluator returned the “user abort” code to its

caller.

If you are using a shared network license, it’s also possible – though unlikely – that

the license server could “go down” or you might otherwise lose your active license,

yielding this message and return code.

7. The linearity conditions required by this Solver engine are not satisfied.

If you are using the Large-Scale LP/QP Solver or the MOSEK Solver, or if you are

using the Large-Scale SQP Solver or Knitro Solver and have selected one or both of

the options “Treat Objective as Linear” or “Treat Constraints as Linear,” this

message appears if the Solver’s numeric tests to ensure that the objective and

constraints are indeed linear functions of the decision variables were not satisfied.

To understand exactly what is meant by a linear function, read the chapter “Master-

ing Conventional Optimization Concepts” in the Analytic Solver User Guide.

If you receive this message, examine your formulas or program statements for the

objective and constraints, looking for nonlinear or non-smooth functions or operators

applied to the decision variables. In Analytic Solver Comprehensive and Analytic

Solver Optimization, select the Linearity Report, or – even better – select a Structure

Report to pinpoint the exact cell formulas that aren’t linear. In Solver SDK

Platform, call the Problem.Model.DependCheck (if you’ve loaded an Excel

workbook), or the DependTest method if you’ve written your own Evaluator for the

objective and constraints, to test your objective and constraints for linearity. In the

procedural API, call the SolverModDependTest function.

8. The problem is too large for Solver to handle.

This message – or the more specific message Too many variable cells, Too many

constraints, or Too many integer variable cells – appears when the Solver

determines that your model is too large for the Solver Engine that you are using.

You’ll have to select – or possibly install – another Solver Engine appropriate for

your problem, or else reduce the number of variables, constraints, or integer

variables in order to proceed.

In Analytic Solver Comprehensive and Analytic Solver Optimization, you can check

the size (the number of variables, constraints, bounds, and integers) of the problem

you have defined, and compare it to the size limits of the Solver Engine you are

using, by examining the Current Problem and Engine Limits groups in the Engine

tab for that Solver Engine. In Solver SDK Platform, you can access the Solver

Engine object’s EngineLimit properties, or call the SolverEngLimit procedural API

function.

9. Solver encountered an error value in a target or constraint cell.

In Analytic Solver Comprehensive and Analytic Solver Optimization, this message

appears when the Solver recalculates your worksheet using a new set of values for

the decision variables (Changing Cells), and discovers an error value such as

#VALUE!, #NUM!, #DIV/0! or #NAME? in the cell calculating the objective or one

of the constraints. Inspecting the worksheet for error values like these will usually

indicate the source of the problem. If you’ve entered formulas for the right hand

sides of certain constraints, the error might have occurred in one of these formulas

30 • Solver Result Messages Solver Engine User’s Guide V2021

rather than in a cell on the worksheet. For this and other reasons, we recommend that

you use only constants and cell references on the right hand sides of constraints. In

Solver SDK Platform, this result code is returned if your Evaluator for function

values returns a nonzero value to its caller. You’ll have to examine your Evaluator

to further diagnose the problem.

If you see #VALUE!, #N/A or #NAME?, look for names or cell references to rows

or columns that you have deleted. If you see #NUM! or #DIV/0!, look for

unanticipated values of the decision variables that lead to arguments outside the

domains of your functions – such as a negative value supplied to SQRT. In Solver

SDK Platform, this kind of error will usually raise one of the standard numeric

exceptions, which you can “catch” in your code. You can often add constraints to

avoid such domain errors; if you have trouble with a constraint such as A1 >= 0,

try a constraint such as A1 >= 0.0001 instead.

In Analytic Solver Comprehensive and Analytic Solver Optimization, when the

Polymorphic Spreadsheet Interpreter is used, a more specific message usually

appears instead of “Solver encountered an error value in a (nonspecific) target or

constraint cell.” At a minimum, the message will say “Excel error value returned at

cell Sheet1!A1,” where Sheet1!A1 is replaced by the cell address where the

error was encountered. Usually, a more specific message will appear. The general

form of the message is:

Error condition at cell address. Edit your formulas, or use Excel Interpreter in

the Solver Model dialog. Error condition is one of the following:

Floating point overflow Invalid token

Runtime stack overflow Decision variable with formula

Runtime stack empty Decision variable defined more than once

String overflow Missing Diagnostic/Memory evaluation

Division by zero Unknown function

Unfeasible argument Unsupported Excel function

Type mismatch Excel error value returned

Invalid operation Non-smooth special function

See also result code 21, “Solver encountered an error computing derivatives,” and

result code 12, with messages that can appear when the Interpreter first analyzes the

formulas in your model.

“Floating point overflow” indicates that the computed value is too large to represent

with computer arithmetic; “String overflow” indicates that a string is too long to be

stored in a cell. “Division by zero” would yield #DIV/0! on the worksheet, and

“Unfeasible argument” means that an argument is outside the domain of a function,

such as =SQRT(A1) where A1 is negative.

“Unknown function” appears for functions whose names are not recognized by the

Interpreter, such as user-written functions in VBA. “Unsupported Excel function”

appears for the few functions that the Interpreter recognizes but does not support.

“Non-smooth special function” may appear if your model uses functions ABS, IF,

MAX, MIN or SIGN.

The Evolutionary Solver in the Large-Scale SQP Solver Engine and the OptQuest

Solver rarely, if ever, display this message – since they maintain a population of

candidate solutions and can generate more candidates without relying on derivatives,

they can simply discard trial solutions that result in error values in the objective or

the constraints. If you have a model that frequently yields error values for trial

solutions generated by the Solver, and you are unable to correct or avoid these error

values by altering your formulas or by imposing additional constraints, you can still

Solver Engine User’s Guide V2021 Solver Result Messages • 31

use the Evolutionary Solver or OptQuest Solver to find (or make progress towards) a

“good” solution.

10. Stop chosen when the maximum time limit was reached.

In Analytic Solver Comprehensive and Analytic Solver Optimization, this message

appears when (i) the Solver has run for the maximum time (number of seconds)

allowed by the Max Time option in the Task Pane Engine tab and (ii) you clicked on

the Stop button when the Solver displayed the Show Trial Solution dialog. You may

increase the value of the Max Time option or click on the Continue button instead of

the Stop button in the Show Trial Solution dialog. But you should also consider

whether re-scaling your model or adding constraints might reduce the total solution

time required. In Solver SDK Platform, you set the “MaxTime” parameter to the

number of seconds you want to allow the Solver to run before stopping with this

result code.

11. There is not enough memory available to solve the problem.

This message appears when the Solver could not allocate the memory it needs to

solve the problem. If you are using 32-bit Excel or the 32-bit version of Analytic

Solver Comprehensive or Analytic Solver Optimization and you receive this

message, you should strongly consider moving to 64-bit Excel 2013 and Analytic

Solver, or to the Solver SDK Platform 64-bit version, both of which can address far

more memory.

Since Microsoft Windows supports a “virtual memory” that can be larger than your

available RAM by swapping data to your hard disk, you may notice that solution

times have greatly slowed down, and the hard disk activity light in your PC is

flickering during the solution process. In this case, your simplest and least cost

solution may be to upgrade your PC with more RAM.

The Polymorphic Spreadsheet Interpreter in Analytic Solver Comprehensive and

Optimization and Solver SDK Platform can use a considerable amount of memory,

when you solve a problem or analyze a model. You can progressively reduce the

memory used by the Interpreter by taking the following actions in order, using the

Task Pane Platform tab:

1. Set the Use Internal Sparse Representation option in the Advanced options

group to True.

2. Set the Supply Engine with option to Gradients.

3. Set the Optimization Model Interpreter option to Excel Interpreter.

When you use Excel Interpreter, the PSI Interpreter is not used and does not use any

memory; any further problems are due to memory demands of the Solver engines,

Microsoft Excel and Windows. You can save some memory by closing any

Windows applications other than Excel, closing programs that run in the System

Tray, and closing any Excel workbooks not needed to solve the problem.

In Solver SDK Platform, you can either load an Excel workbook model and use the

PSI Interpreter, or write your own Evaluator function to compute values for your

objective and constraints, without using either Excel or the PSI Interpreter. With this

latter option, you may be able to solve a larger problem on the same computer.

Most large problems are sparse in that a typical constraint depends on only a small

subset of the variables. The large-scale Solver engines described in this User Guide

use sparse representations of your model, to save memory as well as solution time.

32 • Solver Result Messages Solver Engine User’s Guide V2021

12. Error condition at cell address. Edit your formulas, or use Excel Interpreter in the Solver
Model dialog.

In Analytic Solver Comprehensive and Analytic Solver Optimization, this message

appears when the Interpreter first analyzes the formulas in your model, after you

click the Optimize button or the green arrow in the Task Pane. Address is the

worksheet address of the cell (in Sheet1!A1 form) where the error was

encountered, and Error condition is one of the following:

OLE error Missing (

Invalid token Missing)

Unexpected end of formula Wrong number of parameters

Invalid array Type mismatch

Invalid number Code segment overflow

Invalid fraction Expression too long

Invalid exponent Symbol table full

Too many digits Circular reference

Real constant out of range External name

Integer constant out of range Multi-area not supported

Invalid expression Non-smooth function

Undefined identifier Unknown function

Range failure Loss of significance

Many of these messages will never appear as long as you entered your formulas in

the normal way through Microsoft Excel, because Excel “validates” your formulas

and displays its own error messages as soon as you complete formula entry. Some of

the messages you may encounter are described in the following paragraphs.

Undefined identifier appears if you’ve used a name or identifier (instead of a cell

reference such as A1) in a formula, and that name was not defined using the Insert

Name Define… or Insert Name Create… commands in Excel. The “labels in

formulas” feature was dropped in Excel 2007 and Excel 2010, and the Interpreter

does not support this use of labels in formulas. You should define these labels with

the Insert Name Define… or Insert Name Create… commands.

Circular reference appears if Excel has already warned you about a circular

reference in your formulas, and it can also appear if you’ve used array formulas in a

“potentially circular” way. (For example, if cells A1:A2 contain {=1+B1:B4} and

cells B3:B4 contain {=1+A1:A4}, Excel doesn’t consider this a circular reference,

but the PSI Interpreter does.) If you must use circular references in your model,

you’ll have to use the Excel Interpreter.

External name appears if your formulas use references to cells in other workbooks

(not just other worksheets), and the Interpreter is unable to open those workbooks.

You should ensure that the external workbooks are in the same folder as the Solver

workbook, or for better performance, move or copy the worksheets you need into the

workbook containing the Solver model.

Multi-area not supported or Missing) appears if your formulas or defined names

use multiple selections such as (A1:A5,C1:H1). While the Interpreter does accept

argument lists consisting of single selections, such as =SUM(A1:A5,C1:H1), it does

not accept multiple selections for defined names, or for single arguments such as

=SUMSQ((A1:A5,C1:H1), (B1:B5,C2:H2)). If you must use such multiple

selections, you’ll have to use the Excel Interpreter.

Note: Result code 12 was formerly associated with the message “Another Excel

instance is using SOLVER32.DLL. Try again later,” which does not occur in the

modern versions of Excel and Windows.

Solver Engine User’s Guide V2021 Solver Result Messages • 33

13. Error in model. Please verify that all cells and constraints are valid.

This message means that the internal “model” (information about the variable cells,

objective, constraints, Solver options, etc.) is not in a valid form. An “empty” or

incomplete Solver model, perhaps one with no objective and no constraints other

than bounds on the variables, can cause this message to appear. You might also

receive this message if you are using the wrong version of certain Solver files, or if

you’ve modified the values of certain hidden defined names used by the Solver,

either interactively or in a VBA program. To guard against this possibility, you

should avoid using any defined names beginning with “solver” in your own

application.

14. Solver found an integer solution within tolerance. All constraints are satisfied.

If you are solving a mixed-integer programming problem (any problem with integer

constraints) using the Large-Scale LP/QP Solver, Large-Scale SQP Solver, MOSEK

Solver, XPRESS or Gurobi Solver, with a non-zero value for the integer Tolerance

option in the Task Pane Engine tab (in VBA and Solver SDK Platform, the

“IntTolerance” parameter), the Branch & Bound method has found a solution

satisfying the constraints (including the integer constraints) where the relative

difference of this solution’s objective value from the true optimal objective value

does not exceed the integer Tolerance setting.

The solution found when this message (or result code) appears may actually be the

true integer optimal solution; however, the Branch & Bound method did not take the

extra time to search all possible remaining subproblems to “prove optimality” for

this solution. If all subproblems were explored (which can happen even with a non-

zero Tolerance in some cases), the Solver will produce the message “Solver found a

solution. All constraints are satisfied” (result code 0).

15. Stop chosen when the maximum number of integer solutions was reached.

If you are using the Large-Scale LP/QP Solver, Large-Scale SQP Solver, MOSEK

Solver, XPRESS or Gurobi Solver on a problem with integer constraints, this

message appears when the Solver has found the maximum number of integer

solutions (values for the variables that satisfy all constraints, including the integer

constraints) allowed by the Max Integer Solutions option in the Task Pane Engine

tab (in VBA and Solver SDK Platform, the “MaxIntegerSols” parameter), and in

Excel, you clicked on the Stop button when the Solver displayed the Show Trial

Solution dialog. You may increase the value of the Max Integer Solutions option, or

click on the Continue button instead of the Stop button in the Show Trial Solution

dialog. But you should also consider whether the problem is well-formulated, and

whether you can add constraints to “tighten” the formulation. If you are using the

LP/QP Solver, try the Aggressive setting for the PreProcessing, Cuts and Heuristics

options in the Task Pane Engine tab.

16. Stop chosen when the max number of integer subproblems was reached.

If you are using the Large-Scale LP/QP Solver, Large-Scale SQP Solver, MOSEK

Solver, XPRESS or Gurobi Solver on a problem with integer constraints, this

message appears when the Solver has explored the maximum number of integer

subproblems (each one is a “regular” Solver problem with additional bounds on the

variables) allowed by the Max Subproblems option in the Task Pane Engine tab (in

VBA and Solver SDK Platform, the “MaxSubProblems” parameter), and in Excel,

you clicked on the Stop button when the Solver displayed the Show Trial Solution

dialog. You may increase the value of the Max Subproblems option, or click on the

Continue button instead of the Stop button in the Show Trial Solution dialog. But

you should also consider whether the problem is well-formulated, and whether you

can add constraints to “tighten” the formulation. If you are using the LP/QP Solver,

34 • Solver Result Messages Solver Engine User’s Guide V2021

try the Aggressive setting for the PreProcessing, Cuts and Heuristics options in the

Task Pane Engine tab.

17. Solver converged in probability to a global solution.

If you are using the multistart method for global optimization with the Large-Scale

GRG Solver, Large-Scale SQP Solver or Knitro Solver (by setting the Global

Optimization options in the Task Pane Engine tab, or setting the “MultiStart”

parameter in the Solver SDK Platform), this message appears when the multistart

method’s Bayesian test has determined that all of the locally optimal solutions have

probably been found; the solution displayed on the worksheet (or returned by the

Solver SDK Platform) is the best of these locally optimal solutions, and is probably

the globally optimal solution to the problem.

The Bayesian test initially assumes that the number of locally optimal solutions to be

found is equally likely to be 1, 2, 3, … etc. up to infinity, and that the relative sizes

of the regions containing each locally optimal solution follow a uniform distribution.

After each run of the Solver Engine, an updated estimate of the most probable total

number of locally optimal solutions is computed, based on the number of

subproblems solved and the number of locally optimal solutions found so far. When

the number of locally optimal solutions actually found so far is within one unit of the

most probable total number of locally optimal solutions, the multistart method stops

and displays this message.

18. All variables must have both upper and lower bounds.

If you are using the OptQuest Solver, this message appears if you have not defined

lower and upper bounds on all of the decision variables in the problem. If you are

using the Evolutionary Solver or the the multistart method for global optimization

with the Large-Scale GRG Solver, Large-Scale SQP Solver, or Knitro Solver, and

you have set the Require Bounds on Variables option in the Task Pane Engine tab to

True (it is True by default), this message will also appear. You should add the

missing bounds and try again. You must define bounds on all variables in order to

use the OptQuest Solver. For the Evolutionary Solver or multistart method, such

bounds are not absolutely required – you can set the Require Bounds on Variables

option to False – but they are a practical necessity if you want the Solver to find

good solutions in a reasonable amount of time.

In Analytic Solver Comprehensive and Analytic Solver Optimization, you can use

the Platform tab Decisions Vars Lower and Upper options to quickly set non-zero

bounds on all decision variables. In VBA and Solver SDK Platform, you specify

individual bounds by setting the LowerBound and UpperBound properties of

Variable objects, or by calling the SolverVarLowerBoundSet and

SolverVarUpperBoundSet procedural API functions. To set default bounds on all

variables, set the Problem. Model.Params"DefaultLowerBound" and

"DefaultUpperBound" properties.

19. Variable bounds conflict in binary or alldifferent constraint.

This message appears if you have both a binary or alldifferent constraint on a

decision variable and a <= or >= constraint on the same variable (that is inconsistent

with the binary or alldifferent specification), or if the same decision variable appears

in more than one alldifferent constraint. Binary integer variables always have a

lower bound of 0 and an upper bound of 1; variables in an alldifferent group always

have a lower bound of 1 and an upper bound of N, where N is the number of

variables in the group. You should check that the binary or alldifferent constraint is

correct, and ensure that alldifferent constraints apply to non-overlapping groups of

variables. If a <= or >= constraint causes the conflict, remove it and try again.

Solver Engine User’s Guide V2021 Solver Result Messages • 35

In VBA and Solver SDK Platform, you specify binary or alldifferent constraints by

setting the IntegerType and GroupIndex properties of Variable objects, or by calling

the SolverVarIntegerTypeSet and SolverVarGroupIndexSet procedural functions.

You will receive result code 19 if these specifications conflict as described above.

20. Lower and upper bounds on variables allow no feasible solution.

This message appears if you’ve defined lower and upper bounds on a decision

variable, where the lower bound is greater than the upper bound. This (obviously)

means there can be no feasible solution, but most Solver engines detect this

condition before even starting the solution process, and display this message instead

of “Solver could not find a feasible solution” to help you more quickly identify the

problem.

In VBA and Solver SDK Platform, you’ll receive result code 20 if you set the

LowerBound and UpperBound properties of a Variable object, or call the SolverVar-

LowerBoundSet and SolverVarUpperBoundSet procedural API functions, where a

lower bound is greater than the corresponding upper bound.

21. Solver encountered an error computing derivatives. Consult Help on Derivatives, or use
Excel Interpreter in the Solver Model dialog.

This message appears when the Polymorphic Spreadsheet Interpreter is being used,

and the PSI Interpreter encounters an error when computing derivatives via

automatic differentiation. The most common cause of this message is a non-smooth

function in your objective or constraints, for which the derivative is undefined. But

in general, automatic differentiation is somewhat more strict than finite differencing:

As a simple example, =SQRT(A1) evaluated at A1=0 will yield this error message

when the Solver is using automatic differentiation (since the derivative of the SQRT

function is algebraically undefined at zero), but this won’t yield an error when you

use the Excel Interpreter and the Solver is using finite differencing.

In Solver SDK Platform, this result code appears if your Evaluator for derivatives

returns a nonzero value to its caller. You’ll have to examine your Evaluator to

further diagnose the problem.

22. Variable appears in more than one cone constraint.

This message appears when you solve if the same decision variable appears in more

than one cone constraint. You can define as many cone constraints as you want, but

each one must constrain a different group of decision variables.

In VBA and Solver SDK Platform, you specify cone constraints by setting the

ConeType and ConeIndex properties of Variable objects, or by calling the

SolverVarConeTypeSet and SolverVarConeIndexSet procedural API functions. You

will receive result code 22 if these specifications conflict as described above.

23. Formula depends on uncertainties, must be summarized or transformed.

This message can appear in Analytic Solver Comprehensive and Analytic Solver

Optimization, typically when you are first starting to build optimization models that

include uncertainty – consider it part of the “learning experience.” You’ll be

defining constraints or an objective, computed by formulas that depend on uncertain

parameters: Each such formula represents an array of sample values, one for each

realization of the uncertainties. For your model to be well-defined, the objective or

constraint must either be summarized to a single value (such as a mean or percentile

value) or transformed into a set of single-valued constraints.

To pinpoint the cell formula(s) where the problem occurs, follow the steps in “What

Can Go Wrong, and What to Do About It” in the chapter “Getting Results:

Stochastic Optimization” in the Analytic Solver User Guide. To correct the problem,

36 • Solver Result Messages Solver Engine User’s Guide V2021

you can (i) use the Ribbon or Task Pane to define the constraint as a chance

constraint or the objective as an expected value or risk measure objective, or (ii) edit

the formula so that its ‘top level’ value is computed by a PSI Statistics function such

as PsiMean() or PsiPercentile(). It’s important to understand why you need to

summarize or transform a formula that depends on uncertainties: To learn more,

read the chapter “Mastering Stochastic Optimization Concepts” in the Analytic

Solver User Guide.

24. Excel Interpreter can only handle normal objective and constraints.

In Analytic Solver Comprehensive and Analytic Solver Optimization, this message

appears when you solve if you’ve used the Task Pane Model tab to define a chance

constraint or an expected value or risk measure objective, but you’ve selected the

Excel Interpreter in the Task Pane Platform tab. (It doesn’t occur in Solver SDK

Platform.) The PSI Interpreter can handle these types of constraints or objectives,

without using PSI Statistics functions on the worksheet. But the Excel Interpreter

cannot do this; you must use PSI Statistics functions to summarize the array of

sample values represented by the objective and each constraint that depends on

uncertainty. For example, you can compute a VaR-type chance constraint with a

PsiPercentile() function. To learn more, read the chapter “Mastering Stochastic

Optimization Concepts” in the Analytic Solver User Guide.

25. Simulation optimization doesn't handle models with recourse decisions.

In Analytic Solver Comprehensive and Analytic Solver Optimization, this message

appears when you solve if you’ve used the Task Pane Model tab to define a recourse

decision variable, but you’ve set the Solve Uncertain Models option to Simulation

Optimization in the Task Pane Platform tab. In Solver SDK Platform, it appears if

you’ve set the ModelParam "SolveUncertain" property to 1, and your model includes

recourse decision variables. Simulation optimization, as defined in the academic

literature and as implemented in the Analytic Solver or Solver SDK products,

doesn’t support the concept of recourse decision variables. To solve a problem with

recourse decisions, you’ll need to set the Task Pane Platform tab options or

ModelParam "SolveUncertain" property to use stochastic programming and robust

optimization methods, both of which do support recourse decision variables (or use

Automatic mode). To learn more, read the chapter “Mastering Stochastic

Optimization Concepts” in the Analytic Solver User Guide.

26. Solver could not find a feasible solution to the robust chance constrained problem.

This message may appear when you solve a model with uncertainty and chance

constraints using robust optimization. When you do this, the Solver transforms your

original model with uncertainty into a robust counterpart model that is a conven-

tional optimization problem without uncertainty.

This message means that the Solver could not find a feasible solution to the robust

counterpart problem. It does not necessarily mean that there is no feasible solution

to the original problem; the robust counterpart is an approximation to the problem

defined by your chance constraints that may yield conservative solutions which over-

satisfy the chance constraints.

In Analytic Solver Comprehensive and Analytic Solver Optimization, when this

message appears, there may be an option to “Auto Adjust Chance Constraints” – a

small white button containing a green arrow, as shown below for result code 27.

Your simplest course of action is to select this option and click OK. The Solver will

then re-solve the problem, automatically adjusting the sizes of robust optimization

uncertainty sets created for the chance constraints, in an effort to find a feasible

solution.

Solver Engine User’s Guide V2021 Solver Result Messages • 37

If you don’t see the option “Auto Adjust Chance Constraints,” this normally means

that the automatic improvement algorithm has already been tried (possibly because

the “Auto Adjust Chance Constraints” option is set in the Task Pane), and this

algorithm was unable to find a feasible solution. In this case, you should proceed as

described for result code 5, “Solver could not find a feasible solution:” Look for

conflicting constraints, i.e. conditions that cannot be satisfied simultaneously,

perhaps due to choosing the wrong relation (e.g. <= instead of >=) on an otherwise

appropriate constraint.

27. Solver found a conservative solution to the robust chance constrained problem. All
constraints are satisfied.

This message may appear when you solve a model with uncertainty and chance

constraints using robust optimization. When you do this, the Solver transforms your

original model with uncertainty into a robust counterpart model that is a conven-

tional optimization model without uncertainty.

The message means that the Solver found an optimal solution to the robust counter-

part model, but when this solution was tested against your original model (using

Monte Carlo simulation to test satisfaction of the chance constraints), the solution

over-satisfied the chance constraints; this normally means that the solution is

‘conservative’ and the objective function value can be further improved.

In Analytic Solver Comprehensive and Analytic Solver Optimization when this

message appears, there may be an option to “Auto Adjust Chance Constraints” – a

small white button containing a green arrow, as shown below. Your simplest course

of action is to select this option and click OK. The Solver will then re-solve the

problem, automatically adjusting the sizes of robust optimization uncertainty sets

created for the chance constraints, in an effort to improve the solution.

If you don’t see the option “Auto Adjust Chance Constraints,” this normally means

that the automatic improvement algorithm has already been tried (possibly because

the “Auto Adjust Chance Constraints” option is set in the Task Pane).

An alternative course of action is to manually adjust the Chance measures of selected

chance constraints, and re-solve the problem. The automatic improvement algorithm

uses general-purpose methods to find an improved solution; you may be able to do

better by adjusting Chance measures based on your knowledge of the problem.

28. Solver has converged to the current solution of the robust chance constrained problem.
All constraints are satisfied.

This message may appear when you solve a model with uncertainty and chance

constraints using robust optimization, and you’ve set the “Auto Adjust Chance

Constraints” option in the Task Pane Output tab to True, or you’ve previously used

the “Auto Adjust Chance Constraints” option in the Task Pane Output tab. It means

that the Solver has found the best ‘improved solution’ it can; the normal constraints

are satisfied, and the chance constraints are satisfied to the Chance level that you

specified.

This is usually a very good solution, but it does not rule out the possibility that you

may be able to find an even better solution by manually adjusting Chance measures

based on your knowledge of the problem, and re-solving.

29. Solver cannot improve the current solution of the robust chance constrained problem.
All constraints are satisfied.

This message may appear when you solve a model with uncertainty and chance

constraints using robust optimization, and you’ve set the “Auto Adjust Chance

Constraints” option in the Task Pane Output tab to True, or you’ve previously used

the “Auto Adjust Chance Constraints” option in the Task Pane Output tab. It means

38 • Solver Result Messages Solver Engine User’s Guide V2021

that the Solver could not find an improved solution that satisfies all of the chance

constraints to the Chance level that you specified. Typically in this case, some of the

chance constraints will be satisfied to the level you specified, or even over-satisfied,

but others will be under-satisfied.

You may find that the solution is acceptable, but if the chance constraints must be

satisfied to the level you specified, further work will be required. You may be able to

find an improved solution by manually adjusting Chance measures based on your

knowledge of the problem, and re-solving.

Note: For custom Solver Result Messages and result codes returned by the Interval

Global Solver (which is available only in Analytic Solver Comprehensive and

Analytic Solver Optimization at present), please consult “Interval Global Solver

Result Messages” in the chapter “Solver Result Messages” in the Analytic Solver

User Guide.

Large-Scale GRG Solver Result Messages
The Large-Scale GRG Solver engine can return the following standard Solver Result

Messages and result codes listed earlier: -1, 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21 and 22. It can also return the Solver engine-specific

messages and result codes listed in this section. If you’re using the object-oriented

interface in VBA or Solver SDK Platform, the result codes are returned by the

Problem.Solver.OptimizeStatus property. If you’re using the legacy VBA macro

interface in Excel, the result codes are returned by the SolverSolve function.

1017. Insufficient memory for basis matrix. Problem is too big for LSGRG.

This message appears when there are too many nonzero entries in the sparse-matrix

representation of the inverse of the basis matrix (used to find feasible solutions to the

constraints). Although the problem may be within the limits of variables and

constraints supported by the Large-Scale GRG Solver, the density of the matrix

entries is too great for the this Solver to handle. If you receive this message or the

corresponding result code, try the Large-Scale SQP Solver or Knitro Solver, which

can usually handle much larger problems than the Large-Scale GRG Solver.

1040. Too many new nonzero Jacobian entries. Choose a different starting point.

The Large-Scale GRG Solver maintains a sparse representation of the Jacobian

matrix (i.e. the matrix of partial derivatives of the objective and constraints with

respect to the decision variables, used to determine search directions), in which zero

partial derivatives are omitted. If the sparsity pattern of the Jacobian matrix is not

known when the solution process starts, the Solver constructs the matrix based on the

partial derivatives at the starting point you supply. Some partial derivatives that are

zero at the starting point may become nonzero as the Solver moves to new trial

points. The Large-Scale GRG Solver can accommodate a large, but limited number

of these new nonzero partial derivatives; if the limit is exceeded, this message or

result code is returned.

You may be able to work around this problem by restarting the Solver at a different

point – for example at the ending point reached when this message appears. A better

approach is to specify the sparsity pattern of the Jacobian matrix at the beginning of

the solution process. In Analytic Solver Comprehensive and Analytic Solver

Optimization, the PSI Interpreter can determine the sparsity pattern automatically. In

Solver SDK Platform, if you’ve written your own Evaluator for the objective and

constraints, you can specify the sparsity pattern by setting the Model object

AllGradDepend property, or by calling the SolverModAllGradDependSet procedural

Solver Engine User’s Guide V2021 Solver Result Messages • 39

API function. This will ensure that the Solver will not encounter the limit on

additional nonzero Jacobian entries.

2009. Variable bounds are conflicting.

This message appears if you have defined lower and upper bounds on a decision

variable, where the lower bound is greater than the upper bound. Hence there can be

no feasible solution. This very likely means that you have made a mistake by

specifying <= when you want >= or vice versa. You should recheck the bounds you

specified for the decision variables to ensure they are consistent and reflect your

intentions.

Other Large-Scale GRG Solver Error Messages

On very difficult or ill-formed problems, the Large-Scale GRG Solver may display

error messages of the form “LSGRG Solver: ResultCode = errval” where errval is

an internal error code, greater than or equal to 1000. If you see an error message of

this form, please contact Frontline Systems technical support.

Large-Scale SQP Solver Result Messages
The Large-Scale SQP Solver engine can return any of the standard Solver Result

Messages and result codes listed earlier: -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21 and 22. (Result code 7 can be returned only if both of

the options “Treat Constraints as Linear” and “Treat Objective as Linear” are

selected.) If you’re using the object-oriented interface in VBA or Solver SDK

Platform, the result codes are returned by the Problem.Solver.OptimizeStatus

property. If you’re using the legacy VBA macro interface in Excel, the result codes

are returned by the SolverSolve function.

Knitro Solver Result Messages
The Knitro Solver engine can return the following standard Solver Result Messages

and result codes listed earlier: -1, 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21 and 22. It can also return the Solver engine-specific messages and

result codes listed in this section. If you’re using the object-oriented interface in

VBA or Solver SDK Platform, the result codes are returned by the

Problem.Solver.OptimizeStatus property. If you’re using the legacy VBA macro

interface in Excel, the result codes are returned by the SolverSolve function.

1000. Unable to compute analytic 2nd derivatives. Choose a different Second Derivatives
Option.

This message appears if you’ve chosen “Analytic 2nd Derivatives” for the Second

Derivatives option (see “Knitro Solver Options” in the chapter “Solver Options”),

but the PSI Interpreter is unable to compute analytic second derivatives for your

problem functions. This may be due to use of a nonsmooth function, or a function

whose first derivative is nonsmooth, in your objective or constraints. You may be

able to proceed by choosing “Analytic 1st Derivatives” or “Finite Differences” for

the Second Derivatives option. In Solver SDK Platform, you do this by setting the

EngineParam "SecondDerivatives" parameter. But you should also consider

changing the formulas in your model to eliminate functions whose second

derivatives are not defined.

40 • Solver Result Messages Solver Engine User’s Guide V2021

1001. Unable to allocate enough memory for analytic 2nd derivatives. Choose a different
Second Derivatives Option.

This message appears if you’ve chosen “Analytic 2nd Derivatives” for the Second

Derivatives option (see “Knitro Solver Options” in the chapter “Solver Options”) but

the Solver is unable to allocate enough memory to compute or store analytic 2nd

derivative information (which can take a considerable amount of space). As a first

step in Analytic Solver Comprehensive and Analytic Solver Optimization, in the

Task Pane Platform tab, ensure that the Advanced group Use Internal Sparse

Representation option is set to True. If this message persists, try using “Analytic 1st

Derivatives” or “Finite Differences” for the Second Derivatives option. In Solver

SDK Platform, you do this by setting the EngineParam "SecondDerivatives"

parameter.

Other Knitro Solver Error Messages

In very exceptional cases, the Knitro Solver may display error messages of the form

“An internal error occurred…,” or return a result code greater than 1001 via the

SolverSolve function, or the Problem.Solver.OptimizeStatus property, or the

SolverOptimizeStatus API function in the Solver SDK Platform. If you encounter

such an error message or result code, please contact Frontline Systems.

MOSEK Solver Result Messages
The MOSEK Solver engine can return the following standard Solver Result

Messages and result codes listed earlier: -1, 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 19, 20, 21 and 22. It can also return the Solver engine-specific messages and

result codes listed in this section. If you’re using the object-oriented interface in

VBA or Solver SDK Platform, the result codes are returned by the

Problem.Solver.OptimizeStatus property. If you’re using the legacy VBA macro

interface in Excel, the result codes are returned by the SolverSolve function.

1001. MOSEK Solver requires Solve With Structure or Automatic.

This message appears if you attempt to solve a problem with the MOSEK Solver,

and in the Task Pane Platform tab, the Optimization Model group Interpreter option

is set to Excel Interpreter, or the Advanced group Supply Engine With option is set

to Gradients. This Solver Engine uses diagnostic information from the PSI

Interpreter that is available only if the Interpreter option is set to PSI Interpreter, and

the Supply Engine With option is set to Structure, Convexity or Automatic. In

Solver SDK Platform, you must either load an Excel workbook and use the PSI

Interpreter, or else provide diagnostic information by setting the Model object

AllGradDepend property, or calling the SolverModAllGradDependSet procedural

API function, to use this Solver Engine.

1002, 1293, 1234, 1295, 1296. The problem cannot be solved and is likely nonconvex.

This message appears if the MOSEK Solver algorithms detect numerical error

conditions that make it impossible to proceed with the solution process. In most

cases, this means that one or more problem functions are non-convex. The MOSEK

Solver can be used only on smooth convex (linear, quadratic or nonlinear) problems.

You can try to solve the problem with the Large-Scale GRG, Large-Scale SQP or

Knitro Solvers, all of which are designed to handle non-convex problems. But you

should also consider why some of your problem functions may be non-convex. In

Analytic Solver Comprehensive and Analytic Solver Optimization, you may gain

further information by selecting Optimize – Analyze Without Solving (ensure that

the Diagnosis group Intended Model Type option is set to Linear, and the Advanced

Solver Engine User’s Guide V2021 Solver Result Messages • 41

group Supply Engine With option is set to Convexity). Then select Reports –

Optimization – Structure and examine the report, looking at the rightmost column

which gives information on the convexity of individual problem functions.

Gurobi Solver Result Messages
The Gurobi Solver can return the following standard Solver Result Messages and

result codes listed in the last section: -1, 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 19, 20, and 21. It can also return the Solver engine-specific message and result

code listed in this section. If you’re using the object-oriented interface, the result

codes are returned by the Problem.Solver.OptimizeStatus property. If you’re using

the legacy VBA macro interface in Excel, the result codes are returned by the

SolverSolve function.

1001. Integer Cutoff makes problem infeasible.

This message appears if you entered an inappropriate value in the Integer Cutoff

option in the Task Pane Engine tab Integer group (i.e. a value larger than the optimal

objective if maximizing, or smaller than the optimal objective if minimizing).

1002. Model is unbounded or infeasible.

This message appears when the Gurobi Solver determines, in its presolve phase, that

the model is either unbounded or infeasible. Because the main optimization process

is never started in this case, the Solver Engine cannot return result codes 4 or 5.

1004. Solver ran into numerical difficulties.

This message is very rare, but it can appear in situations where the problem

(represented by the LP coefficient matrix and bounds on the variables and

constraints) is numerically unstable, and the Gurobi Solver’s sophisticated methods

for overcoming this instability are not sufficient.

1005. Unable to satisfy optimality tolerances; a sub-optimal solution is available.

This message appears – typically for a model that is numerically unstable – when the

Gurobi Solver has come “close” to a solution, but is unable to satisfy its optimality

tolerances. Final values of the objective and variables are available in the usual way.

1006. Quadratic objective is not positive semi-definite.

This message appears when you are solving a quadratic programming problem, and

the Hessian of the quadratic objective is not strictly positive semi-definite. When this

is true, the Gurobi Solver cannot find a solution because the problem is most likely

nonconvex. The Gurobi Solver tries to add small perturbations to correct for small

positive semi-definite violations. For your model, the required perturbations are

larger than the required tolerance that is controlled by the ‘PSD Tolerance’

parameter.

10001. Out of memory.

This message can sometimes appear for very large, difficult LP/MIP problems. It

means that the Branch & Bound tree has exhausted all available main memory. Your

best immediate course of action is to set the Task Pane Engine tab MIP group Node

File Start option to a low value such as 1 (for 1GB of memory), or even a fractional

value. This will cause the Gurobi Solver to write the Branch & Bound tree to a disk

file (the “Node File”) once it reaches 1GB in size. This should allow you to solve

the problem, at some cost in extra solution time. But it may be a good idea to

upgrade your PC with more RAM to solve such problems.

42 • Solver Result Messages Solver Engine User’s Guide V2021

XPRESS Solver Result Messages
The XPRESS Solver can return the following standard Solver Result Messages and

result codes listed in the last section: -1, 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 19, 20, and 21. It can also return the Solver engine-specific message and result

code listed in this section. If you’re using the object-oriented interface, the result

codes are returned by the Problem.Solver.OptimizeStatus property. If you’re using

the legacy VBA macro interface in Excel, the result codes are returned by the

SolverSolve function.

1001. Objective worse than Cutoff.

This message appears if (i) the Dual Simplex method (or the Default method, which

is Dual Simplex) is selected for the Algorithm to Use option in the Task Pane Engine

tab General group, and (ii) you entered an inappropriate value in the Integer Cutoff

option in the Integer group (i.e. a value larger than the optimal objective if

maximizing, or smaller than the optimal objective if minimizing).

This message appears only if the LP relaxation of the mixed-integer problem yields

an objective worse than the value entered for the Integer Cutoff option. On mixed-

integer programming problems, if the objective of the relaxation is better than the

Integer Cutoff value, then the Branch & Bound method will proceed with the search

for integer solutions, cutting off the search on any node of the B&B tree whose

objective is worse than the Integer Cutoff. So, if the Integer Cutoff value does not

“cut off” the solution of the relaxation, but it does “cut off” the search that would

have yielded the optimal integer solution, you will instead receive the message

“Solver could not find a feasible solution.”

Also bear in mind that this message will appear only if the Dual Simplex method is

used; if the Primal Simplex or Newton Barrier method is used, and the Integer Cutoff

value is inappropriate, you will always receive the message “Solver could not find a

feasible solution.” Hence, you should take care to ensure that the value you enter for

the Integer Cutoff option is no better than the objective of a known integer solution

to the current problem.

1002. Global search incomplete – no integer solution was found.

This message appears if you are solving a mixed-integer quadratic programming

problem, and the Hessian of the quadratic objective is not strictly positive definite.

When this is true, the QP subproblems solved as part of the Branch & Bound process

may not have unique optimal solutions, and hence the Branch & Bound search

cannot guarantee an exhaustive evaluation of all possible integer solutions. If no

integer feasible solution has been found by the time the search is terminated, this

message appears; otherwise the following message appears.

1003. Global search incomplete – an integer solution was found.

This message appears if you are solving a mixed-integer quadratic programming

problem, and the Hessian of the quadratic objective is not strictly positive definite.

When this is true, the QP subproblems solved as part of the Branch & Bound process

may not have unique optimal solutions, and hence the Branch & Bound search

cannot guarantee an exhaustive evaluation of all possible integer solutions. If at least

one integer feasible solution has been found by the time the search is terminated, the

best such solution is returned by the Solver, and this message appears.

1004. Quadratic Objective is not positive definite.

This message appears if you are solving a quadratic programming problem, and the

Hessian of the quadratic objective is not strictly positive definite. When this is true,

the XPRESS Solver cannot guarantee an optimal solution. If the quadratic objective

Solver Engine User’s Guide V2021 Solver Result Messages • 43

is positive semidefinite, the Solver will normally find one of many solutions with the

same best objective value. If the quadratic objective is indefinite, the Solver may not

find an optimal solution at all (this is a difficult global optimization problem).

1005. Model does not appear to be convex.

This message appears when you are solving a quadratic programming problem, and

the quadratic objective function is not convex. You can turn off the built-in

convexity checking algorithm for the Xpress Solver by setting the ‘Check

Convexity’ parameter to False, and try again. With this change, since your problem

is not convex, the Xpress Solver might not find an optimal solution at all since this is

a difficult global optimization problem.

OptQuest Solver Result Messages
The OptQuest Solver engine can return the following standard Solver Result

Messages and result codes listed in the last section: -1, 0, 3, 5, 6, 8, 9, 10, 11, 12, 13,

18, 19, 20, 21 and 22. It can also return the Solver engine-specific message and

result code listed in this section. If you’re using the object-oriented interface in VBA

or Solver SDK Platform, the result codes are returned by the

Problem.Solver.OptimizeStatus property. If you’re using the legacy VBA macro

interface in Excel, the result codes are returned by the SolverSolve function.

1001. Multiple groups of “alldifferent” variables.

This message appears if your model includes more than one “alldifferent” constraint,

which defines a group of integer variables that are required to be all different at the

solution. The OptQuest Solver engine currently supports only one such group per

problem. To use the OptQuest Solver, you must re-formulate your model so that

only one “alldifferent” constraint is defined.

5002. Optimal solution found.

This message appears when the OptQuest Solver was able to enumerate and evaluate

all possible solutions to your model. The OptQuest Solver has systematically

explored the feasible solution space and found the globally optimal solution. There is

no other solution satisfying the constraints that has a better value for the objective.

Problems with Poorly Scaled Models
A poorly scaled model is one that computes values of the objective, constraints, or

intermediate results that differ by several orders of magnitude. A classic example is

a financial model that computes a dollar amount in millions or billions and a return

or risk measure in fractions of a percent. Because of the finite precision of computer

arithmetic, when these values of very different magnitudes (or others derived from

them) are added, subtracted, or compared – in the user’s model or in the Solver’s

own calculations – the result will be accurate to only a few significant digits. After

many such steps, the Solver may detect or suffer from “numerical instability.”

The effects of poor scaling in a large, complex optimization model can be among the

most difficult problems to identify and resolve. It can cause Solver engines to return

messages such as “Solver could not find a feasible solution,” “Solver could not

improve the current solution,” or even “The linearity conditions required by this

Solver engine are not satisfied,” with results that are suboptimal or otherwise very

different from your expectations. The effects may not be apparent to you, given the

44 • Solver Result Messages Solver Engine User’s Guide V2021

initial values of the variables, but when the Solver explores Trial Solutions with very

large or small values for the variables, the effects will be greatly magnified.

Dealing with Poor Scaling

The Large-Scale LP/QP Solver, Gurobi Solver, Large-Scale GRG Solver, Large-

Scale SQP Solver, and Knitro Solver all offer a Use Automatic Scaling option. The

MOSEK Solver offers four choices: No automatic scaling, conservative scaling,

aggressive scaling, and automatic determination of scaling. The XPRESS Solver

offers a wide range of options for automatic scaling of your model, in the Scaling

option group on the Task Pane Engine tab. When you use these options, the Solver

will attempt to scale the values of the objective and constraint functions internally in

order to minimize the effects of a poorly scaled model. Note however that

calculations performed by your formulas in spreadsheet cells, or by expressions or

statements in your custom program, with values of very different magnitudes, may

result in loss of accuracy that is outside the control of the Solver.

The best way to avoid scaling problems is to carefully choose the “units” implicitly

used in your model so that all computed results are within a few orders of magnitude

of each other. For example, if you express dollar amounts in units of (say) millions,

the actual numbers computed on your Excel worksheet or in your custom program

may range from perhaps 1 to 1,000.

If you are using Analytic Solver Comprehensive and Analytic Solver Optimization

and you’re experiencing results that may be due to poor scaling, you can check your

model for scaling problems that arise in the middle of your Excel formulas by

selecting a Scaling Report when available from Reports – Optimization on the

Ribbon. If you are using Solver SDK Platform with an Evaluator written in code,

you’ll have to analyze by hand your program statements that calculate values for the

objective and constraints for poorly scaled results.

Because automatic scaling will compensate for large differences in the magnitudes of

the objective and constraints, we recommend that you use Automatic Scaling for

most of your Solver problems. In some cases, however, no scaling may yield better

results than automatic scaling. If you receive one of the Solver Result Messages

mentioned above, you may wish to try solving the model with no scaling.

The Integer Tolerance Option and Integer Constraints
When you solve a mixed-integer programming problem (any problem with integer

constraints) using the Large-Scale LP/QP Solver, Large-Scale GRG Solver, Large-

Scale SQP Solver, Knitro Solver, Gurobi Solver, or MOSEK Solver, all of which

employ the Branch & Bound method, the solution process is governed by the Integer

Tolerance option on the Task Pane Engine tab. Since the default setting of the

Integer Tolerance option is non-zero for some Solver Engines, the Solver stops when

it has found a solution satisfying the integer constraints whose objective is within the

tolerance of the true integer optimal solution. Therefore, you may know of or

discover an integer solution that is “better” than the one found by the Solver.

The reason the default setting of the Integer Tolerance option may be non-zero is that

the solution process for integer problems – which can take a great deal of time in any

case – often finds a near-optimal solution (sometimes the optimal solution) relatively

quickly, and then spends far more time exhaustively checking other possibilities to

find (or verify that it has found) the very best integer solution. The Integer Tolerance

default setting is a compromise value that often saves a great deal of time, and still

Solver Engine User’s Guide V2021 Solver Result Messages • 45

ensures that a solution returned by the Solver is close to the true integer optimal

solution.

To ensure that the Solver finds the true integer optimal solution – possibly at the

expense of far more solution time – set the Integer Tolerance option to zero. In

Analytic Solver Comprehensive and Analytic Solver Optimization you can do this on

the Task Pane Engine tab. In VBA and Solver SDK Platform, you do this by setting

the value of the “IntTolerance” parameter.

Limitations on Non-Convex Optimization
As discussed in the chapter “Mastering Conventional Optimization Concepts” in the

Analytic Solver User Guide, non-convex problems are far more difficult to solve

than convex (linear, quadratic or nonlinear) problems, and there are fewer guarantees

about what the Solver can do. This section refers to the Large-Scale GRG Solver as

LSGRG, and to the Large-Scale SQP Solver as LSSQP.

How do you know whether your nonlinear model is convex or non-convex? With

other software, your only choice is to use the mathematical properties of your

problem functions to attempt to prove convexity or non-convexity. Few users have

the time or the background to do this. But anyone can use the automatic convexity

test in Analytic Solver Comprehensive and Analytic Solver Optimization by simply

selecting Optimize – Analyze Without Solving from the Ribbon.

The convexity test in Analytic Solver Comprehensive and Analytic Solver

Optimization does not always return a definitive answer – the test would require time

exponential in the number of variables and constraints to guarantee such an answer.

If the convexity test does not return a definitive answer, you should assume that your

model is non-convex, and follow the advice in this section, unless you do have the

time and background to develop an analytic proof of convexity.

When dealing with a non-convex problem, it is a good idea to run the Solver starting

from several different sets of initial values for the decision variables. Since the

Solver follows a path from the starting values (guided by the direction and curvature

of the objective function and constraints) to the final solution values, it will normally

stop at a peak or valley closest to the starting values you supply. By starting from

more than one point – ideally chosen based on your own knowledge of the problem –

you can increase the chances that you have found the best possible “optimal

solution.” You can do this manually, or you can set the global optimization options

for the LSGRG, LSSQP or Knitro Solver, to activate the multistart method which

will automatically run the Solver from multiple starting points.

Large-Scale GRG, SQP, and Knitro Solver Stopping
Conditions

It is helpful to understand how the optimization methods used in the LSGRG,

LSSQP and Knitro Solvers behave on a non-convex model, and what each of the

possible Solver Result Messages means for these Solver engines. At best, the

LSGRG, LSSQP or Knitro Solver alone – like virtually all “classical” nonlinear

optimization algorithms – can find a locally optimal solution to a reasonably well-

scaled model. At times, the Solver will stop before finding a locally optimal solution,

when it is making very slow progress (the objective function is changing very little

from one trial solution to another) or for other reasons.

46 • Solver Result Messages Solver Engine User’s Guide V2021

Locally Versus Globally Optimal Solutions

When the first message (“Solver found a solution”) appears, it means that the

LSGRG, LSSQP or Knitro Solver has found a locally optimal solution – there is no

other set of values for the decision variables close to the current values which yields

a better value for the objective function. Figuratively, this means that the Solver has

found a “peak” (if maximizing) or “valley” (if minimizing) – but there may be other

taller peaks or deeper valleys far away from the current solution. Mathematically,

this message means that the Karush - Kuhn - Tucker (KKT) conditions for local

optimality have been satisfied (to within a certain tolerance, related to the Precision

setting in the Task Pane Engine tab, or the “Precision” parameter in VBA and Solver

SDK Platform).

When Solver has Converged to the Current Solution

When the LSGRG, LSSQP, or Knitro Solver’s second stopping condition is satisfied

(before the KKT conditions are satisfied), the second message (“Solver has

converged to the current solution”) appears. This means that the best solution found

so far has changed very little for the last few iterations or trial solutions. In the

LSGRG and LSSQP Solvers, the “change in the solution” is compared to the value

of the Convergence option in the Task Pane Engine tab, or the “Convergence”

parameter in VBA and Solver SDK Platform. The LSGRG Solver stops if the

relative change in the objective function value is less than the Convergence value;

the LSSQP Solver stops if the maximum normalized complementarity gap of the

variables is less than the Convergence value. For most problems, the default

Convergence value (which is different for the two Solvers) is appropriate. For more

information, see the discussion of the Convergence option for each Solver in the

chapter “Solver Options.” The Knitro Solver uses slightly different criteria to

determine when to stop due to slow progress, but the effect is much the same.

A poorly scaled model is more likely to trigger this stopping condition, even if the

Use Automatic Scaling option is set to True. So it pays to design your model to be

reasonably well scaled in the first place: The typical values of the objective and

constraints should not differ from each other, or from the decision variable values, by

more than three or four orders of magnitude.

If you are getting this message when you are seeking a locally optimal solution, you

can change the setting of the Convergence option to a smaller value such as 1E-5 or

1E-6; but you should also consider why it is that the objective function is changing

so slowly. Perhaps you can add constraints or use different starting values for the

variables, so that the Solver does not get “trapped” in a region of slow improvement.

When Solver Cannot Improve the Current Solution

The third stopping condition, which yields the message “Solver cannot improve the

current solution,” occurs only rarely. It means that the Solver has encountered

numerical accuracy or stability problems in optimizing the model, and it has tried all

available methods to overcome the numerical problems, but cannot reach an optimal

solution. The issues involved are beyond the level of this User Guide, as well as most

of the books recommended in the Analytic Solver User Guide. One possibility worth

checking is that some of your constraints are redundant, and should be removed. To

analyze problems of this nature, you may need specialized consulting assistance.

Limitations on Global Optimization
Nonlinear optimization problems in general, and non-convex global optimization

problems in particular, can be very challenging for any solution method, for several

Solver Engine User’s Guide V2021 Solver Result Messages • 47

reasons. In such problems, there may be multiple feasible regions and many locally

optimal solutions, with little analytic information about the problem functions

available to guide a Solver towards feasible, better or optimal solutions. (In fact, just

deciding whether or not a non-convex problem has any feasible solutions is itself a

global optimization problem.) Because of these properties, the “classical”

optimization methods used by the standard GRG Solver, the Large-Scale GRG

Solver, the Large-Scale SQP Solver, and the Knitro Solver cannot guarantee that a

globally optimal solution, or even a feasible solution, if one exists, will be found.

The multistart methods for global optimization included in Analytic Solver

Comprehensive, Analytic Solver Optimization and Solver SDK offer a better chance

of finding a globally optimal solution, or at least a feasible solution, but with few or

no guarantees. Yet these methods prove useful because they typically find better

solutions than the classical methods alone, even if they cannot prove global

optimality. Some of the capabilities and limitations of these solution methods are

discussed below.

Problems that include non-smooth functions are even more difficult, and the

available solution methods offer still fewer guarantees – as discussed in the next

section, “Limitations on Non-Smooth Optimization.”

Multistart Search with the Large-Scale GRG, SQP
and Knitro Solvers

The multistart methods for global optimization included in Analytic Solver

Comprehensive, Analytic Solver Optimization and Solver SDK can overcome some

of the limitations of the LSGRG, LSSQP and Knitro Solvers alone, but they are not a

panacea. The multistart methods will automatically run the LSGRG, LSSQP or

Knitro Solver from a number of starting points and will return the best of several

locally optimal solutions found as the (probable) globally optimal solution. Because

the starting points are selected at random and then “clustered” together, they will

provide a reasonable degree of “coverage” of the space enclosed by the bounds on

the variables. The tighter the variable bounds you specify and the more time you

allow, the better the coverage.

However, the performance of the multistart methods is generally limited by the

performance of the LSGRG, LSSQP or Knitro Solver on the subproblems. If the

Solver stops prematurely due to slow convergence, or fails to find a feasible point on

a given run, the multistart methods can improve upon this only by finding another

starting point from which the Solver can find a feasible solution, or a better locally

optimal solution, by following a different path into the same region. If the LSGRG,

LSSQP, or Knitro Solver is having difficulty with the subproblems, you may wish to

try the LSSQP Evolutionary or OptQuest Solver as another alternative.

If the LSGRG, LSSQP or Knitro Solver reaches the same locally optimal solution on

many different runs initiated by the multistart methods, this will tend to decrease the

Bayesian estimate of the number of locally optimal solutions in the problem, causing

the multistart methods to stop relatively quickly. In many cases this indicates that

the globally optimal solution has been found – but you should always inspect and

think about the solution, and consider whether you should run the Solver manually

from starting points selected from your knowledge of the problem.

48 • Solver Result Messages Solver Engine User’s Guide V2021

Large-Scale GRG, SQP and Knitro Solvers and
Integer Constraints

Like the multistart methods, the performance of the Branch & Bound method on

nonlinear problems with integer constraints is limited by the performance of the

LSGRG, LSSQP and Knitro Solvers on the subproblems. If the Solver stops

prematurely due to slow convergence, or fails to find a feasible point on a given run,

this may prevent the Branch & Bound method from finding the true integer optimal

solution. In most cases, the combination of the Branch & Bound method and the

LSGRG, LSSQP or Knitro Solver will at least yield a relatively good integer

solution. However, if you are unable to find a sufficiently good solution with this

combination of methods, you may wish to try the OptQuest Solver, or ask Frontline

Systems about other alternatives.

Determining infeasibility of a non-convex problem is especially difficult for an

interior point nonlinear method. If you find that the Knitro Solver is taking a very

long time on your problem, without finding a feasible solution, you should set the

Solution Method option to Active Set on the Task Pane Engine tab, and try solving

the problem again.

Limitations on Non-Smooth Optimization
As discussed in the chapter “Mastering Conventional Optimization Concepts” in the

Analytic Solver User Guide, non-smooth problems – where the objective or

constraints are computed with discontinuous or non-smooth functions – are the most

difficult types of optimization problems to solve. There are few, if any, guarantees

about what the Solver (or any optimization method) can do with these problems.

The most common discontinuous function used in Excel spreadsheets is the IF

function, where the conditional test is dependent on the decision variables. Common

non-smooth functions in Excel are ABS, MIN and MAX. Analytic Solver

Comprehensive and Analytic Solver Optimization can often help in such cases – they

can automatically transform a model containing these functions, replacing them with

additional integer and continuous variables and linear constraints, to create an

‘equivalent’ model whose solution is the same as your original model. If the

resulting model contains only linear constraints, then a powerful LP/MIP Solver,

such as the Large-Scale LP/QP Solver, Gurobi Solver or XPRESS Solver, can be

used to solve the problem. This is further described in the Analytic Solver User

Guide.

Other common discontinuous functions in Excel are CHOOSE, the LOOKUP

functions, COUNT, INT, ROUND, CEILING and FLOOR. Functions such as

SUMIF and the database functions are discontinuous if the criterion or conditional

argument depends on the decision variables.

If your optimization problem includes non-smooth functions, your simplest course of

action is to use the OptQuest Solver engine or the LSSQP Solver engine with its

integrated Evolutionary Solver to find a “good” solution. You can try using the

LSGRG Solver, the LSSQP Solver alone, or the Knitro Solver on problems of this

type, but you should be aware of the effects of non-smooth functions on these Solver

engines, as summarized below.

You can use discontinuous functions such as IF and CHOOSE in calculations that

are not dependent on the decision variables, and are therefore constant in the

optimization problem. But any discontinuous functions that do depend on the

variables make the overall Solver model non-smooth. Users sometimes fail to

realize that certain functions, such as ABS, are non-smooth. For more information

Solver Engine User’s Guide V2021 Solver Result Messages • 49

on this subject, read the section “Non-Smooth Functions” in the chapter “Mastering

Conventional Optimization Concepts” in the Analytic Solver User Guide.

Effect on the Large-Scale GRG, SQP, and Knitro
Solvers

A smooth nonlinear solver, such as the LSGRG, LSSQP or Knitro Solver, relies on

derivative or gradient information to guide it towards a feasible and optimal solution.

Since it is unable to compute the gradient of a function at points where the function

is discontinuous, or to compute curvature information at points where the function is

non-smooth, it cannot guarantee that any solution it finds to such a problem is truly

optimal. In practice, the LSGRG, LSSQP and Knitro Solvers can sometimes deal

with discontinuous or non-smooth functions which are “incidental” to the problem,

but as a general statement, these Solver engines require that all problem functions are

smooth nonlinear.

If you are using Analytic Solver Comprehensive and Analytic Solver Optimization

with default settings, the Polymorphic Spreadsheet Interpreter will compute

derivatives of the problem functions using automatic differentiation. By default, the

Interpreter will in fact compute ‘point values’ for derivatives for a special set of

commonly used non-smooth functions – ABS, IF, MAX, MIN and SIGN – since

derivatives are defined at most points for these functions. This enables the LSGRG,

LSSQP or Knitro Solver to complete the solution process in many cases.

If you try to solve a problem with non-smooth or discontinuous functions other than

the ‘special functions’ ABS, IF, MAX, MIN or SIGN, using the LSGRG, LSSQP or

Knitro Solver, you’ll likely receive the message “Solver encountered an error

computing derivatives.” You can still solve your model with the Optimization

Model group Interpreter option set to Excel Interpreter – but this means that the

Solver will compute estimates of the derivatives via finite differencing, and all of the

caveats noted above on the Solver’s ability to find a solution will still apply.

The LSSQP Solver with its integrated Evolutionary Solver offers a better way to

attack large problems with some non-smooth functions. This Solver uses genetic

algorithm methods, focusing on the non-smooth variables and functions, to find good

starting points for local searches performed using powerful SQP methods; it seeks to

minimize the effects of non-smooth functions on the SQP-based local searches. This

combination is often effective, but it can offer few guarantees of optimal solutions.

If you’re using Solver SDK Platform, and you’ve written an Evaluator that the

Solver can call to obtain derivatives of the objective and constraints, your situation is

similar to that of the Interpreter in Analytic Solver Comprehensive and Analytic

Solver Optimization: Since the derivative of a non-smooth function is undefined at

certain points, your Evaluator must either return a nonzero value to signal an error –

thereby terminating the solution process – or else it must “come up with”

approximate values for the derivatives. If you haven’t supplied an Evaluator for

derivatives, but you have written an Evaluator for function values, the Solver will

call your Evaluator many times with perturbed values for the decision variables, and

compute estimates of the derivatives via finite differencing. Again, all of the caveats

above on the Solver’s ability to find a solution will apply.

If you’re using the Knitro Solver with its Second Derivatives option set to “Analytic

2nd Derivatives” (the default – see “Knitro Solver Options” in the chapter “Solver

Engine Options”), you may receive the Solver Result message “Unable to compute

analytic 2nd derivatives.” If all of your problem functions are smooth, this message

implies that some of your functions have non-smooth first derivatives, i.e. points

where their second derivatives are not defined. You should either modify your

50 • Solver Result Messages Solver Engine User’s Guide V2021

model, or choose “Analytic 1st Derivatives” or “Finite Differences” for the Second

Derivatives option.

OptQuest Solver Solutions and Stopping
Conditions

The OptQuest Solver is designed to deal with problems involving non-smooth or

discontinuous functions. However, it is important to understand what the OptQuest

Solver can and cannot do, and what each of the possible Solver Result Messages

means for this Solver engine. Because the OptQuest Solver does not rely on

derivative or gradient information, it cannot determine whether a given solution is

optimal – except in rare cases where all variables are integer and bounded, and it can

prove optimality by enumerating all possible solutions. Hence, the OptQuest Solver

is designed to seek continuously improved solutions – it stops and returns a solution

only if you press ESC or (in the SDK) your Evaluator returns the “user abort” code,

or when it exceeds one of the limits you’ve set via its Solver Engine options: Max

Time, Iterations, or Stop When Objective Hasn’t Improved.

“Good” Versus Optimal Solutions

The OptQuest Solver makes almost no assumptions about the mathematical

properties (such as continuity, smoothness or convexity) of the objective and the

constraints. Because of this, it cannot perform mathematical tests for optimality; it

knows only that a solution is “better” in comparison to other solutions found earlier.

It may sometimes find the true optimal solution, but in most cases, it will not be able

to tell you that this solution is truly optimal.

Evaluating a Solution Found by the OptQuest Solver

Once you have a solution from the OptQuest Solver, what can you do with it? Here

are some ideas:

1. Allow a different sequence of random numbers to be used (via the Task Pane

Engine tab, or via the “RandomSeed” parameter in VBA and Solver SDK

Platform), and run the OptQuest Solver again, to see if it finds an even better

solution in a reasonable length of time.

2. If you are watching the progress of the OptQuest Solver and the chart of the

objective in the Task Pane Output tab, you can press ESC and click the Restart

button, at any time. In Solver SDK Platform, your Evaluator for iterations can

examine the current Trial Solution and return the “restart” code to accomplish

the same thing.

3. Set the “Number of Solutions to Report” in the Task Pane Engine tab to a value

greater than 1, solve the problem again, and examine the Solutions Report to see

a set of alternative solutions. In VBA and Solver SDK Platform, you can

achieve the same effect by setting OptQuest-specific parameters.

4. Adjust the Precision (Obj Fun) and Precision (Dec Var) settings in the Task

Pane Engine tab, and solve the problem again. In VBA and Solver SDK

Platform, you can do this by setting OptQuest-specific parameters. These and

other settings are discussed in the next chapter, “Solver Engine Options.”

5. Keep the resulting solution, switch to the GRG Nonlinear, LSGRG, LSSQP, or

Knitro Solver and start it from that solution, and see if it finds the same or a

better solution. If the nonlinear Solver displays the message “Solver found a

solution” (or returns result code 0) you may have found at least a locally optimal

point – but remember that this test assumes smoothness of problem functions.

Solver Engine User’s Guide V2021 Solver Result Messages • 51

6. Select and examine the Population Report (in Solver SDK Platform, call the

equivalent API functions). If the Best Values are similar from run to run of the

OptQuest Solver, and if the Standard Deviations are small, this may be reason

for confidence that your solution is close to the global optimum. Since

optimization tends to drive the variable values to extremes, if the solution is

feasible and the Best Values are close to the Maximum or Minimum Values

listed in the Population Report, this may indicate that you have found an optimal

solution.

52 • Solver Engine Options Solver Engine User’s Guide V2021

Solver Engine Options

This chapter describes the options available for the Large-Scale LP/QP Solver,

Large-Scale GRG Solver, Large-Scale SQP Solver, Knitro Solver, MOSEK Solver,

Gurobi Solver, XPRESS Solver, and OptQuest Solver. In Analytic Solver

Comprehensive and Analytic Solver Optimization options may be examined or set

interactively via the Task Pane Engine tab, or programmatically using either the new

object-oriented API described below, or the traditional VBA functions described

in the later chapter “Programming the Solver Engines.” In Solver SDK Platform,

options may be examined or set via the new object-oriented API or the SDK

procedural API; both are described below.

Bear in mind that the options that control numerical tolerances and solution

strategies are pre-set to the choices that are applicable to the great majority of

problems; you should only change these settings in exceptional circumstances. The

options you will use most often are common to all the Solver products, and control

features like the display of iteration results or the upper limits on solution time or

Solver iterations.

Setting Options Programmatically
In Analytic Solver Comprehensive and Analytic Solver Optimization, you can

examine or set Solver Engine options using the object-oriented API described in this

section. In Solver SDK Platform, you can examine or set these options using either

the object-oriented API or the SDK procedural API. In both APIs, all option values

are of type double, though for some options only integer values, or values 0 and 1 are

used.

Object-Oriented API

In the object-oriented API, each Solver Engine option or parameter is represented by

an EngineParam object instance. This object has properties Name, Value, Default

(the initial or default value), MinValue, and MaxValue (the minimum and maximum

allowed values). All the options or parameters for a Solver Engine belong to a

collection, which is an EngineParamCollection object.

To access an option or parameter, you start with a reference to the Solver Engine

object, say myEngine or myProb.Engine. The engine object’s Params property

refers to the EngineParamCollection object. As with all collections, you can access

an individual EngineParam in the collection by name or by index. For example, to

refer to the Max Time limit for the problem’s currently selected Solver Engine,

you’d write myProb.Engine.Params("MaxTime").

Solver Engine User’s Guide V2021 Solver Engine Options • 53

Once you have a reference to the EngineParam object (as above), you can get or set

its properties using simple assignment statements. (Since Java currently lacks

properties, the syntax used by Solver SDK Platform is slightly different.) For

example, you can set the Max Time limit for the currently selected Solver Engine to

1000 seconds by writing:

VBA / VB6: myProb.Engine.Params("MaxTime").Value = 1000

VB.NET: myProb.Engine.Params("MaxTime").Value = 1000

C++: myProb.Engine.Params(L"MaxTime").Value = 1000;

C#: myProb.Engine.Params("MaxTime").Value = 1000;

Matlab: myProb.Engine.Params('MaxTime').Value = 1000;

Java: myProb.Engine().Params().Item("MaxTime").Value(1000);

To get the current Max Time parameter value, put the property reference on the right

hand side of an assignment statement, for example in C#:

double maxTime = myProb.Engine.Params("MaxTime").Value;

You can access all of the options and parameters supported by a Solver Engine by

indexing its EngineParamCollection. For example, myProb.Engine.Params(0) refers

to the first parameter in the collection. In all the object-oriented languages, you can

write a for-loop to index through all of the parameters like the following example in

VBA / VB6 or VB.NET:

For i = 0 to myProb.Engine.Params.Count - 1

 MsgBox myProb.Engine.Params(i).Name & " = " &

 myProb.Engine.Params(i).Value

Next i

In VBA / VB6, VB.NET, and C#, you can also iterate through a collection using a

“for each” loop:

Dim myParam as EngineParam

For Each myParam in myProb.Engine.Params

 MsgBox myParam.Name & " = " & myParam.Value

Next

SDK Procedural API

In the SDK procedural API, Solver Engine options and parameters are handled in a

manner similar to the object-oriented API, but you use procedural function calls to

get and set parameter values. You can set the Max Time limit for the currently

selected Solver Engine to 1000 seconds by writing:

C/C++: SolverEngParamSet(myProb, "MaxTime", 1000);

Matlab: SolverSDK('EngineParamSet',myProb,'MaxTime',1000);

To access all of the options and parameters supported by a Solver Engine, you would

write in C/C++:

LPCWSTR myEngine[100], myParam[100];

double myValue; int i, myCount;

SolverProbEngineGet (myProb, &myEngine);

SolverEngParamCount (myProb, myEngine, &myCount);

for (i = 0; i < myCount; i++)

{

 SolverEngParamName (myProb, myEngine, i, &myParam);

54 • Solver Engine Options Solver Engine User’s Guide V2021

 SolverEngParamGet (myProb, myParam, &myValue);

 wprintf (L"%s = %g\n", myParam, myValue);

}

In C++ and Matlab, you can use either the object-oriented API or the procedural

API, but most users find the object-oriented API more convenient.

Common Solver Options
The options described in this section are common to the LP/Quadratic Solver,

nonlinear GRG Solver, Evolutionary Solver, and SOCP Barrier Solver in Analytic

Solver Comprehensive, Analytic Solver Optimization and Solver SDK Platform, and

to the Large-Scale LP/QP Solver, Large-Scale GRG Solver, Large-Scale SQP

Solver, Knitro Solver, MOSEK Solver, and Gurobi Solver Engines. Some of these

options are also used by the OptQuest Solver, as described in a later section.

Max Time

VBA / SDK: Engine.Params("MaxTime"), integer value > 0

The value of the Max Time option determines the maximum time in seconds that the

Solver will run before it stops, including problem setup time and time to find the

optimal solution. For problems with integer constraints, this is the total time taken to

solve all subproblems explored by the Branch & Bound method. By default, this

option is blank, which means there is no time limit.

Iterations

VBA / SDK: Engine.Params(“Iterations"), integer value > 0

The value of the Iterations option determines the maximum number of iterations

(“pivots” for the Simplex Solver, or major iterations for the GRG Solver) that the

Solver may perform on one problem. A new “Trial Solution” is generated on each

iteration; the most recent Trial Solution is reported on the Excel status bar. For

problems with integer constraints, the Iterations setting determines the maximum

number of iterations for any one subproblem. When this option is empty/blank (the

default), there is no limit on the number of iterations.

Whether or not you set a Max Time limit or Iteration limit, you can press the ESC

key or click the Pause/Stop button at the top left of the Task Pane while the Solver is

running. After a momentary delay, the Show Trial Solution dialog box will appear,

and you will have the option to stop at that point or continue or restart the solution

process.

In Solver SDK Platform, you can achieve the same effect by writing an Evaluator

method that is called on each iteration or Trial Solution. In this method, you can

check for a press of the ESC key (or some other condition) and then display a dialog,

asking the user whether the solution process should continue or stop.

Precision

VBA / SDK: Engine.Params("Precision")

Gurobi, Knitro, Large-Scale GRG, Large-Scale LP, Large-Scale SQP, OptQuest and

Xpress Engines: 0.00000001<= Precision <= 0.0001

Mosek Engine: 0 <= Precision <= 1

Solver Engine User’s Guide V2021 Solver Engine Options • 55

Use this option to determine how closely the calculated values of the constraint left

hand sides must match the right hand sides in order for the constraint to be satisfied.

A constraint is satisfied if the relation it represents is true within a small tolerance;

the Precision value is that tolerance. With the default setting of 1.0E-6 (0.000001), a

calculated left hand side of -1.0E-7 would satisfy a constraint such as A1 >= 0.

Precision and Regular Constraints

Use caution in making this number much smaller, since the finite precision of

computer arithmetic virtually ensures that the values calculated by Microsoft Excel

and the Solver will differ from the expected or “true” values by a small amount. On

the other hand, setting the Precision to a much larger value would cause constraints

to be satisfied too easily. If your constraints are not being satisfied because the

values you are calculating are very large (say in millions or billions of dollars),

consider adjusting your formulas and input data to work in units of millions, or

setting the Use Automatic Scaling option to True instead of altering the Precision

setting. Generally, this setting should be from 1.0E-6 (0.000001) to 1.0E-4 (0.0001);

for the Large-Scale SQP Solver and the Knitro Solver, a value of 1.0E-6 is highly

recommended.

Precision and Integer Constraints

Another use of the Precision value is determining whether an integer constraint, such

as A1:A5 = integer, A1:A5 = binary or A1:A5 = alldifferent, is satisfied. If the

difference between the decision variable’s value and the closest integer value is less

than the Precision, the variable value is treated as an integer. (The Gurobi Solver

uses a different option named “IntegralityTol” for this purpose.)

Precision and Automatic Scaling

When the Use Automatic Scaling option is True, the Precision value is compared to

the internally scaled values of the variables and constraints. (In the Large-Scale SQP

Solver, the Precision value is always compared to the normalized constraint

violations.) This makes the comparison relative rather than absolute, which is a

further reason not to make the Precision value much tighter than 1.0E-6 (0.000001).

Assume Non-Negative

VBA: Engine.Params("AssumeNonneg"), value 1/True or 0/False

SDK: Use Variable object NonNegative method or SolverVarNonNegative function

Set this option to True to cause any decision variables that are not given explicit

lower bounds (via >=, binary, or alldifferent constraints in the Task Pane Model tab)

to be given a lower bound of zero when the problem is solved. This option has no

effect for decision variables that do have explicit >= constraints, even if those

constraints allow the variables to assume negative values.

In Analytic Solver Comprehensive and Analytic Solver Optimization, an alternative

to this option is to use the Platform tab Decision Vars Lower option to set any lower

bound you wish (not just zero) on any decision variables that are not given explicit

lower bounds.

Use Automatic Scaling

VBA / SDK: Engine.Params("Scaling"), value 0 or 1/True or -1/False

Set this option to True to cause the Solver to re-scale the values of the objective and

constraint functions internally, in order to minimize the effects of a poorly scaled

56 • Solver Engine Options Solver Engine User’s Guide V2021

model. A poorly scaled model is one that computes values of the objective,

constraints, or intermediate results that differ by several orders of magnitude. Poorly

scaled models may cause difficulty for both linear and nonlinear solution algorithms,

due to the effects of finite precision computer arithmetic. For more information, see

“Problems with Poorly Scaled Models” in the chapter “Solver Result Messages.”

If your model is nonlinear and you set this option to True, make sure that the initial

values for the decision variables are “reasonable,” i.e. of roughly the same

magnitudes that you expect for those variables at the optimal solution. The

effectiveness of the Use Automatic Scaling option depends on how well these

starting values reflect the values encountered during the solution process.

Show Iteration Results

VBA: Engine.Params("StepThru"), value 1/True or 0/False

SDK: Define an Evaluator for Eval_Type_Iteration

Set this option to True if you want to show the results of every major iteration or

Trial Solution on the spreadsheet. When you solve, you’ll see the same Show Trial

Solution dialog that appears when you press ESC or click the Pause/Stop button at

any time during the solution process; but when this option is True, the dialog appears

automatically on every iteration.

When this dialog appears, the best values so far for the decision variables appear on

the worksheet, which is recalculated to show the values of the objective function and

the constraints. You may click the Continue button to go on with the solution

process, the Stop button to stop immediately, or the Restart button to restart (and

then continue) the solution process. You may also click on the Save Scenario...

button to save the current decision variable values in a named scenario, which may

be displayed later with the Microsoft Excel Scenario Manager.

Bypass Solver Reports

VBA: Engine.Params("BypassReports"), value 1/True or 0/False

SDK: Not Applicable

Set this option to True to save time during the solution process if you do not need the

reports for the current solution run. When this option is set to False (the default), the

Solver always performs extra computations to prepare for the possibility that you

will select one or more reports from the Ribbon. When this option is set to True, the

extra computations are skipped; the gallery of Optimization Reports will be greyed

out, and you won’t be able to select any reports for this run.

Even though report generation in Analytic Solver Comprehensive, Analytic Solver

Optimization and Solver SDK is very fast, the Bypass Solver Reports option can

make a real difference in your total solution time, especially when you are solving

larger models. When you have hundreds of thousands of variables and constraints, it

is not unusual for the extra report-related computations to take as much time as the

entire solution process.

Max Subproblems

VBA / SDK: Parameter Name "MaxSubProblems", integer value > 0

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. Use this option to place a limit on the number of

subproblems that may be explored by the Branch & Bound algorithm before the

Solver pauses and asks you whether to continue or stop the solution process. The

Solver Engine User’s Guide V2021 Solver Engine Options • 57

value of this option is blank by default, meaning there is no limit on the number of

subproblems.

In a problem with integer constraints, the Max Subproblems limit should be used in

preference to the Iterations limit; the Iterations limit should be left blank (unlimited),

or set high enough for each of the individual subproblems solved during the Branch

& Bound process.

Max Integer Solutions

VBA / SDK: Parameter Name "MaxIntegerSols", integer value > 0

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. Use this option to place a limit on the number of feasible

integer solutions that are found by the Branch & Bound algorithm before the Solver

pauses and asks you whether to continue or stop the solution process. The value of

this option is blank by default, meaning there is no limit on the number of feasible

integer solutions.

It is entirely possible that, in the process of exploring various subproblems with

different bounds on the variables, the Branch & Bound algorithm may find the same

integer solution (set of values for the decision variables) more than once; the Max

Integer Solutions limit applies to the total number of integer solutions found, not the

number of “distinct” integer solutions.

The Solver retains the feasible integer solution with the best objective value so far,

called the “incumbent.” The objective value of this solution is shown in the Progress

area of the Task Pane Output tab.

Integer Tolerance

VBA / SDK: Parameter Name "IntTolerance", 0 <= value <= 1

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. It is sometimes called the “MIP gap.”

When you solve an integer programming problem, it often happens that the Branch

& Bound method will find a good solution fairly quickly, but will require a great

deal of computing time to find (or verify that it has found) the optimal integer

solution. The Integer Tolerance setting may be used to tell the Solver to stop if the

best solution it has found so far is “close enough.”

The Branch & Bound process starts by finding the optimal solution without

considering the integer constraints; this is called the relaxation of the integer

programming problem. The objective value of the relaxation forms the initial “best

bound” on the objective of the optimal integer solution, which can be no better than

this. During the optimization process, the Branch & Bound method finds “candidate”

integer solutions, and it keeps the best solution so far as the “incumbent.” By

eliminating alternatives as its proceeds, the B&B method also tightens the “best

bound” on how good the integer solution can be.

Each time the Solver finds a new incumbent – an improved all-integer solution – it

computes the maximum percentage difference between the objective of this solution

and the current best bound on the objective:

(Objective of incumbent - Objective of best bound) / Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less than

the Integer Tolerance, the Solver will stop and report the current integer solution as

the optimal result. If you set the Integer Tolerance to zero, the Solver will continue

58 • Solver Engine Options Solver Engine User’s Guide V2021

searching until all alternatives have been explored and the optimal integer solution

has been found. This may take a great deal of computing time.

Integer Cutoff

VBA / SDK: Parameter Name "IntCutoff", -1E30 < value < +1E30

This option provides another way to save time in the solution of mixed-integer

programming problems. If you know the objective value of a feasible integer

solution to your problem – possibly from a previous run of the same or a very similar

problem – you can set the Integer Cutoff option to this value. This allows the Branch

& Bound process to start with an “incumbent” objective value (as discussed above

under Integer Tolerance) and avoid the work of solving subproblems whose

objective can be no better than this value. If you enter a value here, you must be

sure that there is an integer solution with an objective value at least this good: A

value that is too large (for maximization problems) or too small (for minimization)

may cause the Solver to skip solving the subproblem that would yield the optimal

integer solution.

Solve Without Integer Constraints

VBA / SDK: Engine.Params("SolveWithout"), value 1-Solve Without Integer

Constraints or 0-Solve With Integer Constraints

This option is supported by the Solver Engines, but it’s preferable to use the Platform

‘Solve Mode’ option set to Solve Without Integer Constraints (in VBA and Solver

SDK Platform use Model.Params("SolveMode") = 2) instead.

If you solve a model (by clicking the Optimize button on the Ribbon or the green

arrow in the Task Pane, or by calling Problem.Solver.Optimize in VBA or Solver

SDK Platform) with this option setting, the Solver ignores integer constraints

(including alldifferent constraints) and solves the “relaxation” of the problem. It is

often useful to solve the relaxation, and it’s much more convenient to set this option

than to delete the integer constraints and add them back again later.

Stochastic Decomposition Options
The Stochastic Decomposition section of this dialog contains all of the options which

are specific to the Stochastic Decomposition method bundled within Analytic Solver

Comprehensive and Analytic Solver Optimization (Analytic Solver Desktop only)

and utilized in the Large Scale LP Solver Engine, the Gurobi Solver Engine, and the

Xpress Solver Engine. Stochastic Decomposition can be used to solve linear models

with recourse variables and uncertainty in the constraints only. (Model must contain

at least one constraint that does not include uncertainty.) To run Stochastic

Decomposition, set Solve Uncertain Models to Stochastic Decomposition on the

Task Pane Platform tab as shown in the screenshot below. Typically, Stochastic

Decomposition should only be used if the internal model created when Deterministic

Equivalent is selected for Solve Uncertain Models is so large that the time and

memory required to solve the model is impractical.

Solver Engine User’s Guide V2021 Solver Engine Options • 59

Tau

VBA / SDK: Engine.Params("StochTau"), 1 <= integer value

As interations proceed, the cut which was formed based on the incumbent vector is

periodically re-evaluated. If tau iterations have passed since the last update or if the

value of the incumbent is less than the objective value at a specific iteration, the

incumbent is reformed. This function will solve an additional subproblem (based

upon the incumbent and the most recent observation of omega) add the dual solution

to the data structures, and re-form the incumbent cut (thus replacing it in the array of

cuts).

Tolerance

VBA / SDK: Engine.Params("StochTol"), 0 <= value <= 0.001

The tolerance setting is used to determine the stopping condition for the Stochastic

Decomposition method. A larger value will result in the Stochastic Decomposition

methods stopping more quickly, while a smaller value will force the Stochastic

Decomposition methods to run longer.

Compute Confidence Interval

VBA / SDK: Engine.Params("StochCI"), 0/False 1/True

If this option is set to true, the stochastic decomposition methods will compute a

95% confidence interval for the objective function.

Objective Error

VBA / SDK: Engine.Params("StochErr"), 0 <= value <= 1

If Compute Confidence Interval is set to true, then the confidence interval for the

objective function will be accurate to within this value, with 95% confidence.

Objective Improvement

VBA / SDK: Engine.Params("StochR"), 0 <= value <= 1

This parameter sets the minimum amount of improvement which must be observed

in order to update the incumbent.

Compute Recourse Statistics

VBA / SDK: Engine.Params("StochComp"), 0 <= value <= 1

60 • Solver Engine Options Solver Engine User’s Guide V2021

If false, recourse variables for each trial will not be computed. Only “normal”

decision variable values will be available after Solver has found a solution. If true,

recourse variables will be computed for each trial which can be viewed by clicking

through each trial on the Trial # Controls in the Tools section on the Analytic Solver

Ribbon.

After Solver has found a solution, a histogram may be obtained over all trials by

double clicking a cell containing a recourse variable or constraint.

Large-Scale LP/QP Solver Options
SDK: Engine name "Large-Scale LP Solver", file name LSLPeng.dll

This Solver Engine supports the Common Solver Options discussed earlier except

the Precision option, plus the Primal Tolerance, Dual Tolerance, and Do Presolve

options, which are specific to the Large-Scale LP/QP Solver. The Bypass Solver

Reports option is worth noting here if you are using Analytic Solver Desktop, since it

can have a large impact on solution time when the Large-Scale LP/QP Solver is

used.

Note that the default values for Primal Tolerance and Dual Tolerance have been

chosen very carefully, and the Large-Scale LP/QP Solver is designed to solve the

vast majority of LP problems “out of the box” with these default tolerances. To

change these tolerances, you probably should have some background in LP solution

methods, or consult with someone who has such a background.

Primal Tolerance

VBA / SDK: Engine.Params("PrimalTolerance"), 0 < value < 1

The Primal Tolerance is the maximum amount by which the primal constraints can

be violated and still be considered feasible. The default value of 1.0E-7 for this

tolerance is suitable for most problems.

Dual Tolerance

VBA / SDK: Engine.Params("DualTolerance"), 0 < value < 1

The Dual Tolerance is the maximum amount by which the dual constraints can be

violated and still be considered feasible. The default value of 1.0E-7 for this

tolerance is suitable for most problems.

Presolve

VBA / SDK: Engine.Params("Presolve"), value 1-Do Presolve or 0-No Presolve

When this option is set to 1 (which is the default setting), the Large-Scale LP/QP

Solver performs a Presolve step before applying the Primal or Dual Simplex method.

Presolving often reduces the size of an LP problem by detecting singleton rows and

columns, removing fixed variables and redundant constraints, and tightening bounds.

Solver Engine User’s Guide V2021 Solver Engine Options • 61

Derivatives for the Quadratic Solver

VBA / SDK: Engine.Params("Derivatives"), value 1-Forward or 2-Central

When a quadratic programming (QP) problem is solved with the Large-Scale LP/QP

Solver, the quadratic Solver extension requires first and second partial derivatives of

the objective function at various points. In Analytic Solver Cloud and when

Interpreter is set to Automatic or Psi Interpreter in Analytic Solver Desktop, these

derivatives may be computed via automatic differentiation or via finite differencing.

For more information, see the Analytic Solver User Guide.

Derivatives In Analytic Solver Desktop

When Interpreter = PSI Interpreter in the Task Pane Platform tab of Analytic Solver

Desktop, automatic differentiation is used, exact derivative values are computed, and

the setting of the Derivatives choice is ignored. When Interpreter = Excel

Interpreter, the method used for finite differencing is determined by the setting of the

Derivatives choice. Forward differencing uses the point from the previous iteration –

where the problem function values are already known – in conjunction with the

current point. Central differencing relies only on the current point, and perturbs the

decision variables in opposite directions from that point. For QP problems, the

Central differencing choice yields essentially exact (rather than approximate)

derivative values, which can improve solution accuracy and reduce the total number

of iterations; however each iteration may take up to twice as long as with Forward

differencing. Note that automatic differentiation is much faster than either Forward

or Central differencing.

Large-Scale LP/QP Mixed-Integer Options

Preprocessing

VBA / SDK: Parameter Name "PreProcessing", 1 = Automatic, 2 = None, 3 =

Aggressive

Use this option to determine the extent of Preprocessing and Probing strategies used

by the LP/Quadratic Solver on LP/MIP (linear mixed-integer) problems. Select from

None, Aggressive, and Automatic (the default).

These methods consider the possible settings of certain binary integer variables and

their implications for fixing the values of other binary integer variables, tightening

the bounds on continuous variables, and in some cases, determining that the

subproblem is infeasible (so it is unnecessary to solve it at all).

They can also scan the model for constraints of the form x1 + x2 + … + xn = 1

where all of the variables xi are binary integer variables. Such constraints often arise

in practice, and are sometimes called “special ordered sets.” In any feasible solution,

exactly one of the variables xi must be 1, and all the others must be 0; hence only n

possible permutations of values for the variables (rather than 2n) need be considered.

Cuts

VBA / SDK: Parameter Name "Cuts", 1 = Automatic, 2 = None, 3 = Aggressive

Use this option to determine the extent of Cut Generation strategies used by the

LP/Quadratic Solver on LP/MIP (linear mixed-integer) problems. Select from None,

Aggressive, and Automatic (the default).

62 • Solver Engine Options Solver Engine User’s Guide V2021

A cut is an automatically generated linear constraint for the problem, in addition to

the constraints that you specify. This constraint is constructed so that it “cuts off”

some portion of the feasible region of an LP subproblem, without eliminating any

possible integer solutions. Cuts used by the LP/Quadratic Solver include:

• Knapsack Cuts: These cuts are somewhat expensive to compute, but when

they can be generated, they are often very effective in cutting off portions of the

LP feasible region, and improving the speed of the solution process.

• Gomory Cuts: These cuts are found by examining the basis inverse at the

optimal solution of a previously solved LP relaxation of the problem. The

LP/Quadratic Solver can also generate Reduce and Split cuts, which are variants

of Gomory cuts.

• Mixed Integer Rounding Cuts: These cuts are produced by rounding the

coefficients for integer variables and the right hand sides of constraints. In

contrast to most other cuts, Mixed Integer Rounding cuts are specifically

designed for problems with general integer variables, not just binary variables.

• Clique Cuts: Cuts for both row cliques and start cliques are generated, using a

method due to Hoffman and Padberg.

• Flow Cover Cuts: These cuts may be generated from constraints that include

continuous variables with upper bounds that can be zero or positive, depending

on the setting of associated binary variables. Flow Cover cuts are useful only

for mixed-integer problems, with at least some continuous variables.

Heuristics

VBA / SDK: Parameter Name "Heuristics", 1 = Automatic, 2 = None, 3 = Aggressive

Use this option to determine the extent of Heuristic strategies used by the

LP/Quadratic Solver on LP/MIP (linear mixed-integer) problems. Select from None,

Aggressive, and Automatic (the default).

A heuristic is a strategy that often – but not always – will find a reasonably good

“incumbent” or feasible integer solution early in the search. Cuts and heuristics

require more work on each subproblem, but they can often lead more quickly to

integer solutions and greatly reduce the number of subproblems that must be

explored. Heuristics used by the LP/Quadratic Solver include:

• Local Tree Search: When a new incumbent solution is bound, the Solver alters

its normal node selection strategy to look for other possible integer solutions

“nearby” in the Branch & Bound tree.

• Rounding Heuristic: This heuristic is used to seek possible integer solutions

(by adjusting the values of individual integer variables) in the “vicinity” of a

known integer solution.

• Feasibility Pump: This heuristic is designed to quickly find good incumbent

solutions. These incumbents can themselves be good solutions, but they also

help the Solver prune the overall search of the Branch & Bound tree. This

method is applied only once, after all cuts have been added to the problem. It is

a relatively expensive procedure in computational terms, but it frequently yields

substantial speedup.

• Greedy Cover Heuristic: This heuristic seeks to quickly find an integer

feasible solution by testing combinations of values for binary integer variables

in linear constraints with right hand sides of 1. Problems with constraints of this

Solver Engine User’s Guide V2021 Solver Engine Options • 63

form are often called set covering, set packing, or set partitioning problems; this

heuristic is most effective on such problems.

Thread Mode

VBA / SDK: Parameter Name "Thread_Mode"

0 - Use branching, numberThreads at a time (default)

1 - Use deterministic, numberThreads at a time

2 - Use root cuts, numberThreads at a time

8 - Use heuristics, numberThreads at a time

9 - No Threads, use one thread at a time.

Determines how the threads are used when a mixed integer model is being solved. If

N equals the "Number of Threads", the collection of nodes will be solved using the

selected mode, N threads at a time.

Number of Threads

VBA / SDK: Parameter Name "numberThreads", Default value = number of available

system processors; 0 – Turns parallel processing off

The number of parallel threads of execution to be used when solving mixed-integer

problems. Enter an integer from 1 to the Number of available system processors.

The default is the number of system processors. A value of 0 turns parallel

processing off.

Additional Options Available in VBA / SDK

If you want more fine-grained control over the behavior of the Large-Scale LP/QP

Solver on linear mixed-integer problems when using either Desktop Analytic Solver

or Solver SDK Platform, you can use the options described below. They override the

general settings obtained with the Preprocessing, Cuts and Heuristics options above.

To use these options, you should have a good deal of experience solving linear

mixed-integer problems.

Use Strong Branching

VBA / SDK: Engine.Params("StrongBranching"), value 1-Use Strong Branching or

0-Don’t Use Strong Branching

When this option is set to 1, the Solver performs strong branching at the root node.

Strong Branching is a method used to estimate the impact of branching on each

integer variable on the objective function (its pseudocost), by performing a few

iterations of the Dual Simplex method. Such pseudocosts are used to guide the

choice of the next subproblem to explore, and the next integer variable to branch

upon, throughout the Branch and Bound process. Time spent in strong branching is

often repaid many times over in a reduction of the number of nodes that must be

explored to find the integer optimal solution.

Maximum Cut Passes

VBA / SDK: Engine.Params("MaxRootCutPasses"), integer value >= -1

 Engine.Params("MaxTreeCutPasses"), integer value >= -1

This option determines the maximum number of “passes” carried out to generate

cuts, at the root node (immediately after the first LP relaxation is solved), and at

nodes deeper in the Branch & Bound tree; it is effective only if one or more of the

Cut Generation options (see below) is selected. When cuts are added to a problem,

the resulting problem may present further opportunities to generate cuts; hence, cut

64 • Solver Engine Options Solver Engine User’s Guide V2021

generation “passes” are performed until either no new cuts are found, or the

maximum number of passes is reached. A value of -1 means that the number of

passes should be determined automatically. The default value of 10 passes for nodes

deeper in the tree is appropriate for many models, but you may wish to try both

smaller and larger values for this option.

Knapsack Cuts

VBA / SDK: Engine.Params("KnapsackCuts"), value 1-Generate These Cuts or 0-

Don’t Generate These Cuts

When this option is set to 1, Knapsack cuts may be generated. Like Lift and Cover

cuts, these cuts are somewhat expensive to compute, but when they can be generated,

they are often very effective in cutting off portions of the LP feasible region, and

improving the speed of the solution process.

Gomory Cuts

VBA / SDK: Engine.Params("GomoryCuts"), value 1-Generate These Cuts or 0-

Don’t Generate These Cuts

When this option is set to 1, Gomory cuts may be generated. Gomory cuts are found

by examining the basis inverse at the optimal solution of a previously solved LP

relaxation of the problem. This basis inverse is sensitive to rounding error due to the

use of finite precision computer arithmetic. The Large-Scale LP/QP Solver has very

good methods for minimizing the effects of such errors, but in rare cases, you may

want to reduce the Maximum Cut Passes value when using Gomory cuts, to

minimize or eliminate possible problems due to rounding.

Mixed Integer Rounding Cuts

VBA / SDK: Engine.Params("MirCuts"), value 1-Generate These Cuts or 0-Don’t

Generate These Cuts

When this option is set to 1, Mixed Integer Rounding cuts may be generated. These

cuts are produced by rounding the coefficients for integer variables and the right

hand sides of constraints. In contrast to most other cuts, Mixed Integer Rounding

cuts are specifically designed for problems with general integer variables, not just

binary variables.

Probing Cuts

VBA / SDK: Engine.Params("ProbingCuts"), value 1-Generate These Cuts or 0-

Don’t Generate These Cuts

When this option is set to 1, Probing cuts may be generated. This process is similar

to the Preprocessing and Probing methods used in the Large-Scale SQP Solver.

Probing involves setting certain binary integer variables to 0 or 1 and deriving values

for other binary integer variables, or tightening bounds on the constraints.

Two Mixed Integer Rounding Cuts

VBA / SDK: Engine.Params("TwoMirCuts"), value 1-Generate These Cuts or 0-

Don’t Generate These Cuts

When this option is set to 1, Two Mixed Integer Rounding cuts may be generated.

The procedure used to obtain these cuts is a two-step variation of the one-step

procedure used to generate Mixed Integer Rounding cuts.

Solver Engine User’s Guide V2021 Solver Engine Options • 65

Clique Cuts

VBA / SDK: Engine.Params("CliqueCuts"), value 1-Generate These Cuts or 0-Don’t

Generate These Cuts

When this option is set to 1, Clique cuts may be generated. Cuts for both row cliques

and start cliques are generated, using a method due to Hoffman and Padberg.

Reduce and Split Cuts

VBA / SDK: Engine.Params("RedSplitCuts"), value 1-Generate These Cuts or 0-

Don’t Generate These Cuts

When this option is set to 1, Reduce and Split cuts may be generated. These cuts are

variants of Gomory cuts.

Flow Cover Cuts

VBA / SDK: Engine.Params("FlowCoverCuts"), value 1-Generate These Cuts or 0-

Don’t Generate These Cuts

When this option is set to 1, Flow Cover cuts may be generated from constraints that

include continuous variables with upper bounds that can be zero or positive,

depending on the setting of associated binary variables. Flow Cover cuts have no

effect in a ‘pure integer’ problem with no continuous variables.

Local Tree

VBA / SDK: Engine.Params("LocalTree"), value 1-Search the Local Tree or 0-Don’t

Search the Local Tree

When this option is set to 1, each time a new best integer solution (an “incumbent”)

is found, a search is conducted for additional possible solutions at “nearby” nodes in

the Branch & Bound tree. This heuristic can sometimes discover good integer

solutions early in the solution process.

Special Ordered Sets

VBA / SDK: Engine.Params("SOSCuts"), value 1-Generate These Cuts or 0-Don’t

Generate These Cuts

This strategy scans the model for constraints of the form x1 + x2 + … + xn = 1 where

all of the variables xi are binary integer variables. Such constraints often arise in

practice, and are sometimes called “special ordered sets.” In any feasible solution,

exactly one of the variables xi must be 1, and all the others must be 0; hence only n

possible permutations of values for the variables (rather than 2n) need be considered.

Greedy Cover Heuristic

VBA / SDK: Engine.Params("GreedyCover"), value 1-Perform this Search or 0-

Don’t Perform this Search

When this option is set to 1, a heuristic is used to search for “incumbent” solutions

using the so-called Greedy Cover algorithm. This heuristic seeks to quickly find an

integer feasible solution by finding variable values that satisfy constraints where a

linear function of binary integer variables must be less than, equal to, or greater than

1. Problems with this type of constraint are often called set covering, set packing, or

set partitioning problems; this heuristic is most effective on such problems.

66 • Solver Engine Options Solver Engine User’s Guide V2021

Feasibility Pump Heuristic

VBA / SDK: Engine.Params("FeasibilityPump"), value 1-Perform this Search or 0-

Don’t Perform this Search

When this option is set to 1, a heuristic is used that is designed to quickly find good

“incumbent” solutions. These incumbents can themselves be quite good solutions,

and they also speed up the Branch & Bound search by eliminating many other

subproblems. This method is applied only once, after initial cuts have been added to

the problem. It is a relatively expensive procedure computationally, but it can yield

enormous time savings on many problem.

Local Search Heuristic

VBA / SDK: Engine.Params("LocalHeur"), value 1-Use This Heuristic or 0-Don’t

Use This Heuristic

When this option is set to 1, a “local search” heuristic is used to seek possible integer

solutions (by adjusting the values of individual integer variables) in the “vicinity” of

a known integer solution.

Rounding Heuristic

VBA / SDK: Engine.Params("RoundingHeur"), value 1-Use This Heuristic or 0-

Don’t Use This Heuristic

When this option is set to 1, a “rounding” heuristic is used to seek possible integer

solutions (by adjusting the values of individual integer variables) in the “vicinity” of

a known integer solution.

Large-Scale GRG Solver Options
SDK: Engine name "Large-Scale GRG Solver", file name LSGRGeng.dll

This Solver Engine supports the Common Solver Options discussed earlier, plus the

Global Optimization options, and the Convergence, Population Size, Random Seed,

Recognize Linear Variables, Relax Bounds on Variables options, Estimates,

Derivatives and Search options, which are specific to the Large-Scale GRG Solver.

The Global Optimization options and the Population Size and Random Seed options

are discussed below in the section “Options for Global Optimization.” The other

options specific to the Large-Scale GRG (LSGRG) Solver are discussed here.

Convergence

VBA / SDK: Engine.Params("Convergence"), 0 <= value <= 1

As discussed in the chapter “Solver Result Messages,” the LSGRG Solver will stop

and display the message “Solver has converged to the current solution” when the

objective function value is changing very slowly for the last few iterations or trial

solutions. More precisely, the LSGRG Solver stops if the absolute value of the

relative change in the objective function is less than the value of the Convergence

option for the last few iterations. While the default value of 1.0E-4 (0.0001) is

suitable for most problems, it may be too large for some models, causing the LSGRG

Solver to stop prematurely when this test is satisfied, instead of continuing for more

iterations until the optimality (KKT) conditions are satisfied.

If you are getting this message when you are seeking a locally optimal solution, you

can change the Convergence option to a smaller value such as 1.0E-5 or 1.0E-6, but

Solver Engine User’s Guide V2021 Solver Engine Options • 67

you should also consider why it is that the objective function is changing so slowly.

Perhaps you can add constraints or use different starting values for the variables, so

that the Solver does not get “trapped” in a region of slow improvement.

Recognize Linear Variables

VBA / SDK: Engine.Params("RecognizeLinear"), value 1-Recognize or 0-Don’t

Recognize

This option has only a limited effect in the LSGRG engine. It is intended to take

advantage of the fact that in many nonlinear problems, some of the variables occur

linearly in the objective and all of the constraints. Hence the partial derivatives of

the problem functions with respect to these variables are constant, and need not be

re-computed on each iteration. When finite differencing is used to estimate partial

derivatives, this means that the steps involved in perturbing such a variable and

computing values for all of the problem functions can be skipped.

In Analytic Solver Desktop when the PSI Interpreter is used (which is the default)

and always in Analytic Solver Cloud, using this option will not save any time,

because partial derivatives are computed via automatic differentiation rather than

finite differencing. Similarly, in Solver SDK Platform, when you supply an

Evaluator to compute derivatives, this option won’t save any time. Further, the PSI

Interpreter can supply “dependents analysis” information, which the LSGRG Solver

will use to recognize variables that occur linearly in only some (as well as all) of the

problem functions.

Relax Bounds on Variables

VBA / SDK: Engine.Params("RelaxBounds"), value 1-Relax or 0-Don’t Relax

By default (and unlike the nonlinear GRG Solver bundled within Analytic Solver

Comprehensive, Analytic Solver Optimization and Solver SDK), the LSGRG Solver

ensures that any trial points evaluated during the solution process will not have

values that violate the bounds on the variables you specify, even by a small amount.

If your problem functions cannot be evaluated for values outside the variable bounds,

this default behavior will ensure that the solution process can continue. However, at

times the LSGRG Solver can make more rapid progress along a given search

direction by testing trial points with values slightly outside the bounds on the

variables. If you want to permit this to happen, set this option to 1. If you receive

the Solver Result Message “Solver encountered an error value in a target or

constraint cell,” as a first step you should set this option to 0.

Other Nonlinear Options

The default values for the Estimates, Derivatives and Search options can be used for

most problems. If you’d like to change these options to improve performance on

your model, this section will provide some general background on how they are used

by the LSGRG Solver.

On each major iteration, the LSGRG Solver requires values for the partial derivatives

of the objective and constraints (i.e. the Jacobian matrix). The Derivatives option is

concerned with how these partial derivatives are computed.

The GRG (Generalized Reduced Gradient) solution algorithm proceeds by first

“reducing” the problem to an unconstrained optimization problem, by solving a set

of nonlinear equations for certain variables (the “basic” variables) in terms of others

(the “nonbasic” variables). Then a search direction (a vector in n-space, where n is

68 • Solver Engine Options Solver Engine User’s Guide V2021

the number of nonbasic variables) is chosen along which an improvement in the

objective function will be sought. The Search option is concerned with how this

search direction is determined.

Once a search direction is chosen, a one-dimensional “line search” is carried out

along that direction, varying a step size in an effort to improve the reduced objective.

The initial estimates for values of the variables that are being varied have a signifi-

cant impact on the effectiveness of the search. The Estimates option is concerned

with how these estimates are obtained.

Estimates

VBA / SDK: Engine.Params("Estimates"), value 1-Tangent or 2-Quadratic

This option determines the approach used to obtain initial estimates of the basic

variable values at the outset of each one-dimensional search. The Tangent choice

uses linear extrapolation from the line tangent to the reduced objective function. The

Quadratic choice extrapolates the minimum (or maximum) of a quadratic fitted to the

function at its current point. If the current reduced objective is well modeled by a

quadratic, then the Quadratic option can save time by choosing a better initial point,

which requires fewer subsequent steps in each line search. If you have no special

information about the behavior of this function, the Tangent choice is “slower but

surer.” Note: This choice has no bearing on quadratic programming problems.

Derivatives

VBA / SDK: Engine.Params("Derivatives"), value 1-Forward or 2-Central

On each major iteration, the LSGRG Solver requires values for the partial derivatives

of the objective and constraints (i.e. the Jacobian matrix). In Analytic Solver

Desktop, these derivatives may be computed via automatic differentiation (when

Interpreter = Psi Interpreter) or via finite differencing (when Interpreter = Excel

Interpreter). In Solver SDK Platform, if you supply an Evaluator for

Eval_Type_Gradient, it is used to compute derivatives in a manner analogous to

automatic differentiation; if you don’t supply such an Evaluator, the LSGRG Solver

computes derivatives via finite differencing – calling your function Evaluator

(Eval_Type_Function) once or twice for each decision variable in order to do so. In

Analytic Solver Cloud automatic differentiation is always used.

The Derivatives option in the LSGRG Solver Options dialog is relevant only if finite

differencing is being used (which is never the case in Analytic Solver Cloud) to

compute derivative values. It determines whether “forward differencing” or “central

differencing” is performed.

Forward differencing (the default choice) uses the point from the previous iteration –

where the problem function values are already known – in conjunction with the

current point. Central differencing relies only on the current point, and perturbs the

decision variables in opposite directions from that point. This requires up to twice as

much time on each iteration, but it may result in a better choice of search direction

when the derivatives are rapidly changing, and hence fewer total iterations.

Search Option

VBA / SDK: Engine.Params("SearchOption"), value 1-Newton or 2-Conjugate

It would be expensive to determine a search direction using the pure form of

Newton’s method, by computing the Hessian matrix of second partial derivatives of

the problem functions. Instead, a direction is chosen through an estimation method.

The default choice Newton uses a quasi-Newton (or BFGS) method, which

maintains an approximation to the Hessian matrix; this requires more storage (an

Solver Engine User’s Guide V2021 Solver Engine Options • 69

amount proportional to the square of the number of currently binding constraints) but

performs very well in practice. The alternative choice Conjugate uses a conjugate

gradient method, which does not require storage for the Hessian matrix and still

performs well in most cases. The choice you make here is not crucial, since the

LSGRG solver is capable of switching automatically between the quasi-Newton and

conjugate gradient methods depending on the available storage.

Large-Scale SQP Solver Options
SDK: Engine name "Large-Scale SQP Solver", file name LSSQPeng.dll

This Solver Engine supports the Common Solver Options discussed earlier, plus the

the Global Optimization options, and the Convergence, Population Size, Mutation

Rate, Random Seed, Local Search, Treat Constraints as Linear, Treat Objective as

Linear, Derivatives options, which are specific to the Large-Scale SQP Solver.

Use of Convergence, Population Size and Random Seed

If the problem is diagnosed as non-smooth, the Large-Scale SQP Solver uses the

Evolutionary Solver as a “top-level” or global search algorithm, and uses SQP

methods for local searches (when the Local Search option is set to Gradient Local or

Automatic Choice). In this case, the Convergence, Population Size and Random

Seed options apply to the Evolutionary Solver, and the default Convergence value of

1.0E-6 is used for local searches by the SQP Solver. If the problem is diagnosed as

smooth, then the Evolutionary Solver is not used. In this case, the Convergence

option is used by the SQP Solver as described immediately below, and the Popula-

tion Size and Random Seed options apply to the multistart methods controlled by the

Global Optimization option group, if they are used.

The Global Optimization options, and use of the Population Size and Random Seed

options by the multistart methods are discussed below in the section “Options for

Global Optimization.” Other Large-Scale SQP Solver options are discussed here.

Convergence

VBA / SDK: Engine.Params("Convergence"), 0 <= value <= 1

As discussed in the chapter “Solver Result Messages,” the LSSQP Solver will stop

and display the message “Solver has converged to the current solution” when the

solution is changing very slowly for the last few iterations or trial solutions. More

precisely, the LSSQP Solver stops if the maximum normalized complementarity gap

of the variables is less than the value of the Convergence option for the last few

iterations. Smaller Convergence values may produce more accurate results, but will

require more computing time. The default value of 1.0E-6 (0.000001) is suitable for

a wide range of problems.

If you are getting this message when you are seeking a locally optimal solution, you

can change the Convergence option value, but you should also consider why it is that

the objective function is changing so slowly. Perhaps you can add constraints or use

different starting values for the variables, so that the Solver does not get “trapped” in

a region of slow improvement.

Treat Constraints as Linear/LinearConstraints

VBA / SDK: Engine.Params("LinearConstraints"), value 1-Treat as Linear or 0-

Don’t Treat as Linear

70 • Solver Engine Options Solver Engine User’s Guide V2021

The Treat Constraints as Linear and Treat Objective as Linear options are used only

if (i) you have a problem with all linear constraints and possibly a linear objective

but (ii) you aren’t using the PSI Interpreter in Analytic Solver Desktop, or you aren’t

setting the Model object AllGradDepend property, or calling the SolverModAll-

GradDependSet procedural API function, in Solver SDK Platform. (This option has

no relevance in Analytic Solver Cloud.) These options tell the LSSQP Solver to treat

the constraints and/or the objective as linear, and exploit this treatment to solve the

problem more efficiently. If you are solving a problem with all linear constraints,

such as a linear programming (LP) or quadratic programming (QP) problem, you can

use this option to speed up the solution process.

In Analytic Solver Desktop, use of the PSI Interpreter is the default setting, the

LSSQP Solver obtains information about linearity of the constraints and objective

from the Polymorphic Spreadsheet Interpreter, and these options are ignored.

When you solve a problem Interpreter = Excel Interpreter in Analytic Solver

Desktop, or without setting the Model object AllGradDepend property in Solver

SDK Platform, the Large-Scale SQP Solver normally treats the objective and all

constraints as smooth nonlinear functions – even if they are actually linear. Hence,

the Solver will compute gradients of these functions at each major iteration. If this

option is set to 1, the LSSQP Solver will assume that the constraints are linear (hence

their gradients are constant) and will compute their gradients only once, at the

beginning of the solution process. This option is especially effective when used in

combination with the “Treat Objective as Linear” option, for a linear programming

problem, as explained below.

Treat Objective as Linear/Linear Objective

VBA / SDK: Engine.Params("LinearObjective"), value 1-Treat as Linear or 0-Don’t

Treat as Linear

If you are solving a linear programming problem, you can use this option to greatly

speed up the solution process. As described under “Treat Constraints as Linear”

above, when you solve a problem with Interpreter = Excel Interpreter in Analytic

Solver Desktop or without setting the Model object AllGradDepend property in

Solver SDK Platform, the Large-Scale SQP Solver normally treats the objective and

all constraints as smooth nonlinear functions, and computes gradients of these

functions via finite differencing at each major iteration. (This option has no

relevance in Analytic Solver Cloud.) When both options “Treat Constraints as

Linear” and “Treat Objective as Linear” are True, the LSSQP Solver computes the

function gradients only once, at the beginning of the solution process – taking about

the same amount of time as “Problem Setup” in a large-scale LP Solver. The Large-

Scale SQP Solver then solves the problem using active-set methods that are highly

effective, and competitive with the Simplex method for linear programming.

If you set only “Treat Constraints as Linear,” but not “Treat Objective as Linear” to

True, the improvement in solution time depends on whether or not you are using

automatic differentiation in Analytic Solver Desktop, or you are supplying an

Evaluator for Eval_Type_Gradient in Solver SDK Platform. (Automatic

differentiation is always used in Analytic Solver Cloud.) If automatic differentiation

or an Evaluator for derivatives are being used, you should see a significant speedup,

since only derivatives for the objective need be computed on each major iteration.

But if finite differencing is being used (Interpreter = Excel Interpreter in Analytic

Solver Desktop, or you’ve defined only an Evaluator for Eval_Type_Function), you

may not see much speed improvement, especially in Excel. This is because it takes

almost as much time to compute gradients of some of the functions (or even just one,

the objective) as it does to compute gradients of all of the functions, by recalculating

Solver Engine User’s Guide V2021 Solver Engine Options • 71

the Excel spreadsheet or by calling your function Evaluator with perturbed values for

each of the decision variables.

Derivatives

VBA / SDK: Engine.Params("Derivatives"), value 1-Forward or 2-Central

On each major iteration, the LSSQP Solver requires values for the partial derivatives

of the objective and constraints (i.e. the Jacobian matrix). In Analytic Solver

Comprehensive and Analytic Solver Optimization, these derivatives may be

computed via automatic differentiation or via finite differencing. In Solver SDK

Platform, if you supply an Evaluator for Eval_Type_Gradient, it is used to compute

derivatives in a manner analogous to automatic differentiation; if you don’t supply

such an Evaluator, the LSSQP Solver computes derivatives via finite differencing –

calling your function Evaluator (Eval_Type_Function) once or twice for each

decision variable in order to do so.

The Derivatives option in the LSSQP Solver Options dialog is relevant only if finite

differencing is being used to compute derivative values. It determines whether

“forward differencing” or “central differencing” is performed.

Forward differencing (the default choice) uses the point from the previous iteration –

where the problem function values are already known – in conjunction with the

current point. Central differencing relies only on the current point, and perturbs the

decision variables in opposite directions from that point. This requires up to twice as

much time on each iteration, but it may result in a better choice of search direction

when the derivatives are rapidly changing, and hence fewer total iterations.

Model Based Search

VBA / SDK: Engine.Params("ModelBasedSearch"), value 0-None, 1-CPU Based, 2 –

GPU Based

This option takes effect only when the Global Search option is set to Scatter Search.

When this option is set to “None”, the Scatter Search algorithm is used without any

Model Based Local Search. When this option is set to either “CPU Based” or “GPU

Based”, an internal model of the problem is created (using radial basis functions)

which closely fits the original problem in the search region. The Evolutionary Solver

then uses this internal model to evaluate many points in parallel (either on the CPU

or GPU - depending on the option setting) rather than using Excel or the PSI

Interpreter to evaluate each of these points sequentially. Only the most promising of

these points are evaluated against the actual spreadsheet model. The most promising

points from this evaluation are added to the population of best solutions. This new

search method typically results in better solutions in less time when compared to

using only the Scatter Search algorithm.

Most new computers now contain GPUs or Graphics Processing Units, either on

custom chips (in most laptops) or plug-in cards. These devices are typically used to

quickly build and manipulate display images for video games and other graphics.

However, their ability to perform floating point arithmetic in parallel can be

harnessed for computational purposes. Some GPU cards or chips contain 256, 512

or more special-purpose processors; in comparison, the computer’s main CPU

usually contains just 2 to 4 general-purpose processors If your computer includes an

Nvidia or AMD Radeon graphics card or chip, it would be worth your time to

compare the performance of both the CPU and GPU based approaches. You very

well could find that the GPU based search results in a solution in significantly less

time than the CPU based search.

72 • Solver Engine Options Solver Engine User’s Guide V2021

Large-Scale SQP Evolutionary Solver Options
If the problem is diagnosed as non-smooth (NSP), the options described in this

section control the operation of the Evolutionary Solver “top-level” algorithm.

Convergence

VBA / SDK: Engine.Params("Convergence"), 0 <= value <= 1

The LSSQP/Evolutionary Solver will stop and display the message “Solver has

converged to the current solution” if nearly all members of the current population of

solutions have very similar “fitness” values. The stopping condition is satisfied if

99% of the population members all have fitness values that are within the

Convergence tolerance of each other.

Population Size

VBA / SDK: Engine.Params("PopulationSize"), integer value >= 0

This option sets the number of candidate solutions in the population. The initial

population consists of candidate solutions chosen largely at random, but it always

includes at least one instance of the starting values of the variables (adjusted if

necessary to satisfy the bounds on the variables).

A larger population size may allow for a more complete exploration of the “search

space” of possible solutions, especially if the mutation rate is high enough to create

diversity in the population. However, experience with genetic and evolutionary

algorithms reported in the research literature suggests that a population need not be

very large to be effective – many successful applications have used a population of

70 to 100 members.

Mutation Rate

VBA / SDK: Engine.Params("MutationRate"), 0 < value < 1

The Mutation Rate is the probability that some member of the population will be

mutated to create a new trial solution (which becomes a candidate for inclusion in

the population, depending on its fitness) during each “generation” or subproblem

considered by the evolutionary algorithm. A subproblem consists of a possible

mutation step, a crossover step, an optional local search in the vicinity of a newly

discovered “best” solution, and a selection step where a relatively “unfit” member of

the population is eliminated.

Random Seed

VBA / SDK: Engine.Params("RandomSeed"), integer value > 0

The LSSQP/Evolutionary Solver makes extensive use of random sampling. Because

of these random choices, the LSSQP/Evolutionary Solver will normally find

different solutions on each run, even if you haven’t changed your model at all. At

times, however, you may wish to ensure that exactly the same trial points are

generated, and the same choices are made on several successive runs. To do this, set

the Random Seed option to a positive integer value; this value will then be used to

“seed” the random number generator each time you click Solve.

Solver Engine User’s Guide V2021 Solver Engine Options • 73

Local Search

VBA / SDK: Parameter Name "LocalSearch", value 1-Randomized Local Search, 2-

Deterministic Pattern Search, 3-Gradient Local Search, 4-Automatic Choice

This option determines the local search strategy employed by the

LSSQP/Evolutionary Solver. As noted under the Mutation rate option, a

“generation” or subproblem in the LSSQP/Evolutionary Solver consists of a possible

mutation step, a crossover step, an optional local search in the vicinity of a newly

discovered “best” solution, and a selection step where a relatively “unfit” member of

the population is eliminated. You have a choice of strategies for the local search

step. Choosing Automatic Choice (the default), will select an appropriate local

search strategy automatically based on characteristics of the problem functions.

Randomized Local Search

This local search strategy generates a small number of new trial points in the vicinity

of the just-discovered “best” solution, using a probability distribution for each

variable whose parameters are a function of the best and worst members of the

current population. (If the generated points do not satisfy all of the constraints, a

variety of strategies may be employed to transform them into feasible solutions.)

Improved points are accepted into the population.

Deterministic Pattern Search

This local search strategy uses a “pattern search” method to seek improved points in

the vicinity of the just-discovered “best” solution. The pattern search method is

deterministic – it does not make use of random sampling or choices – but it also does

not rely on gradient information, so it is effective for non-smooth functions. It uses a

“slow progress” test to decide when to halt the local search. An improved point, if

found, is accepted into the population.

Gradient Local Search

This local search strategy makes the assumption that the objective function – even if

non-smooth – can be approximated locally by a quadratic model. It uses a classical

quasi-Newton method to seek improved points, starting from the just-discovered

“best” solution and moving in the direction of the gradient of the objective function.

It uses a classical optimality test and a “slow progress” test to decide when to halt the

local search. An improved point, if found, is accepted into the population.

Automatic Choice

This option allows the Solver to select the local search strategy automatically in the

LSSQP/Evolutionary Solver using diagnostic information from the Polymorphic

Spreadsheet Interpreter to select a linear Gradient Local Search strategy if the

problem has a mix of non-smooth and linear variables, or a nonlinear Gradient Local

Search strategy if the objective function has a mix of non-smooth and smooth

nonlinear variables. It also makes limited use of the Randomized Local Search

strategy to increase diversity of the points found by the local search step.

Filtered Local Search

In the LSSQP/Evolutionary Engine, the Solver applies two tests or “filters” to

determine whether to perform a local search each time a new point generated by the

genetic algorithm methods is accepted into the population. The “merit filter”

requires that the objective value of the new point be better than a certain threshold if

it is to be used as a starting point for a local search; the threshold is based on the best

74 • Solver Engine Options Solver Engine User’s Guide V2021

objective value found so far, but is adjusted dynamically as the Solver proceeds. The

“distance filter” requires that the new point’s distance from any known locally

optimal point (found on a previous local search) be greater than the distance traveled

when that locally optimal point was found.

Thanks to its genetic algorithm methods, improved local search methods, and the

distance and merit filters, the LSSQP/Evolutionary Solver performs exceedingly well

on smooth global optimization problems, and on many non-smooth problems as well.

The local search methods range from relatively “cheap” to “expensive” in terms of

the computing time expended in the local search step; they are listed roughly in order

of the computational effort they require. On some problems, the extra computational

effort will “pay off” in terms of improved solutions, but in other problems, you will

be better off using the “cheap” Randomized Local Search method, thereby spending

relatively more time on the “global search” carried out by the LSSQP/Evolutionary

Solver’s mutation and crossover operations.

In addition to the Local Search options, the LSSQP/Evolutionary Solver employs a

set of methods, corresponding to the four local search methods, to transform

infeasible solutions – generated through mutation and crossover – into feasible

solutions in new regions of the search space. These methods, which also vary from

“cheap” to “expensive,” are selected dynamically (and automatically) via a set of

heuristics. For problems in which a significant number of constraints are smooth

nonlinear or even linear, these methods can be highly effective. Dealing with

constraints is traditionally a weak point of genetic and evolutionary algorithms, but

the hybrid LSSQP/Evolutionary Solver is unusually strong in its ability to deal with a

combination of constraints and non-smooth functions.

If the LSSQP/Evolutionary Solver stops with the message “Solver encountered

an error computing derivatives,” you should set Use Sparse Variables to True in

the Solver Model dialog Options tab, and Solve again.

Fix Nonsmooth Variables

VBA / SDK: Parameter Name "FixNonSmooth", value 1/True or 0/False

In the LSSQP/Evolutionary Solver, this option determines how non-smooth variable

occurrences in the problem will be handled during the local search step. If this box

is checked, the non-smooth variables are fixed to their current values (determined by

genetic algorithm methods) when a nonlinear Local Gradient or linear Local

Gradient search is performed; only the smooth and linear variables are allowed to

vary. If this box is unchecked, all of the variables are allowed to vary.

Since gradients are undefined for non-smooth variables at certain points, fixing these

variables ensures that gradient values used in the local search process will be valid.

On the other hand, gradients are defined for non-smooth variables at most points,

and the search methods are often able to proceed in spite of some invalid gradient

values, so it often makes sense to vary all of the variables during the search. Hence,

this box is unchecked by default; you can experiment with its setting on your model.

Global Search

VBA / SDK: Parameter Name "GlobalSearch", value - 1/Genetic Algorithm or

0/Scatter Search

If this option is set to Genetic Algorithm, then the Evolutionary Solver will use

methods from the literature on genetic algorithms (its traditional methods) to solve

the model. Otherwise, the Evolutionary Solver will use methods from the literature

on scatter search. On some models, the scatter search algorithm will result in better

Solver Engine User’s Guide V2021 Solver Engine Options • 75

answers in less time when compared to the genetic algorithm. However, for other

models, the genetic algorithm may be more successful. Since the scatter search

algorithm tends perform best, by a modest margin, on the majority of models, it is

the default choice. But we suggest you try both algorithms with your model to see

which works better for you.

Large-Scale SQP Mixed-Integer Options
Use of the options in this section can dramatically improve solution time on

problems with many 0-1 or binary integer variables. Any of them may be selected

independently, but the best speed gains are often realized when they are used in

combination – particularly Probing / Feasibility, Bounds Improvement and

Optimality Fixing.

Probing / Feasibility

VBA / SDK: Engine.Params("ProbingFeasibility"), value 1-Use Probing/Feasibility

or 0-Don’t Use Probing Feasibility

The Probing strategy allows the Solver to derive values for certain binary integer

variables based on the settings of others, prior to actually solving the problem.

When the Branch & Bound method creates a subproblem with an additional (tighter)

bound on a binary integer variable, this causes the variable to be fixed at 0 or 1. In

many problems, this has implications for the values of other binary integer variables

that can be discovered through Probing. For example, your model may have a

constraint such as:

x1 + x2 + x3 + x4 + x5 1

where x1 through x5 are all binary integer variables. Whenever one of these variables

is fixed at 1, all of the others are forced to be 0; Probing allows the Solver to deter-

mine this before solving the problem. In some cases, the Feasibility tests performed

as part of Probing will determine that the subproblem is infeasible, so it is unneces-

sary to solve it at all. This is a special case of a “clique” or “Special Ordered Set”

(SOS) constraint.

Bounds Improvement

VBA / SDK: Engine.Params("BoundsImprovement"), value 1-Use Bounds

Improvement or 0-Don’t Use Bounds Improvement

The Bounds Improvement strategy allows the Solver to tighten the bounds on vari-

ables that are not 0-1 or binary integer variables, based on the values that have been

derived for the binary variables, before the problem is solved. Tightening the bounds

usually reduces the effort required by Solver to find the optimal solution, and in

some cases it leads to an immediate determination that the subproblem is infeasible

and need not be solved.

Optimality Fixing

VBA / SDK: Engine.Params("OptimalityFixing"), value 1-Use Optimality Fixing or

0-Don’t Use Optimality Fixing

The Optimality Fixing strategy is another way to fix the values of binary integer

variables before the subproblem is solved, based on the signs of the coefficients of

these variables in the objective and the constraints. Optimality Fixing can lead to

76 • Solver Engine Options Solver Engine User’s Guide V2021

further opportunities for Probing and Bounds Improvement, and vice versa. But

Optimality Fixing will yield incorrect results if you have bounds on variables,

such as A1:A5 >= 10 and A1:A5 <= 10, which create “implied” equalities,

instead of explicit equalities such as A1:A5 = 10. Watch out for situations such as

A1:A5 >= 10 and A3:D3 <= 10, which creates an implied equality constraint on A3.

Implied equalities of this sort are never a good practice, but they must be avoided in

order to use Optimality Fixing.

Variable Ordering and Pseudocost Branching

Branching on an integer variable places tighter bounds on this variable in all sub-

problems derived from the current branch. In the case of a binary integer variable,

branching forces the variable to be 0 or 1 in the subproblems. Tighter bounds on

certain variables may have a large impact on the values that can be assumed by other

variables in the problem. Ideally, the Solver will branch on these variables first.

For example, you might have a binary integer variable that determines whether or

not a new plant will be built, and other variables that then determine whether certain

manufacturing lines will be started up. If the Solver branches upon the plant-

building variable first, forcing it to be 0 or 1, this will eliminate many other

possibilities that would otherwise have to be considered during the solution of each

subproblem.

The Solver’s Branch & Bound method computes pseudocosts, which enables the

Solver to automatically choose variables for branching, once each integer variable

has been branched upon at least once. But at the beginning of the solution process,

the order in which integer variables are chosen for branching is guided overall by the

order in which they appear in the Task Pane Model tab, or the order in which they

appear in the array arguments that you pass to API functions in Solver SDK

Platform. You may be able to improve performance by manually ordering the

decision variables, based on your knowledge of the problem.

Cut Generation

A cut is an automatically generated linear constraint for the problem, in addition to

the constraints that you specify. This constraint is constructed so that it “cuts off”

some portion of the feasible region of an LP subproblem, without eliminating any

possible integer solutions. Cuts add to the work that the Solver must perform on

each subproblem (and hence they do not always improve solution time), but on many

integer programming problems, cut generation enables the overall Branch & Bound

method to more quickly discover integer solutions, and eliminate subproblems that

cannot lead to better solutions than the best one already known.

The default values for the Cut Generation options represent a reasonably good

tradeoff for many models, but it may well be worthwhile to experiment with values

for these options to find the best settings for your problem.

Max Knapsack Cuts

VBA / SDK: Engine.Params("MaxKnapsackCuts"), integer value >= 0

This option sets the maximum number of Knapsack cuts that the Solver should

generate for a given subproblem. When this maximum is reached, or if there are no

further cut opportunities, the Solver proceeds to solve the LP subproblem (with the

cuts) via an active set (Simplex) method. Knapsack cuts, also known as lifted cover

inequalities, can be generated only for groups of binary integer variables. But when

Solver Engine User’s Guide V2021 Solver Engine Options • 77

knapsack cuts can be generated, they are often very effective in cutting off portions

of the LP feasible region, and improving the speed of the solution process.

Knapsack Passes

VBA / SDK: Engine.Params("KnapsackPasses"), integer value >= 0

This option sets the number of “passes” the Solver should make over a given

subproblem, looking for Knapsack cuts. When Knapsack cuts are generated and

added to the model, the new model may present opportunities to generate further

cuts; but time spent on additional passes could otherwise be spent solving LP

subproblems. The default value of 1 pass is best for many models, but you may find

that increasing this value improves solution time for your model.

Max Gomory Cuts

VBA / SDK: Parameter Name "MaxGomoryCuts", integer value > 0

This option sets the maximum number of Gomory cuts that the Solver should

generate for a given subproblem. When this maximum is reached, or if there are no

further cut opportunities, the Solver proceeds to solve the LP subproblem (with the

cuts) via the primal or dual Simplex method.

Gomory cuts are generated by examining the basis inverse at the optimal solution of

a previously solved LP relaxation of the problem. This basis inverse is sensitive to

rounding error due to the use of finite precision computer arithmetic. Hence, if you

use Gomory cuts, you should take extra care to ensure that your worksheet

model is well scaled, and set the Use Automatic Scaling option to True. If you

see the Scaling Report listed as an option in the Reports – Optimization gallery,

select it and examine the report contents to help find scaling problems in your model.

If you have trouble finding the integer optimal solution with the default settings for

Gomory cuts, you may want to enter 0 for this option, to eliminate Gomory cuts as a

possible source of problems due to rounding.

Max Gomory Passes

VBA / SDK: Parameter Name "GomoryPasses", integer value > 0

This option sets the number of “passes” the Solver should make over a given

subproblem, looking for Gomory cuts. When cuts are generated and added to the

model, the new model may present opportunities to generate further cuts. In fact, it’s

possible to solve an LP/MIP problem to optimality by generating Gomory cuts in

multiple passes, without any branching via Branch & Bound; however, experience

has shown that this is usually less efficient than using Branch & Bound. The default

value of 1 pass is best for many models, but you may find that increasing this value

improves solution time for your model.

Knitro Solver Options
SDK: Engine name "Knitro Solver", file name Knitroeng.dll

This Solver Engine supports the Common Solver Options discussed earlier, plus the

Global Optimization options, and the Convergence, Population Size, Random Seed,

Treat Constraints as Linear, Treat Objective as Linear, and Solution method options,

which are specific to the Knitro Solver. The Global Optimization, Population Size

78 • Solver Engine Options Solver Engine User’s Guide V2021

and Random Seed options are discussed below in the section “Options for Global

Optimization.” The other options specific to the Knitro Solver are discussed here.

Convergence

VBA / SDK: Engine.Params("Convergence"), 0 <= value <= 1

This option is included for compatibility with the GRG, Large-Scale GRG, and

Large-Scale SQP Solvers, but its value is not currently used by the Knitro Solver.

As discussed in the chapter “Solver Result Messages,” each of the nonlinear Solvers

(including the Knitro Solver) will stop and display the message “Solver has

converged to the current solution” when the solution is changing very slowly for the

last few iterations or trial solutions. The GRG, Large-Scale GRG, and Large-Scale

SQP Solvers use the Convergence value in testing for this condition. The Knitro

Solver uses slightly different criteria to determine when to stop due to slow progress,

but the effect is much the same.

If you are getting this message when you’re seeking a locally optimal solution, you

should consider why it is that the objective function is changing so slowly. Perhaps

you can add constraints or use different starting values for the variables, so that the

Solver does not get “trapped” in a region of slow improvement.

Treat Constraints as Linear/LinearConstraints

VBA / SDK: Engine.Params("LinearConstraints"), value 1-Treat as Linear or 0-

Don’t Treat as Linear

The Treat Constraints as Linear and Treat Objective as Linear options are used only

if (i) you have a problem with all linear constraints and possibly a linear objective

but (ii) you aren’t using the PSI Interpreter in Analytic Solver Desktop, or you aren’t

setting the Model object AllGradDepend property, or calling the SolverModAll-

GradDependSet procedural API function, in Solver SDK Platform. (Analytic Solver

Cloud always using the Psi Interpreter.) These options tell the Knitro Solver to treat

the constraints and/or the objective as linear, and exploit this treatment to solve the

problem more efficiently. If you are solving a problem with all linear constraints,

such as a linear programming (LP) or quadratic programming (QP) problem, you can

use this option to speed up the solution process.

In Analytic Solver Desktop, use of the PSI Interpreter is the default setting, the

Knitro Solver obtains information about linearity of the constraints and objective

from the Polymorphic Spreadsheet Interpreter, and these options are ignored.

When you solve a problem Interpreter = Excel Interpreter in Analytic Solver

Desktop, or without setting the Model object AllGradDepend property in Solver

SDK Platform, the Knitro Solver normally treats the objective and all constraints as

smooth nonlinear functions – even if they are actually linear. Hence, the Solver will

compute gradients of these functions at each major iteration. If this option is set to 1,

the Knitro Solver will assume that the constraints are linear (hence their gradients are

constant) and will compute their gradients only once, at the beginning of the solution

process. This option is especially effective when used in combination with the

“Treat Objective as Linear” option, for a linear programming problem, as explained

below.

Treat Objective as Linear/LinearObjective

VBA / SDK: Engine.Params("LinearObjective"), value 1-Treat as Linear or 0-Don’t

Treat as Linear

Solver Engine User’s Guide V2021 Solver Engine Options • 79

If you are solving a linear programming problem, you can use this option to greatly

speed up the solution process. As described under “Treat Constraints as Linear”

above, when you solve a problem with Interpreter = Excel Interpreter in Analytic

Solver Desktop, or without setting the Model object AllGradDepend property in

Solver SDK Platform, the Knitro Solver normally treats the objective and all

constraints as smooth nonlinear functions, and computes gradients of these functions

via finite differencing at each major iteration. When both options “Treat Constraints

as Linear” and “Treat Objective as Linear” are True, the Knitro Solver computes the

function gradients only once, at the beginning of the solution process – taking about

the same amount of time as “Problem Setup” in a large-scale LP Solver. The Knitro

Solver then solves the problem using active-set methods that are highly effective,

and competitive with the Simplex method for linear programming.

If you set only “Treat Constraints as Linear,” but not “Treat Objective as Linear” to

True, the improvement in solution time depends on whether or not you are using

automatic differentiation in Analytic Solver Desktop, or you are supplying an

Evaluator for Eval_Type_Gradient in Solver SDK Platform. If automatic

differentiation or an Evaluator for derivatives are being used, you should see a

significant speedup, since only derivatives for the objective need be computed on

each major iteration. But if finite differencing is being used (Interpreter = Excel

Interpreter, or you’ve defined only an Evaluator for Eval_Type_Function), you may

not see much speed improvement, especially in Excel. This is because it takes

almost as much time to compute gradients of some of the functions (or even just one,

the objective) as it does to compute gradients of all of the functions, by recalculating

the Excel spreadsheet or by calling your function Evaluator with perturbed values for

each of the decision variables.

Relax Bounds on Variables

VBA / SDK: Engine.Params("RelaxBounds"), value 1-Relax or 0-Don’t Relax

By default, the Knitro Solver seeks to ensure that any trial points evaluated during

the solution process will not have values that violate the bounds on the variables you

specify. If your problem functions cannot be evaluated for values outside the

variable bounds, this default behavior will ensure that the solution process can

continue. However, at times the Knitro Solver can make more rapid progress along a

given search direction by testing trial points with values outside the bounds on the

variables. If you want to permit this to happen, set this option to 1. If you receive

the Solver Result Message “Solver encountered an error value in a target or

constraint cell,” as a first step you should ensure that this option is set to 0.

Solution Method

VBA / SDK: Engine.Params("SolutionMethod"), value 1-Select Automatically, 2-

Interior Point Direct, 3-Interior Point CG, or 4-Active Set

This option selects the overall optimization algorithm, or solution method, used by

the Knitro Solver. The Knitro Solver now includes both interior point and active set

(SLQP) methods, which enables this Solver to outperform most other Solvers on all

kinds of nonlinear problems.

Select Automatically

By default, the Knitro Solver will select the solution method automatically. If the

problem is linear, or if a mixed-integer (Branch & Bound) subproblem is being

solved, Knitro will use its Active Set method. If the problem is nonlinear, Knitro

80 • Solver Engine Options Solver Engine User’s Guide V2021

may choose any of the solution methods, but most often the Interior Point Direct

method will be used.

Interior Point Direct

This method computes a step by directly factoring the matrix of normal equations.

(The Interior Point CG method uses an iterative approach to solving this system.)

The Direct method can fall back automatically to the CG method if the computed

step appears to be of low quality. This option may perform substantially better than

the CG method if the problem is ill-conditioned.

Interior Point CG

This method uses an iterative Conjugate Gradient approach to computing the step at

each iteration. It typically offers the best performance if the Hessians of the problem

functions are large and dense. For challenging nonlinear problems, it is a good idea

to try both the Direct and the CG option, since it is difficult to predict in advance

which method will perform best on a given problem.

Active Set

This method uses a new active-set Sequential Linear-Quadratic Programming

(SLQP) optimization algorithm. It usually offers the best performance on linear

problems, highly constrained problems, or problems where a good starting point is

known (and supplied on the Excel spreadsheet).

Derivatives Options

Derivatives

VBA / SDK: Engine.Params("Derivatives"), value 1-Forward or 2-Central

The Derivatives option is relevant only if, in Analytic Solver Comprehensive and

Analytic Solver Optimization you’ve set Interpreter = Excel Interpreter in the Task

Pane Platform tab, or you haven’t supplied an Evaluator for Eval_Type_Gradient in

Solver SDK Platform – which means that first derivatives of the problem functions

must be approximated via finite differences. It determines whether “forward

differencing” or “central differencing” is performed.

Forward differencing (the default choice) uses the point from the previous iteration –

where the problem function values are already known – in conjunction with the

current point. Central differencing relies only on the current point, and perturbs the

decision variables in opposite directions from that point. This requires up to twice as

much time on each iteration, but it may result in a better choice of search direction

when the derivatives are rapidly changing, and hence fewer total iterations.

Second Derivatives

VBA / SDK: Engine.Params("SecondDerivatives"), value 1-Analytic 2nd

Derivatives, 2- Analytic 1st Derivatives, or 3-Finite Differences

On each major iteration, the Knitro Solver computes an approximation of the

Hessian of the Lagrangian function for the problem. The Lagrangian is a function of

the objective and all of the constraints, so computing its Hessian requires that the

Hessian of the objective and the Hessian of each constraint be obtained. This option

determines how the Knitro Solver will obtain or approximate the Hessian values.

Solver Engine User’s Guide V2021 Solver Engine Options • 81

Analytic 2nd Derivatives indicates that Hessian values will be obtained via second

order automatic differentiation from the Interpreter in Analytic Solver, or by calling

your Evaluator for Eval_Type_Hessian in the Solver SDK Platform. This is the most

accurate method, and it is often the fastest method as well, but it may require a great

deal of memory and computation.

Analytic 1st Derivatives indicates that the Knitro Solver should obtain gradients via

first order automatic differentiation from the Interpreter in Analytic Solver, or by

calling your Evaluator for Eval_Type_Gradient in Solver SDK Platform, and then

construct an approximation of the Hessian of each function via a quasi-Newton

method (BFGS or limited-memory BFGS).

Finite Differences indicates that the Knitro Solver should obtain gradients via first

order automatic differentiation from the Interpreter in Analytic Solver or by calling

your Evaluator for Eval_Type_Gradient in Solver SDK Platform, and then estimate

the Hessian values by taking finite differences of the first derivatives.

If you’ve set Interpreter = Excel Interpreter in Analytic Solver Desktop (only), or if

you haven’t supplied an Evaluator for Eval_Type_Gradient in Solver SDK Platform,

then “analytic” gradients will not be available when the Knitro Solver runs. (You

should do this only if you have no alternative, perhaps because your model depends

on functions for which the PSI Interpreter cannot compute gradients, or functions for

which it’s too difficult to write your own Evaluator for function gradients.) In this

case, the Knitro Solver will compute approximate first derivatives via finite

differencing – either Forward or Central as set by the Derivatives option described

above – and then use these values to approximate the Hessian or second derivative

values, using either the “Analytic 1st Derivatives” or “Finite Differences” method

described here. Since there are two levels of approximation involved in either case,

the solution found may be less accurate, and the Knitro Solver may require more

iterations to reach the solution.

Options for Global Optimization
As described in the chapter “Using the Solver Engines,” you can solve global

optimization problems with the OptQuest Solver, or you can use the Large-Scale

GRG Solver, the Large-Scale SQP Solver, or the Knitro Solver augmented with so-

called “multistart” methods for such problems. The OptQuest Solver is designed to

seek globally optimal solutions, and is controlled by the options and parameters

described later in this chapter. This section describes options that control the

multistart methods for global optimization, which will automatically run the

LSGRG, LSSQP, or Knitro Solver from a number of starting points in order to seek

the globally optimal solution. The behavior and stopping rules for the multistart

methods are further described under “Multistart Search with the Large-Scale GRG,

SQP and Knitro Solvers” in the chapter “Solver Result Messages.”

As seen in earlier sections of this chapter, the Global Optimization options group and

the Population Size and Random Seed options are supported by the Large-Scale

GRG Solver, the Large-Scale SQP Solver, and the Knitro Solver, and they have the

same effect in each of these Solver engines.

Multistart Search

VBA / SDK: Engine.Params("MultiStart"), value 1-Use Multistart Search or 0-Don’t

Use Multistart Search

82 • Solver Engine Options Solver Engine User’s Guide V2021

Set this option to 1/True to activate the multistart methods for global optimization. If

this option is set to 0/False, the Topographic Search, Require Bounds, Population

Size and Random Seed options are ignored.

The multistart methods will generate candidate starting points for the LSGRG,

LSSQP, or Knitro Solver (with randomly selected values between the bounds you

specify for the variables), group them into “clusters using a method called multi-

level single linkage, and then run the Solver from a representative point in each

cluster. This process continues with successively smaller clusters that are

increasingly likely to capture each possible locally optimal solution.

Topographic Search

VBA / SDK: Engine.Params("TopoSearch"), value 1-Use Topographic Search or 0-

Don’t Use Topographic Search

This option has an effect only if the Multistart option is set to True. If this option is

set to 1/True, the multistart methods will make use of a “topographic” search

method. This method uses the objective value computed for the randomly sampled

starting points to compute a “topography” of overall “hills” and “valleys” in the

search space, in an effort to find better clusters and start the LSGRG, LSSQP, or

Knitro Solver from an improved point (already in a “hill” or “valley”) in each

cluster. Computing the topography takes extra time, but on some problems this is

more than offset by reduced time taken by the Solver on each subproblem.

Require Bounds on Variables

VBA / SDK: Engine.Params("RequireBounds"), value 1-Require Bounds or 0-Don’t

Require Bounds

This option is 1/True by default, but it has an effect only if the Multistart option is

set to 1/True. When this option and the Multistart option are 1/True, you must define

lower and upper bounds for each decision variable before you can solve the problem.

If you attempt to solve without defining bounds on all the variables (and this option

is 1/True), you’ll see a Solver Result message “All variables must have both upper

and lower bounds.” The fastest way to define such bounds is to use the Decision

Vars Upper and Decision Vars Lower options on the Task Pane Platform tab.

The multistart methods generate candidate starting points for the LSGRG, LSSQP, or

Knitro Solver by randomly sampling values between the bounds on the variables that

you specify. If you do not specify both upper and lower bounds on each of the

decision variables, the multistart methods can still be used, but because the random

sample must be drawn from an “infinite” range of values, this is unlikely to

effectively cover the possible starting points (and therefore have a good chance of

finding all of the locally optimal solutions), unless the GRG Solver is run on a great

many subproblems, which will take a very long time.

The tighter the bounds on the variables that you can specify, the better the multistart

methods are likely to perform. (This is also true of the OptQuest Solver and the

Evolutionary Solver.) Hence, this option is True by default, so that you will be

automatically reminded to include both upper and lower bounds on all of the

variables whenever you use the multistart methods. In VBA and Solver SDK

Platform, the Solver object Optimize method or the SolverOptimize procedural API

function call will return with an OptimizeStatus value of 18.

Solver Engine User’s Guide V2021 Solver Engine Options • 83

Population Size

VBA / SDK: Engine.Params("PopulationSize"), integer value > 0

This option has an effect only if the Multistart option is set to 1/True. It determines

the size of the “population” of candidate starting points for multistart search.

The multistart methods generate a number of candidate starting points for the

LSGRG, LSSQP, or Knitro Solver equal to the value of this option. This set of

starting points is referred to as a “population,” because it plays a role somewhat

similar to the population of candidate solutions maintained by the OptQuest Solver

and the Evolutionary Solver. The minimum population size is 10 points; if you

supply a value less than 10 for this option, or leave it unchanged, the multistart

methods use a population size of 10 times the number of decision variables in the

problem, but no more than 200.

Random Seed

VBA / SDK: Engine.Params("RandomSeed"), integer value > 0

This option has an effect only if the Multistart option is set to 1/True. It sets a seed

for the random number generator used by the multistart methods.

The multistart methods use a process of random sampling to generate candidate

starting points for the LSGRG, LSSQP, or Knitro Solver. This process uses a

random number generator that is normally “seeded” using the value of the system

clock – so the random number sequence (and hence the generated candidate starting

points) will be different each time you solve. At times, however, you may wish to

ensure that the same candidate starting points are generated on several successive

runs – for example, in order to test different LSGRG, LSSQP, or Knitro Solver

options on each search for a locally optimal solution. To do this, enter an integer

value for this option; this value will then be used to “seed” the random number

generator each time you solve.

MOSEK Solver Options
SDK: Engine name "MOSEK Solver Engine", file name MOSEKeng.dll

This Solver Engine supports the Common Solver Options discussed earlier, plus the

Pivot Tolerance, Ordering Strategy, Scaling, LP/QP/QCP Tolerances, Conic

Tolerances, and Nonlinear Tolerances, which are specific to the MOSEK Solver.

The Precision option has a somewhat specialized meaning for this Solver engine, as

discussed below.

Precision

VBA / SDK: Engine.Params("Precision"), 0 < value < 1

This parameter determines both the maximum absolute primal bound violation and

the maximum absolute dual bound violation in an optimal basic solution. The

default value of 1E-6 is appropriate for most problems.

Pivot Tolerance

VBA / SDK: Engine.Params("PivotTolerance"), 0 < value < 1

84 • Solver Engine Options Solver Engine User’s Guide V2021

This is the relative pivot tolerance used in the LU factorization, in the basis

identification procedure. Any positive number up to 0.999999 can be used.

Ordering Strategy/Ordering

VBA / SDK: Engine.Params("Ordering"), value 1-Automatic Choice, 2-Local Fill-in

1, 3-Local Fill-in 2, 4-Graph Partitioning, 5-Alt. Graph Partitioning, 6-No Ordering

This option group determines the column ordering strategy used by the interior-point

optimizer when factorizing the Newton equation system. The options are:

Automatic Choice

The ordering strategy is chosen automatically based on matrix characteristics.

Local Fill-in 1

An approximate minimum local-fill-in ordering is used.

Local Fill-in 2

A variant of minimum local-fill-in ordering is used.

Graph Partitioning

The ordering is determined by a graph partitioning algorithm.

Alt. Graph Partitioning

The ordering is determined by an alternative graph partitioning algorithm.

No Ordering

The columns of the matrix are not reordered.

Scaling

VBA / SDK: Engine.Params("Scaling"), value 1-Automatic Choice, 2-Aggressive

Scaling, 3-No Scaling, 4-Conservative Scaling

This option group determines how the problem is scaled before the interior-point

optimizer is used. The options are:

Automatic Choice

The degree of scaling is chosen automatically.

Aggressive Scaling

Automatic scaling is “aggressive” – the magnitudes of problem values (e.g.

coefficients and right hand sides of constraints) may be adjusted by large amounts to

make the Newton equation matrix well-conditioned.

No Scaling

The problem values are used as-is, with no automatic rescaling.

Solver Engine User’s Guide V2021 Solver Engine Options • 85

Conservative Scaling

Automatic scaling is “conservative” – the magnitudes of problem values (e.g.

coefficients and right hand sides of constraints) may be adjusted by small amounts to

make the Newton equation matrix better-conditioned.

Maximum Barrier Iterations

VBA / SDK: Engine.Params("MaxBarrierIterations"), 1 <= value

The value of the Maximum Barrier Iterations option determines the maximum

number of iteations that will be performed by the interior point optimizer. For the

vast majority of models, the default setting of 100 iterations is appropriate.

LP/QP/QCP Tolerances

Dual Feasibility Tolerance/DualFeasibility

VBA / SDK: Engine.Params("DualFeasibility"), 0 < value < 1

This is the dual feasibility tolerance used for linear and quadratic optimization

problems. The default value is appropriate for most problems.

Primal Feasibility Tolerance/PrimalFeasibility

VBA / SDK: Engine.Params("PrimalFeasibility"), 0 < value < 1

This is the primal feasibility tolerance used for linear and quadratic optimization

problems. The default value is appropriate for most problems.

Model Feasibility Tolerance/ModelFeasibility

VBA / SDK: Engine.Params("ModelFeasibility"), 0 < value < 1

This tolerance determines when the optimizer declares the model to be primal or dual

infeasible. Smaller values cause the optimizer to take more time and be more

“conservative” in declaring the model infeasible.

Complementarity Gap Tolerance/CompGapTol

VBA / SDK: Engine.Params("CompGapTol"), 0 < value < 1

This is a relative tolerance for the complementarity gap in the interior point method,

for linear and quadratic optimization problems.

Central Path Tolerance/CentralPathTol

VBA / SDK: Engine.Params("CentralPathTol"), 0 < value < 0.5

This tolerance determines how closely the interior-point optimizer follows the

central path. A larger value of this parameter causes the optimizer to follow the

central path more closely (the value must be less than 0.5). On numerically unstable

problems, consider increasing this tolerance from its default value.

Gap Termination Tolerance/GapTerminationTol

VBA / SDK: Engine.Params("GapTerminationTol"), 0 < value < 0.5

This is a relative tolerance for the primal-dual optimality gap, for linear and

quadratic optimization problems.

86 • Solver Engine Options Solver Engine User’s Guide V2021

Relative Step Size

VBA / SDK: Engine.Params("StepSize"), 0 < value < 1

This is the relative step size to the constraint boundary used by the interior point

optimizer for linear and quadratic optimization problems.

Conic Tolerances

Dual Feasibility Tolerance/DualFeasibilityCone

VBA / SDK: Engine.Params("DualFeasibilityCone"), 0 < value < 1

This is the dual feasibility tolerance used for conic optimization problems. The

default value is appropriate for most problems.

Primal Feasibility Tolerance/PrimalFeasibilityCone

VBA / SDK: Engine.Params("PrimalFeasibilityCone"), 0 < value < 1

This is the primal feasibility tolerance used for conic optimization problems. The

default value is appropriate for most problems.

Model Feasibility Tolerance/ModelFeasibilityCone

VBA / SDK: Engine.Params("ModelFeasibilityCone"), 0 < value < 1

This tolerance determines when the optimizer declares the model to be primal or dual

infeasible. Smaller values cause the optimizer to take more time and be more

“conservative” in declaring the model infeasible.

Complementarity Gap Tolerance/CompGapTolCone

VBA / SDK: Engine.Params("CompGapTolCone"), 0 < value < 1

This is a relative tolerance for the complementarity gap in the interior point method,

for conic optimization problems.

Gap Termination Tolerance/GapTerminationTolCone

VBA / SDK: Engine.Params("GapTerminationTolCone"), 0 < value < 1

This is a relative tolerance for the primal-dual optimality gap, for conic optimization

problems.

Nonlinear Tolerances

Dual Feasibility Tolerance

VBA / SDK: Engine.Params("DualFeasibilityNLP"), 0 < value < 1

This is the dual feasibility tolerance used for general nonlinear optimization

problems. The default value is appropriate for most problems.

Primal Feasibility Tolerance

VBA / SDK: Engine.Params("PrimalFeasibilityNLP"), 0 < value < 1

This is the primal feasibility tolerance used for general nonlinear optimization

problems. The default value is appropriate for most problems.

Solver Engine User’s Guide V2021 Solver Engine Options • 87

Complementarity Gap Tolerance

VBA / SDK: Engine.Params("CompGapTolNLP"), 0 < value < 1

This is a relative tolerance for the complementarity gap, for general nonlinear

optimization problems.

Gap Termination Tolerance

VBA / SDK: Engine.Params("GapTerminationTolNLP"), 0 < value < 1

This is a relative tolerance for the primal-dual optimality gap, for general nonlinear

optimization problems.

Relative Step Size

VBA / SDK: Engine.Params("StepSizeNLP"), 0 < value < 1

This is the relative step size to the constraint boundary used by the interior point

optimizer for general nonlinear optimization problems.

NonConvex Feasibility Tolerance

VBA / SDK: Engine.Params("NCvxFeasibilityTol"), 0 < value < 1

This is the feasibility tolerance used by the optimizer for problems that it has

determined are probably non-convex. Note that the MOSEK Solver Engine is not

guaranteed to produce correct results for non-convex problems.

NonConvex Optimality Tolerance

VBA / SDK: Engine.Params("NCvxOptimalityTol"), 0 < value < 1

This is the optimality tolerance used by the optimizer for problems that it has

determined are probably non-convex. Note that the MOSEK Solver Engine is not

guaranteed to produce correct results for non-convex problems.

Gurobi Solver Options
SDK: Engine name "Gurobi Solver", file name Gurobieng.dll

This Solver Engine supports the Common Solver Options discussed earlier, plus

Threads, Random Seed, Scaling, Feasibility Tolerance, Optimality Tolerance, Integer

FeasibilityTolerance, PSD Tolerance, QCP Tolerance, LP method, LP Presolve, LP

Pricing, Barrier Iteration Limit, Barrier Convergence Tolerance, Barrier Crossover

Strategy, Barrier Ordering, Node File Start, Heuristics, Max SubMip Nodes,

Variable Branching, Symmetry, MIP Focus, Solution Improvement, Cut Passes, Pre

Passes, and Improve Start Gap options, which are specific to the Gurobi Solver and

described in this section.

Threads

VBA / SDK: Engine.Params("Threads"), integer value n > 0-Use n threads, or 0-Use

as many threads as there are processors available

This option determines how many concurrent threads (paths of execution) the Solver

will use during the parallel Branch & Bound process. By default (option value 0),

the Solver will use as many threads as there are processor cores in your PC. If you

wish to reserve some processors for other purposes, set this to a specific value.

88 • Solver Engine Options Solver Engine User’s Guide V2021

Random Seed/Seed

VBA / SDK: Engine.Params("Seed"), integer value n > 0-Use n threads, or 0-Use as

many threads as there are processors available

The setting for this option will be used to “seed” the random number generator each

time you click Solve. This acts as a small perturbation to the solver and typically

leads to different solution paths.

Scaling

VBA / SDK: Engine.Params("Scaling"), value 0 (Off), 1 (Normal) or 2 (Aggressive)

This option controls model scaling. By default, the rows and columns of the model

are scaled in order to improve the numerical properties of the constraint matrix. The

scaling is removed before the final solution is returned. Scaling typically reduces

solution times, but it may lead to larger constraint violations in the original, unscaled

model. Turning off scaling (Scaling = Off) can sometimes produce smaller constraint

violations. Choosing a more aggressive scaling option (Scaling = Aggressive) can

sometimes improve performance for particularly numerically difficult models. The

default is Scaling = Normal.

Assume Quadratic Objective/Assume QP

VBA / SDK: Engine.Params("AssumeQP"), value 1-Assume Quadratic Objective or

0-Don’t Assume Quadratic Objective

This option is used only if you are solving a quadratic programming problem, and

you’ve either set the Task Pane Platform tab Optimization Model Interpreter to Excel

Interpreter, or set the Advanced group Supply Engine With option to Gradients.

When you use the PSI Interpreter and supply the Gurobi Solver with Structure or

Convexity information, this option is ignored, and the type of objective – linear or

quadratic – will be determined automatically.

Otherwise, if the Excel Interpreter is used you must use the QUADPRODUCT

function and check this option. Failure to do so will result in the error message

“Linearity conditions are not satisfied.”

Feasibility Tolerance/FeasibilityTol

VBA / SDK: Engine.Params("FeasibilityTol"), double value between 1E-9 and 1E-2;

default value 1E-6.

This is the Gurobi Solver’s primal feasibility tolerance. All constraints must be

satisfied to this tolerance.

Optimality Tolerance/OptimalityTol

VBA / SDK: Engine.Params("OptimalityTol"), double value between 1E-9 and 1E-2;

default value 1E-6.

This is the Gurobi Solver’s optimality tolerance, also known as the dual feasibility

tolerance. Reduced costs must all be smaller than this tolerance in the improving

direction in order for a model to be declared optimal.

Solver Engine User’s Guide V2021 Solver Engine Options • 89

Integer Feasibility Tolerance/IntegralityTol

VBA / SDK: Engine.Params("IntegralityTol"), double value between 1E-9 and 1E-1;

default value 1E-5.

This is the Gurobi Solver’s integer feasibility tolerance. An integrality restriction on

a decision variable is considered satisfied when the variable's value is less than this

tolerance from the nearest integer value.

PSD Tolerance/PSDTol

VBA/SDK: Engine.Params(“PSDTol”), value > 0, default = 1e-6

This parameter affects QP and MIQP models. The Gurobi engine can only solve

convex QP models. If a QP model is nonconvex, Gurobi tries to perturb the diagonal

values of the Q matrix so as to make the problem convex. This parameter controls

the maximum diagonal perturbation allowed on the Q matrix to make it positive

semi-definite. If a larger perturbation is required, the model is considered nonconvex

and cannot be solved using the Gurobi engine.

QCP Tolerance/QCPTol

VBA/SDK: Engine.Params(“QCPTol”), 0 <= value <= 1, default = 1e-6

This parameter affects QCP (quadratically constrained) models which are solved

with the barrier method. This solver stops when the relative difference between the

primal and dual objective values is less than the tolerance setting. Passing a smaller

value for this option may result in a more accurate solution, if one exists, but could

also result in the solver failing to converge.

LP Method

VBA / SDK: Engine.Params("Method"), -1 – Automatic, 0 - Primal Simplex, 1 -

Dual Simplex, 2 - Barrier Method, 3 – Concurrent, 4 – Deterministic Concurrent

This option selects the algorithm used to solve the root node of a mixed-integer

programming problem. Primal Simplex, Dual Simplex, and Barrier Method can be

used for continuous QP models. Primal Simplex or Dual Simplex should be used

when solving the root of an MIQP model. The Barrier Method should be used when

solving continuous QCP models. If memory is an issue when solving an LP, then it

is recommended to use the Dual Simplex method.

LP Presolve

VBA / SDK: Engine.Params("Presolve"), -1- Automatic, 0 - Off, 1 - Conservative, 2

- Aggressive

This option controls the Presolve process in the Gurobi Solver. More aggressive

application of presolve takes more time, but can sometimes lead to a significantly

tighter formulation of the model, saving time in the overall solution process.

LP Pricing

VBA / SDK: Engine.Params("Pricing"), -1 - Automatic, 0 - Partial Pricing, 1 -

Steepest Edge, 2 - Devex, or 3 - Quick-Start Steepest Edge

90 • Solver Engine Options Solver Engine User’s Guide V2021

This option determines the variable ‘pricing’ strategy used in the Simplex method.

The default setting (Automatic) is usually the best choice; you’ll need deep

knowledge of how the Simplex method performs to select a better setting.

Barrier Iteration Limit/BarIterLimit

VBA / SDK: Engine.Params("BarIterLimit"), integer value > 0

This option is effective only when the LP Method option is set to 2 (Barrier). It

limits the number of Barrier iterations that will be performed before the Solver stops.

It is a separate limit because the number of Barrier iterations is typically much

smaller than the number of Simplex iterations (but each iteration is computationally

much more expensive). The Barrier method frequently finishes within 50 iterations,

and rarely goes beyond 100 iterations.

Barrier Convergence Tolerance/BarConvTol

VBA / SDK: Engine.Params("BarConvTol"), double value between 1E-10 and 1E-0;

default value 1E-8.

This option is effective only when the LP Method option is set to 2 (Barrier). It sets

the Barrier convergence tolerance. The Barrier Solver terminates when the relative

difference between the primal and dual objective values is less than this tolerance.

Crossover Strategy/CrossOver

VBA / SDK: Engine.Params("CrossOver"), -1 - Automatic, 0 - No crossover, 1 -

Primal Simplex (dual variables first), 2 – Dual Simplex (dual variables first), 3 -

Primal Simplex (primal variables first), 4 - Dual Simplex (primal variables first)

This option determines the crossover strategy used to transform the Barrier solution

into a basic solution (as produced by the Simplex method). Use value 0 to disable

crossover – the Solver will return an interior solution. Options 1 and 2 push dual

variables first, then primal variables. Option 1 finishes with primal, while option 2

finishes with dual. Options 3 and 4 push primal variables first, then dual variables.

Option 3 finishes with primal, while option 4 finishes with dual. The default value

of -1 chooses automatically.

Ordering

VBA / SDK: Engine.Params("Ordering"), -1 - Automatic, 0 - Approximate Minimum

Degree, 1 - Nested Dissection.

This option selects the Barrier sparse matrix fill-reducing algorithm. A value of 0

chooses Approximate Minimum Degree ordering; a value of 1 chooses Nested

Dissection ordering. The default value of -1 chooses automatically.

Node File Start/NodeFileStart

VBA / SDK: Engine.Params("NodeFileStart"), double value > 0

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. The Node File Start option determines how much

memory can be used for the Branch & Bound tree before the Gurobi Solver starts

writing the tree node information to a disk file. It is an integer or fractional value

measured in gigabytes (GB). The default value is effectively infinity; if you find that

Solver Engine User’s Guide V2021 Solver Engine Options • 91

the Gurobi Solver returns the Solver Result message ‘Out of memory’, you should

set this option to a value less than the amount of main (RAM) memory you have

available for the Solver to use (e.g. 1 or 2).

Heuristics

VBA / SDK: Engine.Params("Heuristics"), 0 < value < 1, default 0.05

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. The Heuristics option controls the amount of time the

Solver will spend on mixed-integer heuristics. Larger values produce more and better

feasible solutions, at a cost of slower progress in the optimal value of the

‘incumbent’ or best solution so far.

NoRelHeuristic

VBA / SDK: Engine.Params("NoRelHeuristic"), 0, 1, 2 or 3

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. The NoRelHeuristic option attempts to find feasible

solutions without having to solve the full LP relaxation.

• To turn off, select Off in Analytic Solver or 0 in the SDK.

• Select Find 1 in Analytic Solver (1 in the SDK) to find one feasible solution

• Select Find 5 in Analytic Solver (2 in the SDK) to find five feasible solutions.

• Select Auto in Analytic Solver (3 in the SDK) to allow the Gurobi engine to

determine when to stop solving.

Max SubMip Nodes/SubMips

VBA / SDK: Engine.Params("SubMips"), integer value >= 0

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. The Max SubMipt Nodes option limits the number of

nodes explored by the RINS (Relaxation Induced Neighborhood Search) heuristic.

Exploring more nodes can produce better solutions, but it generally takes longer.

You can increase this if you are having trouble finding good feasible solutions.

Variable Branching/VarBranching

VBA / SDK: Engine.Params("VarBranching"), -1 - Automatic, 0 - Pseudo Reduced

Cost Branching, 1 - Pseudo Shadow Price Branching, 2 - Maximum Infeasibility

Branching, 3 - Strong Branching.

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. The Varaible Branching option controls the branch

variable selection strategy. Variable selection can have a significant impact on

overall time to solution, but the default (automatically chosen) strategy is usually the

best choice.

Cut Generation/CutGeneration

VBA / SDK: Engine.Params("CutGeneration"), -1 – Automatic, 0 - No cut

generation, 1 = Conservative cut generation, 2 - Aggressive cut generation, 3 – Very

aggressive cut generation.

92 • Solver Engine Options Solver Engine User’s Guide V2021

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. The Cut Generation option determines the overall

strategy for cut generation. A cut is an automatically generated linear constraint for

the problem, in addition to the constraints that you specify. This constraint is

constructed so that it “cuts off” some portion of the feasible region of an LP

subproblem, without eliminating any possible integer solutions. Cuts add to the

work that the LP solver must perform on each subproblem (and hence they do not

always improve solution time), but on many integer programming problems, cut

generation enables the overall Branch & Bound method to more quickly discover

integer solutions, and eliminate subproblems that cannot lead to better solutions than

the best one already known.

Symmetry

VBA / SDK: Engine.Params("Symmetry"), -1- Automatic, 0 - Off, 1 - Conservative,

2 - Aggressive

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. The Symmetry option controls mixed-integer symmetry

detection. The default setting (Automatic) works well for most problems.

MIP Focus/MIPFocus

VBA / SDK: Engine.Params("MIPFocus"), 0 - Balanced approach, 1 - Focus on

finding feasible solutions, 2 - Focus on proving optimality, 3 - Focus on moving the

best objective bound.

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. The MIP Focus option controls the focus of the mixed-

integer solver. The default value tries to strike a balance between finding good

feasible solutions and proving optimality. If you are more interested in good

quality feasible solutions, use a value of 1. If you believe the Solver is having no

trouble finding the optimal solution, and wish to focus more attention on proving

optimality, use a value of 2. If the best objective bound is moving very slowly (or

not at all), you may want to try a value of 3 to focus on the bound.

 Cut Passes/CutPasses

VBA / SDK: Engine.Params("CutPasses") -1 < value

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. Enter a non-negative value here to specify the maximum

number of cutting plane passes to be performed during the root cut generation. The

default value of -1 will select the number of cut passes automatically.

Pre Passes/PrePasses

VBA / SDK: Engine.Params("PrePasses") -1 < value

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. Enter a non-negative value here to specify the maximum

number of passes performed by Presolve. The default value of -1 will select the

number of cut passes automatically.

Solver Engine User’s Guide V2021 Solver Engine Options • 93

Improve Start Gap / Solution Improvement

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. Gurobi has the ability to change parameter settings in the

middle of a solve in order to adopt a new strategy that attempts to find a better

feasible solution rather than trying to move the Objective of best bound.

The Gurobi engine starts by finding the optimal solution without considering the

integer constraints; this is called the relaxation of the integer programming problem.

The objective value of the relaxation forms the initial “best bound” on the objective

of the optimal integer solution, which can be no better than this. During the

optimization process, Gurobi finds “candidate” integer solutions, and keeps the best

solution so far as the “incumbent.” By eliminating alternatives as its proceeds,

Gurobi also tightens the “best bound” on how good the integer solution can be.

Each time Gurobi finds a new incumbent – an improved all-integer solution – it

computes the maximum percentage difference (or optimality gap) between the

objective of this solution and the current best bound on the objective:

(Objective of incumbent - Objective of best bound) / Objective of best bound

Improve Start Gap/ImproveStartGap

VBA / SDK: Engine.Params("ImproveStartGap") 0 < value

This parameter allows you to specify an optimality gap that, when reached, will

trigger Gurobi to switch to a solution improvement strategy. For example, setting

this parameter to 0.1 will cause Gurobi to switch strategies once the relative

optimality gap is smaller than 0.1.

Solution Improvement/ImproveStartNodes

VBA / SDK : Engine.Params("ImproveStartNodes") 0 < value

This parameter allows you to specify the node count that, when reached, will trigger

Gurobi to switch to a solution improvement strategy. For example, setting this

parameter to 10 will cause Gurobi to switch strategies once the node count is larger

than 10.

Additional Options Available in VBA / SDK

If you want more fine-grained control over the behavior of the Gurobi Solver on

linear mixed-integer problems and you are using Analytic Solver Desktop or Solver

SDK Platform, you can use additional options that aren’t available in the Task Pane

Engine tab or documented here, but are available in VBA and Solver SDK Platform.

Contact Frontline Systems at 775-831-0300 or info@solver.com for more

information. To use these options, you should have a good deal of experience

solving linear mixed-integer problems.

XPRESS Solver General Options
SDK: Engine name "XPRESS Solver", file name XPRESSeng.dll

This Solver Engine supports the Maximum Time, Assume Non-Negative, and

Bypass Solver Reports options in common with the other Solver Engines and

described above, and other options specific to the XPRESS Solver that are described

in the following sections.

94 • Solver Engine Options Solver Engine User’s Guide V2021

Algorithm To Use

VBA / SDK: Engine.Params("Algorithm"), value 1-Default, 2-Dual Simplex, 3-

Primal Simplex, 4-Newton-Barrier

This option allows you to select the main algorithm or solution method to be used to

solve the problem (or each subproblem, in the case of mixed-integer programming

problems). In the latest release of XpressMP, the default solution method is the Dual

Simplex method, so the Default and Dual Simplex choices are equivalent. The other

possible choices are the Primal Simplex method or the Newton Barrier (“interior

point”) method.

The Dual Simplex method is usually the best choice for mixed-integer programming

problems. The Newton Barrier method may be best if the problem involves a very

large number of variables, and the constraints are not very tight.

Scaling Options

VBA / SDK: Engine.Params("Scaling"), sum of the following values: 1-Row

Scaling, 2-Column Scaling, 4-Row Scaling Again, 8-Maximin, 16-Curtis-Reid, 32-

to scale by Maximum Element or 0 to scale by Geometric Mean.

These options determine how the XpressMP Optimizer will re-scale your model

internally. Bear in mind that it is always a good idea to design your model so that all

quantities are within a few orders of magnitude of each other, to minimize possible

scaling problems.

In Excel, you’ll see five True/False options (check boxes in the legacy Solver

Options dialogs) for Row Scaling, Column Scaling, Row Scaling Again, Maximum,

and Curtis-Reid, and one Scaling option that can be set to Scale by Geometric Mean

or Scale by Maximum Element. The default action is to perform both Row Scaling

and Column Scaling, using the Maximum Element as the scaling factor (other matrix

elements are divided by this factor). The Row Scaling Again option causes the

matrix rows to be rescaled after the columns are scaled. If Maximin or Curtis-Reid

scaling is selected, the Scaling option choice is not used.

Assume Quadratic Objective/AssumeQP

VBA / SDK: Engine.Params("AssumeQP"), value 1-Assume Quadratic Objective or

0-Don’t Assume Quadratic Objective

This option is used only if you are solving a quadratic programming problem, and

you’ve either set the Task Pane Platform tab Optimization Model Interpreter to Excel

Interpreter, or set the Advanced group Supply Engine With option to Gradients.

When you use the PSI Interpreter and supply the XPRESS Solver with Structure or

Convexity information, this option is ignored, and the type of objective – linear or

quadratic – will be determined automatically.

Otherwise, if the Excel Interpreter is used you must use the QUADPRODUCT

function and check this option. Failure to do so will result in the error message

“Linearity conditions are not satisfied.”

RHS Tolerance/RHSTol

VBA / SDK: Engine.Params("RHSTol"), 0 < value < 1

Solver Engine User’s Guide V2021 Solver Engine Options • 95

The value of this option is the “zero tolerance” for constraint right hand sides. If the

absolute value of the right hand side of a constraint is less than or equal to this

tolerance, it is treated as zero.

Markowitz Tolerance/MarkowitzTol

VBA / SDK: Engine.Params("MarkowitzTol"), 0 < value < 1

The value of this option is the Markowitz tolerance for the elimination phase of the

presolve step. It is not used if the Presolve box is not checked.

Matrix Elements Zero Tolerance/MatrixTol

VBA / SDK: Engine.Params("MatrixTol"), 0 < value < 1

The value of this option is the “zero tolerance” for matrix elements. If the absolute

value of a matrix element is less than or equal to this tolerance, it is treated as zero.

XPRESS Solver LP Options

Crashing Options

VBA / SDK: Engine.Params("Crashing"), value 0-Turn Off All Crash Procedures, 1-

Singletons Only (One Pass), 2-Singletons Only (Multi Pass), 3-Multiple Passes

Using Slacks, 4-Multiple Passes, Slacks at End; also see Slack Passes option below

This option determines the “crashing” method to use when the (Primal) Simplex

method begins. (When the Dual Simplex method is used, this option is not

applicable.) The “crashing” method attempts to create an initial basis that is as close

to feasibility and triangularity as possible, with a goal of reducing the number of

Simplex iterations required to find an optimal solution. The possible choices for the

“crashing” method are listed in order from least to most aggressive (and time-

consuming).

For many problems, Singletons only (one pass or multi pass) may yield an overall

improvement in solution time; multiple passes can be relatively expensive compared

to the time taken for regular Simplex iterations.

Slack Passes

VBA / SDK: Engine.Params("Crashing"), set to 11 or higher-Slacks At End,

Maximum N Passes where N = value – 10.

In Excel, this appears as a separate option, but it is used only when the Crashing

option is set to Multiple Passes, Slacks at End. It allows you to control the number

of passes (hence the time taken) used in the crashing procedure.

Pricing

VBA / SDK: Engine.Params("Pricing"), value 1=Devex Pricing, -1=Partial Pricing,

0-Decide Automatically

This option determines the “pricing” method to use on each (Primal) Simplex

iteration. (When the Dual Simplex method is used, this option is not applicable.)

The “pricing” method selects a variable to enter the basis. In general, Devex pricing

96 • Solver Engine Options Solver Engine User’s Guide V2021

requires more time on each iteration but may reduce the total number of iterations,

whereas partial pricing saves time on each iteration, possibly at the expense of more

iterations. The Default choice is to determine the pricing method automatically.

Use ‘Big M’ Method/UseBigM

VBA / SDK: Engine.Params("UseBigM"), value 1=Use ‘Big M’ Method, 0-Don’t

Use ‘Big M’ Method

If this option is set to 1, the “Big M” method is used; if it is set to 0, the traditional

Simplex Phase I (to achieve feasibility) and Phase II (to achieve optimality) is used.

In the “Big M” method, the objective coefficients of the real variables are taken into

account during the “feasibility” phase, possibly leading to an initial feasible basis

that is closer to optimal. The tradeoff is some possible roundoff error due to the

presence of the “Big M” factor in the problem.

Use Automatic Perturbation/UsePerturb

VBA / SDK: Engine.Params("UsePerturb"), value 1=Use Automatic Perturbation, 0-

Don’t Use Automatic Perturbation

If this option is set to 1, the problem is perturbed (with slight alterations in the

variable bounds) if the Simplex method encounters an excessive number of

degenerate pivot steps. This will often enable the Simplex method to escape from

degeneracy and make further progress towards an optimal solution.

Iterations

VBA / SDK: Engine.Params("Iterations"), integer value > 0

The value of this option determines the maximum number of iterations (or “pivots”)

that will be performed by the Simplex method before it stops. For mixed-integer

programming problems, this is the maximum number of iterations on each

subproblem explored by the Branch & Bound / Branch & Cut method. It plays the

same role as the Common Solver Option “Iterations”, but it appears separately for

the XPRESS Solver. When this option is empty/blank (the default), there is no limit

on the number of iterations.

Infeasibility Penalty

VBA / SDK: Engine.Params("BigMPenalty"), any numeric value

The value of this option is the infeasibility penalty or “Big M” factor, used if the

“Big M” Method is selected. If this option is left empty/blank, the “Big M” factor is

determined automatically (which is recommended in most cases).

Perturbation Value/PertubTol

VBA / SDK: Engine.Params("PerturbTol"), any numeric value

The value of this option is the perturbation factor used when the “Use Automatic

Perturbation” option is selected. If this option is 0 or blank, the perturbation factor is

determined automatically (which is recommended in most cases).

Solver Engine User’s Guide V2021 Solver Engine Options • 97

Markowitz Tolerance for
Factorization/FactorizationTol

VBA / SDK: Engine.Params("FactorizationTol"), 0 < value < 1

The value of this option is the Markowitz tolerance used in (re)factorization of the

basis matrix. The default value is appropriate for most problems.

Invert Frequency

VBA / SDK: Engine.Params("InvertFrequency"), integer value >= -1

This option determines the frequency with which the Simplex method basis will be

inverted. The basis is maintained in factorized form, and on most Simplex iterations,

it is incrementally updated to reflect the pivot step just taken. This is much faster

than re-computing the full inverted matrix on each iteration. However, after a

number of incremental updates, the basis becomes less well-conditioned or

numerically stable, so it becomes desirable or necessary to re-compute the full

inverted matrix.

An integer value entered for this option determines the maximum number of Simplex

iterations between full inversions of the basis matrix. A value of -1 (the default)

indicates that the frequency of inversions should be determined automatically, based

on the conditioning of the basis matrix – subject to the minimum number of

iterations specified in the edit box below.

Minimum Number of Iterations Between
Inverts/InvertMinimum

VBA / SDK: Engine.Params("InvertMinimum"), integer value > 0

If the Invert Frequency is -1, the value of this option determines the minimum

number of iterations between full inversions of the basis matrix. The default value of

3 is suitable for most problems; in practice, the number of iterations between full

inversions will usually be much larger than this value.

Reduced Cost Tolerance/ReducedTol

VBA / SDK: Engine.Params("ReducedTol"), 0 < value < 1

The value of this option is the zero tolerance for reduced costs. On each iteration,

the Simplex method “prices” nonbasic variables, looking for a variable to enter the

basis that has a non-zero reduced cost. The candidates are only those variables that

have reduced costs with absolute values greater than this tolerance.

Eta Elements Zero Tolerance/ETATol

VBA / SDK: Engine.Params("EtaTol"), 0 < value < 1

The value of this option is the zero tolerance for elements of “eta vectors.” On each

iteration, the basis inverse is updated via (pre)multiplication by an elementary matrix

– which is an identity matrix except for one column, the eta vector. Elements of eta

vectors whose absolute values are smaller than this tolerance are treated as zero in

this updating step.

98 • Solver Engine Options Solver Engine User’s Guide V2021

Pivot Tolerance/PivotTol

VBA / SDK: Engine.Params("PivotTol"), 0 < value < 1

The value of this option is the zero tolerance for matrix elements chosen for pivoting.

On each iteration, the Simplex method looks for a non-zero matrix element in a

given column to “pivot” upon. Any matrix element with absolute value less than this

tolerance is treated as zero for this purpose, and hence will not be chosen as the pivot

element.

Relative Pivot Tolerance/RelPivotTol

VBA / SDK: Engine.Params("RelPivotTol"), 0 < value < 1

The value of this option is the relative zero tolerance for matrix elements chosen for

pivoting. On each iteration, the Simplex method looks for a non-zero matrix element

in a given column to “pivot” upon. Any matrix element whose absolute value,

divided by the absolute value of the largest element in the column, is less than this

tolerance is treated as zero for this purpose.

Pricing Candidate List Sizing\PricingCand

VBA / SDK: Engine.Params("PricingCand"), value > 0

The value of this option is the partial pricing candidate list sizing parameter. On

each iteration, the Simplex method “prices” some of the nonbasic variables, looking

for a variable to enter the basis. The number of variables to be “priced” is multiplied

by this parameter. The default value of 1 means that a default-length candidate list is

maintained. A value of 2 would mean that a list twice as long as the default would

be used; a value of 0.5 would mean that a list half as long would be used; and so on.

XPRESS Solver Presolve Options

Presolve

VBA / SDK: Engine.Params("Presolve"), value -1-Do Not Apply Presolve, 0-Apply

Presolve, Do Not Declare Infeasibility, 1-Apply Presolve, 2-Apply Presolve, Keep

Redundant Bounds

This option determines the overall use of Presolve methods. The Presolve step

attempts to simplify the problem by making simple tests to detect and remove

redundant constraints, tighten bounds on variables, and the like. In some cases, the

Presolve step may determine that the problem is infeasible, or even determine the

optimal solution.

Do Not Apply Presolve

Selecting this option skips the Presolve step. In this case, none of the Presolve

Options settings are used.

Apply Presolve, Do Not Declare Infeasibility

Selecting this option applies the Presolve step, but proceeds with the Simplex or

Barrier method even if Presolve methods determined that the problem is infeasible.

In rare cases, due to small numerical differences and the ability of the main Solver

Solver Engine User’s Guide V2021 Solver Engine Options • 99

algorithms to ‘perturb’ bounds when seeking a feasible solution, selecting this option

may enable you to find a feasible solution.

Apply Presolve

Selecting this option applies the Presolve step. If the Presolve methods determine

that the problem is infeasible, the Solver will return immediately with message

“Solver could not find a feasible solution” in the Solver Results dialog.

Apply Presolve, Keep Redundant Bounds

Selecting this option applies the Presolve step, but does not remove redundant

bounds (bounds on constraints that are always satisfied, due to bounds on variables

or other constraints). In rare case, this may save time in cut generation.

Presolve Options

VBA / SDK: Engine.Params("PresolveOptions"), integer value = sum of chosen

option values below

This group of options selects individual Presolve methods. In Excel, each method

appears as a True/False option (a check box in the legacy Solver Options dialog).

‘Columns’ refer to decision variables – for example, a singleton column is a variable

that appears in only one constraint – and ‘Rows’ refer to constraints – for example, a

singleton row is a constraint involving only one variable. The last four options turn

off certain methods.

Singleton Column Removal [1]

Singleton Row Removal [2]

Forcing Row Removal [4]

Redundant Row Removal [16]

Duplicate Column Removal [32]

Duplicate Row Removal [64]

Linearly Dependent Row Removal [4096]

Dual Reductions [8]

Strong Dual Reductions [128]

Variable Eliminations [256]

No IP Reductions [512]

No Semi-Continuous Variable Detection [1024]

No Advanced IP Reductions [2048]

No Integer Variable and SOS Detection [8192]

XPRESS Solver Newton-Barrier Options

Cross-Over Control

VBA / SDK: Engine.Params("CrossOver"), value 1=Cross-Over to a Basic Solution,

0-No Cross-Over if Presolve Turned Off

This option determines whether the Newton Barrier method will “cross over” to the

Simplex method at the optimal solution, in order to provide an ending basis and

sensitivity analysis information. The default option is to perform the cross-over step.

100 • Solver Engine Options Solver Engine User’s Guide V2021

Relative Duality Gap
Tolerance/BarrierDualityGapTol

VBA / SDK: Engine.Params("BarrierDualityGapTol"), 0 < value < 1

The value of this option is the “relative duality gap” or convergence tolerance for the

Newton Barrier method. When the difference between the primal and dual objective

values is less than this tolerance, the Solver determines that the optimal solution has

been found. A value of 1.0E-8 to 1.0E-9 is appropriate for most problems.

Cache Size

VBA / SDK: Engine.Params("CacheSize"), integer value > -1

The value of this option should be set to the size of the processor’s high-speed

memory cache on your computer (as an integer number of kilobytes). The Cache

Size value has an important effect on performance when the “Push Cholesky” option

is selected. The default value of –1 means that the cache size should be automatic-

ally determined from hardware information; if the actual cache size cannot be

determined, a size of 512KB is assumed.

Maximum Iterations/BarrierIterations

VBA / SDK: Engine.Params("BarrierIterations"), integer value > 0

The value of this option determines the maximum number of iterations performed by

the Newton Barrier method. Whereas the Simplex method usually performs a

number of iterations proportional to the number of constraints in the problem, the

Newton Barrier method tends to find the optimal solution, to a given accuracy, after

a number of iterations that is independent of the size of the problem. (However, the

time required for each iteration of the Newton Barrier method increases with the size

of the problem.) The default value is usually more than sufficient, even for very

large problems.

Minimal Step Size/BarrierStepSize

VBA / SDK: Engine.Params("BarrierStepSize"), 0 < value < 1

The value of this option is the tolerance for the “step size” termination criterion in

the Newton Barrier method. On each iteration of the Newton Barrier method, a step

is taken along a computed search direction. If the step size is less than the Minimal

Step Size specified here, the Solver will stop and return the current solution. If the

Newton Barrier method is making small improvements in the Relative Duality Gap

Tolerance on later iterations (see the basic Newton-Barrier tab), it may be better to

set this value higher to terminate after a close approximation to the solution has been

found.

Cholesky Decomposition Tolerance/CholeskyTol

VBA / SDK: Engine.Params("CholeskyTol"), 0 < value < 1

The value of this option is the zero tolerance for pivot elements in the Cholesky

decomposition or factorization of the normal equations coefficient matrix, computed

at each iteration of the Newton Barrier method. If the absolute value of the pivot

element is less or equal to than this tolerance, it is handled specially in the Cholesky

decomposition process.

Solver Engine User’s Guide V2021 Solver Engine Options • 101

Primal Infeasibility Tolerance/PrimalFeasTol

VBA / SDK: Engine.Params("PrimalFeasTol"), 0 < value < 1

The value of this option is the tolerance for the “primal infeasibility” termination

criterion in the Newton Barrier method. If the relative norm of the difference

between the constraints and their bounds in the primal problem falls below this

tolerance, the Solver will stop and return the current solution. Note that the Relative

Duality Gap Tolerance on the basic Newton-Barrier tab controls the primary

termination criterion for the Newton Barrier method.

Dual Infeasibility Tolerance/DualFeasTol

VBA / SDK: Engine.Params("DualFeasTol"), 0 < value < 1

The value of this option is the tolerance for the “dual infeasibility” termination

criterion in the Newton Barrier method. If the relative norm of the difference

between the constraints and their bounds in the dual problem falls below this

tolerance, the Solver will stop and return the current solution. Note that the Relative

Duality Gap Tolerance on the basic Newton-Barrier tab controls the primary

termination criterion for the Newton Barrier method.

Column Density Factor/ColumnDensity

VBA / SDK: Engine.Params("ColumnDensity"), integer value >= 0

The integer value of this option determines which columns in the normal equations

coefficient matrix are considered to be dense. Columns with a number of nonzero

elements greater than this value as treated as dense, and are handled specially in the

Cholesky factorization of this matrix. A value of 0 (the default) means that the

column density factor should be determined automatically.

Max Number Indefinite Iterations/BarrierIndefLimit

VBA / SDK: Engine.Params("BarrierIndefLimit"), integer value > 0

The integer value of this option determines the maximum number of iterations

allowed while the Hessian of the Lagrangian is an indefinite matrix. If this limit is

exceeded, the Solver will stop with a Solver Result message reporting the problem.

Ordering Algorithm/CholeskyOrder

VBA / SDK: Engine.Params("CholeskyOrder"), value 0-Determine Automatically, 1-

Minimum Degree, 2-Minimum Local Fill, 3-Nested Dissection

This option determines the ordering algorithm for the Cholesky factorization of the

normal equations coefficient matrix, which is used to preserve the sparsity of the

factorized matrix. The default choice is to select the ordering algorithm

automatically. The Minimum Degree option selects diagonal elements with the

fewest nonzeroes in their rows/columns. The Minimum Local Fill option considers

the adjacency graph of nonzeroes in the matrix and seeks to eliminate nodes in a way

that minimizes the creation of new edges (i.e. nonzeroes). The Nested Dissection

option considers the adjacency graph and recursively seeks to separate it into non-

adjacent pieces.

102 • Solver Engine Options Solver Engine User’s Guide V2021

Check Convexity

VBA / SDK: Engine.Params("CheckConvexity"), value 0-False or 1-True

If True, quadratic constraints and the objective are first checked for convexity before

the solution process begins.

XPRESS Solver Mixed-Integer Options

Cut Strategy Options

VBA / SDK: Engine.Params("CutStrategy"), value -1=Determine Automatically, 0-

No Cuts, 1-Conservative Cut Strategy, 2-Moderate Cut Strategy, 3-Aggressive Cut

Strategy

This option determines the strategy used in generating “cuts,” which are additional

constraints added to subproblems explored by the Branch & Bound / Branch & Cut

method that reduce the size of the feasible region without eliminating any potential

integer solutions.

The default choice is to determine the cut strategy automatically. You can also

specify that no cuts should be generated, or you can select a “conservative cut

strategy,” a “moderate cut strategy,” or an “aggressive cut strategy.” If no cuts are

generated, some time will be saved in the Branch & Cut process, but more total

subproblems will probably have to be explored. A conservative cut strategy

specifies fewer opportunities for generating cuts; this may result in a better chance of

finding a “good” – though not necessarily optimal – integer solution. An aggressive

cut strategy specifies more opportunities for generating cuts; this will often lead to

improvement of the best bound in the Branch & Bound process, and will usually

require fewer subproblems to be explored to prove optimality; however, generation

of the additional cuts and solution of the subproblems will take somewhat more time

per subproblem. A “moderate” cut strategy lies between these two alternatives.

Absolute Integer Tolerance/AbsIntTol

VBA / SDK: Engine.Params("AbsIntTol"), any numeric value

The value of this option is the absolute tolerance used to determine whether the

Branch & Bound method should continue or stop.

During the optimization process, the Branch & Bound method finds “candidate”

integer solutions, and it keeps the best solution so far as the “incumbent.” By

eliminating alternatives as it proceeds, the B&B method also tightens the “best

bound” on how good the objective value of an integer solution can be. If the

absolute difference between the incumbent’s objective value and the best bound is

less than this tolerance, the Solver will stop with the message “Solver found an

integer solution within tolerance” (result code 14).

Relative Integer Tolerance/RelIntTol

VBA / SDK: Engine.Params("RelIntTol"), 0 < value < 1

The value of this option is the relative tolerance used to determine whether the

Branch & Bound method should continue or stop.

As described above for the Absolute Integer Tolerance, the Branch & Bound method

keeps track of the objective value of the “incumbent” and the “best bound” on the

Solver Engine User’s Guide V2021 Solver Engine Options • 103

objective found so far. If the absolute difference between the incumbent’s objective

value and the best bound, divided by the best bound, is less than the Relative Integer

Tolerance, the Solver will stop with the message “Solver found an integer solution

within tolerance” (result code 14).

Maximum Number of Nodes/MaxSubProblems

VBA / SDK: Parameter Name "MaxSubProblems", integer value > 0

This option has an effect only if you have integer (or binary or alldifferent)

constraints in your model. Use this option to place a limit on the number of

subproblems that may be explored by the Branch & Bound algorithm before the

Solver pauses and asks you whether to continue or stop the solution process. The

value of this option is blank by default, meaning there is no limit on the number of

subproblems.

Maximum Number of Solutions/MaxFeasibileSols

VBA / SDK: Parameter Name "MaxFeasibleSols", integer value > 0

The value in the Max Number of Solutions edit box places a limit on the number of

feasible solutions found by the Xpress engine before the Solver pauses and asks you

whether to continue, stop or restart the solution process. A feasible solution is any

solution that satisfies all of the constraints, including any integer constraints. As

with the Max Subproblems option, if your model is moderately large or complex,

you may need to increase this limit; any value up to 2,147,483,647 may be used.

Amount to Add to Solution to Obtain New
Cutoff/AbsAddCut

VBA / SDK: Engine.Params("AbsAddCut"), any nonzero numeric value

You can use the “Amount to Add” and “Percentage to Add” options to further speed

up the solution of mixed-integer problems. When the Branch & Bound method finds

a feasible integer solution with a given objective, you may not be interested in

searching for additional integer solutions unless their objectives are “substantially”

better than the objective of this known solution. If you specify a nonzero value for

this option, it will be added to the objective of the known integer solution to form a

new “cutoff” value, similar to the Integer Cutoff option described earlier. This

process will be repeated each time an improved integer solution is found. The effect

is to cut off the search in portions of the Branch & Bound tree whose best possible

objective would not be “substantially” better than the current solution – thereby

saving time in the search.

Percent to Add to Solution to Obtain New
Cutoff/RelAddCut

VBA / SDK: Engine.Params("RelAddCut"), 0 < value < 1

This option works in conjunction with the Amount to Add to Solution to Obtain New

Cutoff (above) to further speed up the search for integer solutions. If you specify a

value (between zero and 100) for this option, then whenever the Branch & Bound

method finds an improved integer solution, the objective of this solution will be

multiplied by .01 times this value, to form a new candidate “Amount to Add” value.

104 • Solver Engine Options Solver Engine User’s Guide V2021

The new Amount to Add to Solution to Obtain New Cutoff is then set to the

maximum of its current value and this computed value. The effect is to cut off the

search in portions of the Branch & Bound tree whose best possible objective would

not be “x% better” than the current solution – saving time in the search.

Number of Threads/MipThreads

VBA / SDK: Engine.Params("MipThreads"), integer value > 0

This option allows you to specify the number of parallel threads of execution to be

used in solving mixed-integer problems. Each thread normally runs on a separate

processor and solves subproblems in the Branch & Bound tree, under the control of a

‘master’ program.

The default value of 0 means that all of your computer’s processors will be used. If

you have other applications running on the same computer, and you wish to reserve

one or more processors for these other applications, you can use this option to limit

the number of threads used by the XPRESS Solver. Note that Windows multi-

tasking will automatically share processors among applications; use this option only

if you must ensure that your other applications run more quickly while the XPRESS

Solver is running.

Integer Feasibility Tolerance/IntegerFeasTol

VBA / SDK: Engine.Params("IntegerFeasTol"), 0 < value < 1

The value of this option is the tolerance within which a decision variable’s value (at

the optimal solution to a subproblem) is considered to be integer, for purposes of the

Branch & Bound method. If the absolute value of the difference between the

variable’s value and the nearest integer is less than this tolerance, the variable is

treated as having that exact integer value.

Cut Frequency

VBA / SDK: Engine.Params("CutFrequency"), integer value >= -1

The value of this option determines the frequency with which cuts will be generated

in the Branch & Bound tree. “Cuts” are additional constraints added to subproblems

explored by the Branch & Bound / Branch & Cut method that reduce the size of the

feasible region without eliminating any potential integer solutions.

The Cut Frequency value is applied to the depth of the subproblem or node in the

Branch & Bound tree. For example, if the value is 5, new cuts are generated at

nodes that occur at every 5th “level” in the tree. The default value is –1, which

means that the Cut Frequency should be determined automatically.

Default Pseudo Cost

VBA / SDK: Engine.Params("PseudoCost"), value > 0

The value of this option is the default pseudo cost used in computing the estimated

degradation associated with an unexplored subproblem or node in the Branch &

Bound tree. A “pseudo cost” is associated with each integer decision variable and is

an estimate of the amount by which the objective will worsen if that variable is

forced to an integer value. This default value is used initially, but pseudo costs for

each variable are updated as new subproblems are explored.

Solver Engine User’s Guide V2021 Solver Engine Options • 105

Maximum Depth Cut Generation/CutDepth

VBA / SDK: Engine.Params("CutDepth"), integer value >= -1

The value of this option determines the maximum depth in the Branch & Bound tree

at which cuts will be generated. “Cuts” are additional constraints added to

subproblems explored by the Branch & Bound / Branch & Cut method that reduce

the size of the feasible region without eliminating any potential integer solutions.

Generating cuts can take significant time, and cuts are usually less important at

deeper levels in the Branch & Bound tree, because earlier cuts or tighter bounds

imposed on the variables have already reduced the feasible region. A value of 0 for

this option means that cuts will be generated only at the root node – they will not be

generated in the tree at all. The default value is –1, which means that the Maximum

Depth for Cut Generation should be determined automatically.

Integer Preprocessing Options/IntPreProcessing

VBA / SDK: Engine.Params("IntPreProcessing"), value -1-Determined by Matrix

Characteristics, or sum of the values for each option below

This option controls the types of “preprocessing” that will be performed at each node

or subproblem, before solving the subproblem with the Simplex method. The

various preprocessing methods each take some time, but they can simplify the

subproblem before it is solved, and may even determine optimality or infeasibility of

the subproblem without the need to use the Simplex method. The default choice is to

select the Preprocessing Options automatically based on the characteristics of the LP

coefficient matrix at the node.

No Integer Preprocessing (0)

If this option is chosen, the method for reduced cost fixing is determined automatic-

ally, based on the characteristics of the LP coefficient matrix.

Reduced Cost Fixing at Each Node (1)

If this option is chosen, reduced cost fixing will be performed at each node in the

Branch & Bound tree. Reduced cost fixing can tighten bounds on the variables at the

current node, based on the reduced costs computed for the variables at a “parent”

node in the tree, and the objective of the current incumbent.

Logical Preprocessing at Each Node (2)

If this option is chosen, logical preprocessing will be performed at each node in the

Branch & Bound tree. Logical preprocessing is performed on 0-1 or binary integer

variables, and often results in fixing the values of many 0-1 variables based on the

fixed values of other 0-1 variables occurring in the same constraints. This simplifies

the problem before it is solved, and may even determine optimality or infeasibility of

the subproblem before the Simplex method is started.

Probing at the Top Node (4)

If this option is chosen, probing of 0-1 or binary integer variables is performed at the

top or root node. Probing sets certain 0-1 variables to either 0 or 1 and then deduces

implications for other 0-1 variables occurring in the same constraints. Alone or in

combination with other strategies, it can greatly reduce the number of nodes that

need to be explored.

106 • Solver Engine Options Solver Engine User’s Guide V2021

Strong Branching Global
Entities/StrongBranchGlobal

VBA / SDK: Engine.Params("StrongBranchGlobal"), integer value >= -1

This option determines the number of infeasible global entities on which the Solver

will perform strong branching. The default value of –1 means that the number

should be determined automatically.

“Strong branching” is a method where several iterations of the dual Simplex method

are carried out at a node, without solving the subproblem to optimality, to determine

more accurate pseudo costs for the variables. The pseudo costs are later used to

guide the selection of nodes to be explored and variables to be branched upon.

Strong Branching Dual
Iterations/StrongBranchDual

VBA / SDK: Engine.Params("StrongBranchDual"), integer value >= -1

This option determines the number of dual Simplex iterations to carry out when

performing strong branching. The default value of –1 means that the number should

be determined automatically.

Number of Lifted Cover Inequalities at the
Top/CoverCutsTree

VBA / SDK: Engine.Params("CoverCutsTop"), integer value >= -1

The value of this option determines the number of times that lifted cover inequalities

are generated at the top or root node of the Branch & Bound tree. The default value

of –1 means that the number of times should be determined automatically.

A lifted cover inequality is a type of cut (additional constraint) that can be

particularly effective at reducing the size of the feasible region without eliminating

any potential integer solutions. Multiple “passes” can be made, generating new

lifted cover inequalities on each pass, and further reducing the feasible region;

however, this can take a significant amount of time (compared to solving the

subproblem).

Separate options for Lifted Cover Inequalities and Gomory Cuts are provided to

control the number of passes at the top or root node, and at nodes deeper in the tree.

There is usually a greater payoff to cut generation at the top node, since these cuts

can be applied to every subproblem explored deeper in the Branch & Bound tree. If

these options are set manually, a typical value might be 20 for the number of passes

at the top node, and 1 or 2 for the number of passes at nodes deeper in the tree.

Number of Gomory Cut Passes at the
Top/GomoryCutsTop

VBA / SDK: Engine.Params("GomoryCutsTop"), integer value >= -1

The value of this option determines the number of times that Gomory cuts are

generated at the top or root node of the Branch & Bound tree. The default value of

–1 means that the number of times should be determined automatically.

Solver Engine User’s Guide V2021 Solver Engine Options • 107

Gomory cuts can always be generated if the current subproblem does not yield an

all-integer solution; however Gomory cuts are usually not as effective as lifted cover

inequalities in reducing the size of the feasible region.

Number of Lifted Cover Inequalities in the
Tree/CoverCutsTree

VBA / SDK: Engine.Params("CoverCutsTree"), integer value >= 0

The value of this option determines the number of times that lifted cover inequalities

are generated at nodes other than the top or root node of the Branch & Bound tree.

As noted above for the option Lifted Cover Inequalities at the Top Node, the payoff

from generating these cuts is greater at the top node, since they apply to all nodes in

the Branch & Bound tree, whereas cuts generated at an arbitrary node apply only to

that subproblem and its descendants (if any). This is reflected in the default value 1.

Number of Gomory Cut Passes in the
Tree/GomoryCutsTree

VBA / SDK: Engine.Params("GomoryCutsTree"), integer value >= 0

The value of this option determines the number of times that Gomory cuts are

generated at nodes other than the top or root node of the Branch & Bound tree. As

discussed above, the payoff from generating these cuts is greater at the top node,

since they apply to all nodes in the Branch & Bound tree, whereas cuts generated at

an arbitrary node apply only to that subproblem and its descendants (if any). This is

reflected in the default value 1.

XPRESS Solver Node Selection Options

Control Options/Control

VBA / SDK: Engine.Params("Control"), value 0-Choice Dependent on the Matrix

Characteristics, 1-Local First, 2-Best First, 3-Local Depth First, 4-Best First for the

first N nodes, then Local First, 5-Pure Depth First; for N see “Number of Nodes for

Best First” below

This option determines the set of possible subproblems, or “nodes” in the Branch &

Bound tree, that will next be considered for solution each time a given subproblem

has been solved. (Additional options below determine which specific subproblem is

selected from the set of possible subproblems chosen here.)

The default choice is to determine the set of possible nodes automatically, based on

the characteristics of the LP coefficient matrix.

The Local First choice first considers only the immediate descendants and the

siblings of the subproblem just solved. If these nodes have already been evaluated,

then all other unexplored nodes in the tree are considered.

The Best First choice treats all unexplored nodes equally. This option results in a

classical “best-first” or “breadth-first” search.

The Local Depth First choice first considers only the immediate descendants and the

siblings of the subproblem just solved. If these nodes have already been evaluated,

then the deepest nodes in the Branch & Bound tree are considered.

108 • Solver Engine Options Solver Engine User’s Guide V2021

The Best First, then Local First choice acts like the Best First choice for the first N

subproblems explored, then it acts like the Local First choice. This is often an

effective compromise, because it provides some breadth of coverage of the possible

integer solutions, but explores early candidate solutions more deeply than a pure

breadth-first search. The Number of Nodes for Best First option determines the

number of subproblems N.

The Pure Depth First choice considers the deepest nodes in the Branch & Bound tree.

This option results in a classical “depth-first” search.

Number of Nodes for Best First/BreadthFirst

VBA / SDK: Engine.Params("BreadthFirst"), integer value > 0

The value of this option is the number of nodes N for which the Best First strategy

will be used, before switching to the Local First strategy. The default value is 10.

Node Selection Criterion/NodeCriterion

VBA / SDK: Engine.Params("NodeCriterion"), value 1-Choose Based on Forrest-

Hirst-Tomlin Criterion, 2-Always Choose Node with Best Estimated Objective, 3-

Always Choose Node with Best Bound on Objective

This option determines how the next subproblem or node in the Branch & Bound

tree is selected for further processing (which may include steps such as integer

preprocessing, cut generation, and solution of the LP relaxation). The group of

subproblems to be evaluated by the Node Selection Criterion is determined by the

Control option described earlier.

The default (third) choice is to select the node with the best bound on the objective

value (of an integer solution that may be found by exploring that node). The second

choice is to select the node with the best estimated objective value, where the

estimate is computed from pseudo costs associated with the integer variables. The

first choice is to select the node based on the Forrest-Hirst-Tomlin criterion, which

takes into account the best known integer solution and seeks a node with a large

potential improvement over that solution, relative to the estimated degradation in the

objective expected in an all-integer solution that may be found by exploring this

node.

Integer Variable Estimates/VarSelection

VBA / SDK: Engine.Params("VarSelection"), value -1-Determine Automatically, 1-

Minimum of the ‘Up’ or ‘Down’ Pseudo Costs, 2-‘Up’ Pseudo Cost Plus the ‘Down’

Pseudo Cost, 3-Maximum of the ‘Up’ or ‘Down’ Pseudo Costs, plus Twice the

Minimum of the ‘Up’ or ‘Down’ Pseudo Costs, 4- Maximum of the ‘Up’ or ‘Down’

Pseudo Costs, 5-‘Down’ Pseudo Cost, 6-‘Up’ Pseudo Cost

This option selects one of six different ways to combine the pseudo costs associated

with the integer variables into an overall estimated degradation in the objective

expected in an all-integer solution that may be found by exploring this node. It is

relevant only if the Forrest-Hirst-Tomlin criterion is chosen for the Node Selection

Criterion. By default, one of the six ways to combine the pseudo costs is chosen

automatically. The choices are as follows:

1. Sum the minimum of the “up” and “down” pseudocosts

2. Sum all of the “up” and “down” pseudocosts

Solver Engine User’s Guide V2021 Solver Engine Options • 109

3. Sum the maximum, plus twice the minimum of the “up” and “down”

pseudocosts. (This has been found to be effective in empirical studies.)

4. Sum the maximum of the “up” and “down” pseudocosts

5. Sum the “down” pseudocosts

6. Sum the “up” pseudocosts

XPRESS Solver Heuristics Options

Heuristics Strategy

VBA / SDK: Engine.Params("HeurStrategy"), value -1-Automatic Selection, 0-No

Heuristics, 1-Basic Heuristics, 2-Enhanced Heuristics, 3-Extensive Heuristics

This option determines how extensively the XPRESS Solver will employ heuristic

methods in an effort to quickly find an integer solution. If one is found, this integer

solution becomes an “incumbent” that allows the XPRESS Solver to bound the

search at other tree nodes.

By default, the XPRESS Solver determines automatically when to apply heuristic

methods; however, you must set the Maximum Depth option to a value greater than

zero for this option to be effective. On some problems, you may get better results by

setting the Strategy option to Basic Heuristics, Enhanced Heuristics, or Extensive

Heuristics. Each of these options takes progressively more time, which may pay off

(sometimes handsomely) if good integer solutions are found; however, on a given

problem, each level of heuristics may or may not succeed in identifying new integer

solutions. Setting this option to No Heuristics will save a small amount of time.

Maximum Depth/HeurDepth

VBA / SDK: Engine.Params("HeurDepth"), integer value >= -1

This option sets the maximum depth in the search tree at which heuristics will be

used to seek integer solutions. Setting this to a low value may save some solution

time. -1 means that heuristics may be used at any depth in the tree.

Frequency

VBA / SDK: Engine.Params("HeurFreq"), integer value >= -1

This option determines the frequency with which heuristics are used. Set this option

to a smaller value to increase the frequency of heuristics use, or to a larger value to

decrease the frequency. -1 means that the frequency will be determined

automatically.

Maximum Nodes/HeurMaxNodes

VBA / SDK: Engine.Params("HeurMaxNodes"), integer value >= -1

This option specifies the maximum number of nodes at which heuristics will be used.

Once this limit is reached, the search proceeds without using heuristics. In general,

heuristics are most valuable early in the search, because if they succeed in finding an

110 • Solver Engine Options Solver Engine User’s Guide V2021

integer solution, the benefit gained from “pruning” the tree later in the search is

greatest. -1 means that heuristics may be used at any time in the search.

Maximum Solutions/HeurMaxSol

VBA / SDK: Engine.Params("HeurMaxNodes"), integer value >= -1

This option specifies the maximum number of times that heuristics may be used

successfully to find an integer solution during the search. Once this limit is reached,

the search proceeds without using heuristics. -1 means that heuristics may be used

an unlimited number of times.

OptQuest Solver Options
SDK: Engine name "OptQuest Solver", file name OPTQeng.dll

This Solver Engine supports the Max Time, Iterations, Show Iteration Results,

Assume Non-Negative, and Bypass Solver Reports options in common with the

other Solver Engines, and other options specific to the OptQuest Solver that are

described in this section.

Precision (Obj Fun)/ObjPrecision

VBA / SDK: Engine.Params("ObjPrecision"), 0 < value < 1

This option determines what the OptQuest Solver considers a significant

improvement in the objective function; in other words, it helps the search determine

what progress means.

If the solution process seems to be spending too much time on tiny improvements

that don’t matter to you, then you should make the Objective Function Precision a

larger number. On the other hand, if the solution process is not finding any

improvements, then perhaps it needs to take smaller steps to make progress – in

which case you should make the Objective Function Precision a smaller number.

The Objective Function Precision can be set to a number between 0 and 1. If the

number that you consider suitable for a significant improvement does not fall into

this range, then the model should be rescaled. For example, if you consider an

improvement of 5 or more in the objective function value to be worth keeping, then

you can take the existing objective function and divide it by 10 to create a rescaled

objective function; in the rescaled version, then, an improvement of 0.5 would be

considered worthwhile.

Be cautious about using very small values for this precision setting: Such an

approach could cause a reduction in the diversity in the population.

The default value for the Objective Function Precision is 0.0001.

Precision (Variable)/VarPrecision

VBA / SDK: Engine.Params("VarPrecision"), 0 < value < 1

This option helps the OptQuest Solver determine if a new solution it has just

generated is essentially the same as a solution it has previously evaluated. The

purpose of this check is to avoid spending time evaluating a new solution that is

basically equivalent to a previous solution.

Solver Engine User’s Guide V2021 Solver Engine Options • 111

The OptQuest Solver makes this determination using the following steps: First, it

multiplies each decision variable’s range (its upper bound minus its lower bound) by

the Decision Variable Precision setting value, thus computing a number that it

considers a significant difference in the value of each decision variable. Then it

compares the decision variable values in the new solution to the decision variable

values in each previous solution. If it finds a previous solution in which none of the

decision variables have a significant difference from the values in the new solution,

then it considers these solutions essentially the same, and discards the new solution

without wasting time evaluating it.

The Decision Variable Precision setting is only active when the Check for

Duplicated Solutions option is set to 1/True. If it is set to 0/False, then the OptQuest

Solver does not attempt to determine if the new solution is essentially the same as a

solution previously evaluated, and the Decision Variable Precision edit box is greyed

out.

The default value for the Decision Variable Precision is 0.0001.

Number of Solutions to Report/NumSolutions

VBA / SDK: Engine.Params("NumSolutions"), 1 <= integer value <= 10,000

This option determines the number of solutions (sets of values for the decision

variables) that will appear in the Solutions Report, if you select this report at the end

of an optimization. The solutions in the report are the N best solutions from the final

population, where N is the value of this option; they are ordered first by feasibility

(with all feasible solutions preceding any infeasible solutions), then by objective

value.

Use a Fixed Seed/FixedSeed

VBA / SDK: Engine.Params("FixedSeed"), value 1-Use a Fixed Seed or 0-Don’t Use

a Fixed Seed

The OptQuest Solver uses an element of randomness when generating new solutions

to ensure diversity. If you need to duplicate the results of the optimization search at

a later date, the OptQuest Solver must be able to duplicate the sequence of random

numbers it used originally. This can be accomplished via this option.

When this option is set to 1/True (the default setting), you specify a fixed seed value

for the OptQuest Solver’s random number generator (via the Random Seed option

below). Then, in the future, you can specify the same fixed seed value in order to

reproduce the optimization run.

When this option is set to 0/False, the OptQuest Solver will use a different sequence

of random numbers each time it is run, which means that you may get different

results on each run even if the model has not changed.

Random Seed

VBA / SDK: Engine.Params("RandomSeed"), integer value > 0

When the Use a Fixed Seed option is set to 1/True, the integer value of this option is

used to seed the OptQuest Solver’s random number generator.

Check for Duplicated Solutions

VBA / SDK: Engine.Params("CheckDup"), value 1/True or 0/False

112 • Solver Engine Options Solver Engine User’s Guide V2021

The Check for Duplicated Solutions option is designed to speed up the optimization

process by eliminating from consideration new solutions that are essentially the same

as previous solutions that were already evaluated. The OptQuest Solver uses the

Precision (Dec Var) setting when comparing each new solution to the previous

solutions, as more fully described under the “Precision (Dec Var)” option above.

The default setting is 1/True.

When the number of trial solutions already evaluated is not large, the OptQuest

Solver can check for duplicated solutions quickly, so the benefit outweighs the cost.

However, when the number of evaluated solutions is very large, then the time it takes

to compare the new solution to all the previous ones outweighs the benefit. As a

general guideline, use this feature only when the setting for Iterations is less than

100,000.

Auto Stop

VBA / SDK: Engine.Params("AutoStop"), value 1-Stop When Objective Hasn’t

Improved or 0-Don’t Stop

With this option, you can cause the OptQuest Solver to stop automatically when it

reaches a point where it is making slow or no progress. When this option is set to

1/True, the Solver will stop and return the best solution found so far, if no solution

with a better objective value (determined by the Auto Stop Percentage) has been

found for the last N iterations, where N is the value of the Auto Stop Iterations option

below. The default setting is 0/False. This is the only way to cause the OptQuest

Solver to stop automatically based on solution values; otherwise it stops only when

ESC is pressed or its Max Time or Iterations limit is reached.

Auto Stop Iterations/AutoStopSolutions

VBA / SDK: Engine.Params("AutoStopSolutions"), integer value > 0

When the Auto Stop option is set to 1/True, this option sets the maximum number of

iterations the Solver should run without finding an improved objective function value

(determined by the setting for Auto Stop Percentage) before it stops and returns the

best solution found so far. The default value is 500.

Auto Stop Percentage

VBA / SDK: Engine.Params("AutoStopPercentage"), value > 0

When the Auto Stop option is set to 1/True, OptQuest will stop when the Auto Stop

Solutions are explored and found to have a cumulative improvement smaller than

this percentage.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 113

Programming the Solver Engines

Introduction
Whether you are working in Desktop Excel, or outside Excel with Solver SDK

Platform, you can write a program that will define or load an optimization problem,

select a Solver engine, set options and parameters, solve the problem, and retrieve

solution and report information. In Analytic Solver Desktop (Comprehensive or

Optimization) you can use VBA (Visual Basic Applications Edition) in Excel to do

this, or you can use VB.NET or C# with Microsoft’s Visual Studio Tools for Office

(VSTO). In Solver SDK Platform, you can use Visual Basic, VB.NET, C#, C/C++,

Java, MATLAB, or another programming language to perform the same steps.

If you have an optimization model in Desktop Excel, controlling the Solver can be as

simple as adding one or two lines to your macro program code! Each worksheet in a

workbook may have a Solver problem defined, which is saved automatically with the

workbook. You can create this Solver model interactively if you wish. If you

distribute such a workbook, with a worksheet containing a Solver model and a VBA

module, all you need to do in your code is activate the worksheet and call the

traditional VBA function SolverSolve, or create a problem (Dim prob As New

Problem) and call the method prob.Solver.Optimize.

Note: This functionality is not supported in Analytic Solver Cloud.

Traditional VBA Functions and Object-Oriented API

In Microsoft Excel, you can use either of two APIs (Application Programming

Interfaces) to control the Solver:

• The traditional VBA functions, such as SolverOK and SolverSolve, correspond

to operations you can perform interactively in the Solver dialogs. You can

perform a series of interactive steps and automatically record a macro that uses

these functions. But more work is required if you want to use the solution

values or report information in your application program.

• The new object-oriented API provides objects that correspond to the Problem,

Model, Solver, Engine, Variables, and Functions. IntelliSense prompts make

it much easier to write code using them, and it’s much easier to use solution

values and report information in your application program.

The object-oriented API is also highly compatible with the object-oriented API

offered by Solver SDK Platform, Frontline’s powerful tool for building applications

based on optimization and simulation in a programming language. If you’re

planning to move your application outside of Excel and into a “standalone program,”

the object-oriented API is highly recommended.

114 • Programming the Solver Engines Solver Engine User’s Guide V2021

You have several other sources for information on programming Analytic Solver

Comprehensive, Analytic Solver Optimization and Solver SDK Platform:

• For examples of how to use the object-oriented API in Excel, please consult

the chapter “Automating Optimization in VBA” in the Analytic Solver User

Guide.

• For more information on the traditional VBA functions and the object-

oriented API properties and methods available to control the Solver, please

consult the chapter “VBA Object Model Reference” in the Analytic Solver

Reference Guide.

• For information on the object-oriented API and procedural API offered by

Solver SDK Platform, please consult the Solver SDK Platform User Guide.

• For details on how to set and get option and parameter values for the Solver

Engines described in this Guide, please see the earlier chapter “Solver

Engine Options.”

This chapter describes only the additional “traditional” VBA functions available in

Microsoft Excel to set and get options and parameters for the Large-Scale LP/QP

Solver, Large-Scale GRG Solver, Large-Scale SQP Solver, Knitro Solver, MOSEK

Solver, XPRESS Solver, and OptQuest Solver. In almost all cases, you’ll use

exactly the same names for options and parameters (such as "MaxTime" and

"Iterations") in the traditional VBA functions, the new object-oriented API, and in

Solver SDK Platform.

Using the Traditional VBA Functions in Excel
In Microsoft Excel, you normally use the Solver interactively via the Ribbon, Task

Pane, and dialog boxes. But you can control every aspect of the Solver’s operation

by calling the traditional VBA functions such as SolverSolve. You can display or

hide the Solver dialogs, create or modify choices of objective, variables and

constraints, check whether an optimal solution was found, and produce reports.

The traditional VBA function descriptions below refer to tabs in the traditional

Solver Options dialogs, which you can display by selecting the Add-Ins tab, clicking

Premium Solver, selecting your Solver Engine in the Solver Parameters dialog, and

clicking the Options button.

Referencing the Traditional VBA Functions

To use the traditional VBA functions, your Visual Basic module must include a

reference to the Solver add-in. In addition, to use the VBA functions described in

this Guide, your Visual Basic module must include a reference to the appropriate

Solver engine add-in (LSLPeng, LSGRGeng, LSSQPeng, Knitroeng, MOSEKeng,

XPRESSeng or OPTQeng).

In Microsoft Excel, press Alt-F11 to open the Visual Basic Editor, choose Tools

References... and make sure that the boxes next to Solver and the appropriate Solver

engine add-in are checked. If you don’t see these choices in the list of available

references, click on the Browse... button, select Files of Type “Microsoft Excel

Files” if necessary, navigate to the appropriate subdirectory (typically C:\Program

Files\Frontline Systems\Engines), then select Solver.xla and LSLPeng.xla,

LSGRGeng.xla, LSSQPeng.xla, Knitroeng.xla, MOSEKeng.xla, XPRESSeng.xla or

OPTQeng.xla, and click OK.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 115

Checking Function Return Values

The Solver functions generally return integer values, which you should check in your

VBA code. The normal return value is 0, indicating that the function succeeded.

Other possible return values are given in the descriptions of the individual functions.

If the arguments you supply are invalid, an error condition can be raised, which you

would handle via an On Error VBA statement.

Of particular interest is the return value of the SolverSolve function, which describes

the result of the actual optimization step. The standard return values range from -1

to 29; in addition, the Interval Global Solver (included in Analytic Solver

Comprehensive and Analytic Solver Optimization) and the Large-Scale GRG Solver,

Large-Scale SQP Solver, Knitro Solver, MOSEK Solver and OptQuest Solver can

each return Solver Engine-specific values. These integer values are summarized in

the description of the SolverSolve function below, but their meanings are described

more fully in the chapter “Solver Result Messages.” These return values are the

same as the OptimizeStatus values returned when you solve a problem using the

object-oriented API in VBA or Solver SDK Platform.

One group of functions can return a variety of numeric, logical, string or array

values, depending on the arguments you supply. These functions (SolverLSLPGet,

SolverLSGRGGet, SolverLSSQPGet, SolverKnitroGet, SolverMOSEKGet,

SolverXPRESSGet, or SolverOPTQGet), which follow the style of the SolverGet

function found in the standard Excel Solver, may be used to get or “read” the option

or parameter values for the current Solver model, on the active sheet or any other

worksheet you choose.

Using the Object-Oriented API in Excel
You can also control every aspect of the Solver’s operation by using the object-

oriented API exposed by Analytic Solver Comprehensive and Analytic Solver

Optimization. To use this API, you simply set properties and call methods on

objects that represent the optimization Problem, Model, Solver, Engine, Variables,

and Functions. The object-oriented API is both easier to use and more productive if

you want to access solution values, dual values, and other report information in your

program code. This API is also very similar to the object-oriented API offered by

Solver SDK Platform

Referencing the Object-Oriented API

To use the object-oriented API described in the Analytic Solver Reference Guide,

your Visual Basic module must include a reference to the Analytic Solver COM

server. Once you’ve done this, you can use any of the plug-in Solver engines,

without requiring a separate reference to their Excel add-ins.

In Microsoft Excel, press Alt-F11 to open the Visual Basic Editor, choose Tools

References... and make sure that the box next to Analytic Solver 2018 Type

Library is checked. Note that this is a different reference from Solver, which is the

reference you add in order to use the “traditional” VBA functions. The Analytic

Solver's COM server should always appear in the list of choices.

Using IntelliSense Prompting

Since the VBA Editor recognizes the object model exposed by Analytic Solver

Comprehensive and Analytic Solver Optimization– just as it recognizes the object

model exposed by Excel – you’ll receive IntelliSense prompts as you write code.

116 • Programming the Solver Engines Solver Engine User’s Guide V2021

For example, if you type a line of code such as:

Dim myProb as New Problem

then start a new line with myProb., you’ll be prompted with the properties and

methods available for Problems:

If you select FcnConstraint and then type a period, you’ll be prompted with the

properties and methods available for Functions:

This makes it much easier to write correct code, without consulting the manual.

What’s more, you can use this object-oriented API when programming Excel and the

Solver from new languages such as VB.NET and C#, working in Microsoft Visual

Studio, and receive IntelliSense prompts for these languages.

Accessing Object Properties

With the object-oriented API, a single line of VBA code such as:

Dim myProb as New Problem

creates a Problem object and initializes it with the Solver problem defined on the

active worksheet. The Problem object has associated Model, Solver, Engine,

Variable and Function objects that are created automatically. You can use these

objects by getting or setting property values, using the same syntax as assignment

statements in VBA and other languages. See the chapter “Solver Engine Options”

for the string names of options and parameters for all of the Solver engines.

For example, you can set the Max Time limit for the currently selected Solver

Engine to 1000 seconds by writing:

myProb.Engine.Params("MaxTime").Value = 1000

and you can get the current Max Time limit in a variable myTime (declared with

Dim myTime As Double) by writing:

myTime = myProb.Engine.Params("MaxTime").Value

Solver Engine User’s Guide V2021 Programming the Solver Engines • 117

In Solver SDK Platform – discussed below – you can use the same property

assignment statements (adapted slightly for programming language syntax) by

writing statements like these:

VBA / VB6: myProb.Engine.Params("MaxTime").Value = 1000

VB.NET: myProb.Engine.Params("MaxTime").Value = 1000

C++: myProb.Engine.Params(L"MaxTime").Value = 1000;

C#: myProb.Engine.Params("MaxTime").Value = 1000;

Matlab: myProb.Engine.Params('MaxTime').Value = 1000;

Java: myProb.Engine().Params().Item("MaxTime").Value(1000);

Handling Exceptions

Where the traditional VBA functions require that you check the return value of each

function call for possible errors, the object-oriented API for Analytic Solver

Comprehensive and Analytic Solver Optimization raises exceptions for all error

conditions. You can write one block of code to handle error conditions, and this

code will be executed automatically if an error occurs. The simplest way to handle

errors in VBA is to write a line such as:

On Error Goto myHandler

In the code following myHandler, you can access the VBA Err object for specific

information about the exception that was raised. For example:

myHandler: MsgBox Err.Description

Other languages such as VB.NET and C# have even more convenient and powerful

exception handling features: You’ll typically use a “try-catch” block that encloses

the lines of code where errors may arise, and the lines of code to handle errors.

Using the Object-Oriented API in Custom Applications
In a custom application program that you write using Solver SDK Platform, you

always control the Solver’s operation programmatically. You can either build your

model as a Microsoft Excel workbook, and tell Solver SDK Platform to load that

workbook at runtime, or you can build your model as a program in your chosen

language. In the latter case, you define a program function that will compute values

for your objective function and constraints, given values for the decision variables,

and you tell the SDK that this function is your Evaluator of Eval_Type_Function.

Optionally – to improve performance – you can define a function that will compute

derivatives or gradients for your objective function and constraints, at the point

represented by the current values of the decision variables, and you tell the SDK that

this function is your Evaluator of Eval_Type_Gradient.

Linear and Quadratic Problems

If you are solving a linear programming (LP) or LP/MIP problem, you don’t have to

write an Evaluator function. If you know the LP coefficients (i.e. the constant

gradient elements for the objective and constraints), you can pass them directly to the

SDK by setting the Model object AllLinear property. With this information, the

SDK can compute values for your objective and constraint functions itself.

118 • Programming the Solver Engines Solver Engine User’s Guide V2021

Similarly, if you are solving a quadratic programming (QP) or QP/MIP problem and

you know the QP coefficients (i.e. the constant elements of the Hessian matrix for

the quadratic objective), you can pass them directly to the SDK by setting the Model

object FcnQuadratic property. This allows the SDK to compute values for your

quadratic objective itself. It’s your choice: You can supply an Evaluator function

and let the SDK determine the linear and/or quadratic coefficients, or you can supply

the coefficients and let the SDK determine the Evaluator function.

Selecting Solver Engines

You select a Solver Engine in Solver SDK Platform just as easily as you do in

Analytic Solver Comprehensive and Analytic Solver Optimization. For example, in

C++ you’d write:

myProb.Engine = myProb.Engines["GRG Nonlinear"];

to select the GRG Nonlinear Solver. To use a plug-in Solver Engine with the Solver

SDK Platform, you simply add it to the collection of available Solver Engines with:

CProblem myProb;

CEngine myEngine ("Knitro Solver", "Knitroeng.dll");

myProb.Engines.Add (myEngine);

and then select this Solver and use it to solve a problem with:

myProb.Engine = myProb.Engines["Knitro Solver"];

myProb.Solver.Optimize();

You don’t have to change any other part of your program, unless you wish to take

advantage of Solver engine-specific options or parameters. And you can use the

same plug-in Solver Engine with Analytic Solver Comprehensive and Analytic

Solver Optimization in Excel, and with Solver SDK Platform outside Excel.

Large-Scale GRG Solver Functions
The Large-Scale GRG Solver provides the following traditional VBA functions to

either set (with SolverLSGRGOptions) or get (with SolverLSGRGGet) the current

option and parameter settings that affect the performance of this Solver engine.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverLSGRGOptions.

In addition, you can use the SolverIntOptions and SolverIntGet functions, described

below (giving only the supported arguments), to set or get the options and

parameters that appear on the Engine task pane Integer tab of the dialog box for the

Large-Scale GRG Solver.

SolverLSGRGGet

Returns LSGRG Solver option settings for the current Solver problem on the

specified sheet. These settings are entered in the Solver Options dialog when the

LSGRG Solver is selected in the Solver Engines dropdown list.

VBA Syntax

SolverLSGRGGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 119

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 The Population Size (as a decimal number)

6 The Random Seed (as a decimal number)

7 TRUE if Show Iteration Result check box is selected; FALSE

 otherwise

8 TRUE if Use Automatic Scaling check box is selected; FALSE

 otherwise

9 TRUE if the Assume Non-Negative check box is selected; FALSE

 otherwise

10 TRUE if the Bypass Solver Reports check box is selected;

 FALSE otherwise.

11 TRUE if the Recognize Linear Variables check box is selected;

 FALSE otherwise.

12 TRUE if the Relax Bounds on Variables check box is selected;

 FALSE otherwise.

13 TRUE if Multistart Search is selected; FALSE otherwise

14 TRUE if Topographic Search is selected; FALSE otherwise

15 TRUE if Require Bounds on Vars is selected; FALSE otherwise

16 A number corresponding to the type of Estimates:

 1 = Tangent

 2 = Quadratic

17 A number corresponding to the type of Derivatives:

 1 = Forward

 2 = Central

18 A number corresponding to the type of Search:

 1 = Newton

 2 = Conjugate

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverLSGRGOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the Large-Scale GRG

Solver is selected in the Solver Engines dropdown list. Specifies options for the

Large-Scale GRG Solver.

VBA Syntax

SolverLSGRGOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,

PopulationSize:=, RandomSeed:=, StepThru:=, Scaling:=, AssumeNonneg:=,

BypassReports:=, RecognizeLinear:=, RelaxBounds:=, MultiStart:=,

TopoSearch:=, RequireBounds:=, Estimates:=, Derivatives:=, SearchOption:=)

120 • Programming the Solver Engines Solver Engine User’s Guide V2021

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit

box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit

box.

Precision must be a number between zero and one, but not equal to zero or one. It

corresponds to the Precision edit box.

Convergence is a number between zero and one, but not equal to zero or one. It

corresponds to the Convergence box.

PopulationSize must be an integer greater than or equal to zero. It corresponds to

the Population Size edit box.

RandomSeed must be an integer greater than zero. It corresponds to the Random

Seed edit box.

StepThru is a logical value corresponding to the Show Iteration Results check box.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function argument, your function will be

called each time Solver pauses; otherwise the standard Show Trial Solution dialog

box will appear.

Scaling (or ScalingOption, for backward compatibility) is a logical value

corresponding to the Use Automatic Scaling check box. If TRUE, then Solver

rescales the objective and constraints internally to similar orders of magnitude. If

FALSE, Solver uses values directly from the worksheet.

AssumeNonneg is a logical value corresponding to the Assume Non-Negative check

box. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check

box. If TRUE, Solver will skip preparing the information needed to create Solver

Reports. If FALSE, Solver will prepare for the reports. For large models, bypassing

the Solver Reports can speed up the solution considerably.

RecognizeLinear is a logical value corresponding to the Recognize Linear Variables

check box. If TRUE, the Solver will recognize variables whose partial derivatives

are not changing during the solution process, and assume that they occur linearly in

the problem. If FALSE, the Solver will not make any assumptions about such

variables. See the chapter “Solver Options” for a further discussion of this option.

RelaxBounds is a logical value corresponding to the Relax Bounds on Variables

check box. If TRUE, the Solver may recalculate the model with values for the

variables that are slightly outside their bounds, in order to speed the solution process.

If FALSE, the Solver will use values for the variables that are always within the

lower and upper bounds you specify.

MultiStart is a logical value corresponding to the Multistart Search check box. If

TRUE, the Solver will use Multistart Search, in conjunction with the LSGRG Solver,

to seek a globally optimal solution. If FALSE, the LSGRG Solver alone will be used

to search for a locally optimal solution.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 121

TopoSearch is a logical value corresponding to the Topographic Search check box.

If TRUE, and if Multistart Search is selected, the Solver will construct a topography

from the randomly sampled initial points, and use it to guide the search process.

RequireBounds is a logical value corresponding to the Require Bounds on Variables

check box. If TRUE, the Solver will return immediately from a call to the

SolverSolve function with a value of 18 if any of the variables do not have both

lower and upper bounds defined. If FALSE, then Multistart Search (if selected) will

attempt to find a globally optimal solution without bounds on all of the variables.

Estimates is the number 1 or 2 and corresponds to the Estimates option: 1 for

Tangent and 2 for Quadratic.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for

Forward and 2 for Central.

SearchOption is the number 1 or 2 and corresponds to the Search option: 1 for

Newton and 2 for Conjugate.

Large-Scale SQP Solver Functions
The Large-Scale SQP Solver provides the following traditional VBA functions to

either set (with SolverLSSQPOptions) or get (with SolverLSSQPGet) the current

option and parameter settings that affect the performance of this Solver engine.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverLSSQPOptions.

In addition, you can use the SolverIntOptions and SolverIntGet functions, described

below (giving only the supported arguments), to set or get the options and

parameters that appear in the Integer tab of the dialog box for the Large-Scale SQP

Solver.

SolverLSSQPGet

Returns LSSQP Solver option settings for the current Solver problem on the

specified sheet. These settings are entered in the Solver Options dialog when the

LSSQP Solver is selected in the Solver Engines dropdown list.

VBA Syntax

SolverLSSQPGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 The Population Size (as a decimal number)

6 The Random Seed (as a decimal number)

7 TRUE if Show Iteration Result check box is selected; FALSE

 otherwise

122 • Programming the Solver Engines Solver Engine User’s Guide V2021

8 TRUE if Use Automatic Scaling check box is selected; FALSE

 otherwise

9 TRUE if the Assume Non-Negative check box is selected; FALSE

 otherwise

10 TRUE if the Bypass Solver Reports check box is selected;

 FALSE otherwise.

11 TRUE if the Treat Constraints as Linear check box is selected;

 FALSE otherwise.

12 TRUE if the Treat Objective as Linear check box is selected;

 FALSE otherwise.

13 TRUE if Multistart Search is selected; FALSE otherwise

14 TRUE if Topographic Search is selected; FALSE otherwise

15 TRUE if Require Bounds on Vars is selected; FALSE otherwise

16 A number corresponding to the type of Derivatives:

 1 = Forward

 2 = Central

17 The Mutation Rate (as a decimal number)

18 A number corresponding to the Local Search option: 1 for

 Randomized Local Search, 2 for Deterministic Pattern,

 3 for Gradient Local, or 4 for Automatic Choice

19 TRUE if Fix Nonsmooth Variables is selected; FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverLSSQPOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the Large-Scale SQP

Solver is selected in the Solver Engines dropdown list. Specifies options for the

Large-Scale SQP Solver.

VBA Syntax

SolverLSSQPOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,

PopulationSize:=, RandomSeed:=, StepThru:=, Scaling:=, AssumeNonneg:=,

BypassReports:=, LinearConstraints:=, LinearObjective:=, MultiStart:=,

TopoSearch:=, RequireBounds:=, Derivatives:=, MutationRate:=,

LocalSearch:=, FixNonSmooth:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit

box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit

box.

Precision must be a number between zero and one, but not equal to zero or one. It

corresponds to the Precision edit box.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 123

Convergence is a number between zero and one, but not equal to zero or one. It

corresponds to the Convergence box.

PopulationSize must be an integer greater than or equal to zero. It corresponds to

the Population Size edit box.

RandomSeed must be an integer greater than zero. It corresponds to the Random

Seed edit box.

StepThru is a logical value corresponding to the Show Iteration Results check box.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function argument, your function will be

called each time Solver pauses; otherwise the standard Show Trial Solution dialog

box will appear.

Scaling (or ScalingOption, for backward compatibility) is a logical value

corresponding to the Use Automatic Scaling check box. If TRUE, then Solver

rescales the objective and constraints internally to similar orders of magnitude. If

FALSE, Solver uses values directly from the worksheet.

AssumeNonneg is a logical value corresponding to the Assume Non-Negative check

box. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check

box. If TRUE, Solver will skip preparing the information needed to create Solver

Reports. If FALSE, Solver will prepare for the reports. For large models, bypassing

the Solver Reports can speed up the solution considerably.

LinearConstraints is a logical value corresponding to the Treat Constraints as

Linear check box. If TRUE, the Solver will assume that all constraints are linear

functions, and will compute their gradients only once at the beginning of the solution

process. If FALSE, the Solver will treat the constraints as nonlinear, and will

compute their gradients at each major iteration. See the chapter “Solver Options” for

a further discussion of this option.

LinearObjective is a logical value corresponding to the Treat Objective as Linear

check box. If TRUE, the Solver will assume that the objective is a linear function,

and will compute its gradient only once at the beginning of the solution process. If

FALSE, the Solver will treat the objective as nonlinear, and will compute its gradient

at each major iteration. See the chapter “Solver Options” for a further discussion of

this option.

MultiStart is a logical value corresponding to the Multistart Search check box. If

TRUE, the Solver will use Multistart Search, in conjunction with the LSSQP Solver,

to seek a globally optimal solution. If FALSE, the LSSQP Solver alone will be used

to search for a locally optimal solution.

TopoSearch is a logical value corresponding to the Topographic Search check box.

If TRUE, and if Multistart Search is selected, the Solver will construct a topography

from the randomly sampled initial points, and use it to guide the search process.

RequireBounds is a logical value corresponding to the Require Bounds on Variables

check box. If TRUE, and if Multistart Search is selected, the Solver will return

immediately from a call to the SolverSolve function with a value of 18 if any of the

variables do not have both lower and upper bounds defined. If FALSE, then

Multistart Search (if selected) will attempt to find a globally optimal solution without

bounds on all of the variables.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for

Forward and 2 for Central.

124 • Programming the Solver Engines Solver Engine User’s Guide V2021

MutationRate must be a number between zero and one, but not equal to zero or one.

It corresponds to the Mutation Rate edit box.

LocalSearch is a number corresponding to the option button selected in the Local

Search option group:

 LocalSearch Local Search Strategy

 1 Randomized Local Search

 2 Deterministic Pattern

 3 Gradient Local

 4 Automatic Choice

FixNonSmooth is a logical value corresponding to the Fix Nonsmooth Variables

check box. If TRUE, the Solver will fix the nonsmooth variables to their current

values during each local search, and allow only smooth and linear variables to be

varied. If FALSE, the Solver will allow all of the variables to be varied.

Knitro Solver Functions
The Knitro Solver provides the following traditional VBA functions to either set

(with SolverKnitroOptions) or get (with SolverKnitroGet) the current option and

parameter settings that affect the performance of this Solver engine.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverKnitroOptions.

In addition, you can use the SolverIntOptions and SolverIntGet functions, described

below (giving only the supported arguments), to set or get the options and

parameters that appear in the Integer tab of the dialog box for the Knitro Solver.

SolverKnitroGet

Returns Knitro Solver option settings for the current Solver problem on the specified

sheet. These settings are entered in the Solver Options dialog when the Knitro

Solver is selected in the Solver Engines dropdown list.

VBA Syntax

SolverKnitroGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 The Population Size (as a decimal number)

6 The Random Seed (as a decimal number)

7 TRUE if Show Iteration Result check box is selected; FALSE

 otherwise

8 TRUE if Use Automatic Scaling check box is selected; FALSE

 otherwise

Solver Engine User’s Guide V2021 Programming the Solver Engines • 125

9 TRUE if the Assume Non-Negative check box is selected; FALSE

 otherwise

10 TRUE if the Bypass Solver Reports check box is selected;

 FALSE otherwise.

11 TRUE if the Treat Constraints as Linear check box is selected;

 FALSE otherwise.

12 TRUE if the Treat Objective as Linear check box is selected;

 FALSE otherwise.

13 TRUE if the Relax Bounds on Variables check box is selected;

 FALSE otherwise.

14 A number corresponding to the type of Solution Method:

 1 = Select Automatically

 2 = Interior Point Direct

 3 = Interior Point CG

 4 = Active Set

15 TRUE if Multistart Search is selected; FALSE otherwise

16 TRUE if Topographic Search is selected; FALSE otherwise

17 TRUE if Require Bounds on Vars is selected; FALSE otherwise

18 A number corresponding to the type of Derivatives:

 1 = Forward

 2 = Central

19 A number corresponding to the type of Second Derivatives:

 1 = Analytic 2nd Derivatives

 2 = Analytic 1st Derivatives

 3 = Finite Differences

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverKnitroOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the Knitro Solver is

selected in the Solver Engines dropdown list. Specifies options for the Knitro

Solver.

VBA Syntax

SolverKnitroOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,

PopulationSize:=, RandomSeed:=, StepThru:=, Scaling:=, AssumeNonneg:=,

BypassReports:=, LinearConstraints:=, LinearObjective:=, RelaxBounds:=,

SolutionMethod:=, MultiStart:=, TopoSearch:=, RequireBounds:=,

Derivatives:=, SecondDerivatives:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit

box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit

box.

126 • Programming the Solver Engines Solver Engine User’s Guide V2021

Precision must be a number between zero and one, but not equal to zero or one. It

corresponds to the Precision edit box.

Convergence is a number between zero and one, but not equal to zero or one. It

corresponds to the Convergence box.

PopulationSize must be an integer greater than or equal to zero. It corresponds to

the Population Size edit box.

RandomSeed must be an integer greater than zero. It corresponds to the Random

Seed edit box.

StepThru is a logical value corresponding to the Show Iteration Results check box.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function argument, your function will be

called each time Solver pauses; otherwise the standard Show Trial Solution dialog

box will appear.

Scaling (or ScalingOption, for backward compatibility) is a logical value

corresponding to the Use Automatic Scaling check box. If TRUE, then Solver

rescales the objective and constraints internally to similar orders of magnitude. If

FALSE, Solver uses values directly from the worksheet.

AssumeNonneg is a logical value corresponding to the Assume Non-Negative check

box. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check

box. If TRUE, Solver will skip preparing the information needed to create Solver

Reports. If FALSE, Solver will prepare for the reports. For large models, bypassing

the Solver Reports can speed up the solution considerably.

LinearConstraints is a logical value corresponding to the Treat Constraints as

Linear check box. If TRUE, the Solver will assume that all constraints are linear

functions, and will compute their gradients only once at the beginning of the solution

process. If FALSE, the Solver will treat the constraints as nonlinear, and will

compute their gradients at each major iteration. See the chapter “Solver Options” for

a further discussion of this option.

LinearObjective is a logical value corresponding to the Treat Objective as Linear

check box. If TRUE, the Solver will assume that the objective is a linear function,

and will compute its gradient only once at the beginning of the solution process. If

FALSE, the Solver will treat the objective as nonlinear, and will compute its gradient

at each major iteration. See the chapter “Solver Options” for a further discussion of

this option.

RelaxBounds is a logical value corresponding to the Relax Bounds on Variables

check box. If TRUE, the Solver may recalculate the model with values for the

variables that are slightly outside their bounds, in order to speed the solution process.

If FALSE, the Solver will use values for the variables that are always within the

lower and upper bounds you specify.

SolutionMethod is the number 1, 2, 3 or 4 and corresponds to the Solution Method

option: 1 for Select Automatically, 2 for Interior Point Direct, 3 for Interior Point

CG, and 4 for Active Set.

MultiStart is a logical value corresponding to the Multistart Search check box. If

TRUE, the Solver will use Multistart Search, in conjunction with the LSSQP Solver,

to seek a globally optimal solution. If FALSE, the LSSQP Solver alone will be used

to search for a locally optimal solution.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 127

TopoSearch is a logical value corresponding to the Topographic Search check box.

If TRUE, and if Multistart Search is selected, the Solver will construct a topography

from the randomly sampled initial points, and use it to guide the search process.

RequireBounds is a logical value corresponding to the Require Bounds on Variables

check box. If TRUE, and if Multistart Search is selected, the Solver will return

immediately from a call to the SolverSolve function with a value of 18 if any of the

variables do not have both lower and upper bounds defined. If FALSE, then

Multistart Search (if selected) will attempt to find a globally optimal solution without

bounds on all of the variables.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for

Forward and 2 for Central.

SecondDerivatives is the number 1, 2 or 3 and corresponds to the Second

Derivatives option: 1 for Analytic 2nd Derivatives, 2 for Analytic 1st Derivatives,

and 3 for Finite Differences.

OptQuest Solver Functions
The OptQuest Solver provides the following traditional VBA functions to either set

(with SolverOPTQOptions) or get (with SolverOPTQGet) the current option and

parameter settings that affect the performance of this Solver engine.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverOPTQOptions.

SolverOPTQGet

Returns OptQuest Solver option settings for the current Solver problem on the

specified sheet. These settings are entered in the Solver Options dialog when the

OptQuest Solver is selected in the Solver Engines dropdown list.

VBA Syntax

SolverOPTQGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of trial solutions)

3 The Objective Function Precision (as a decimal number)

4 The Decision Variable Precision (as a decimal number)

5 The Population Size (as an integer number – no longer used)

6 The Boundary Frequency parameter (as a decimal number –

 no longer used)

7 TRUE if the Use Same Sequence of Random Numbers check box is

 selected; FALSE otherwise

8 The Random Number Seed value (as a decimal number)

9 TRUE if the Solve Without Integer Constraints check box is

 selected; FALSE otherwise

128 • Programming the Solver Engines Solver Engine User’s Guide V2021

10 TRUE if the Check for Duplicated Solutions check box is

 selected; FALSE otherwise

11 TRUE if the Bypass Solver Reports check box is selected;

 FALSE otherwise.

12 TRUE if the Assume Non-Negative check box is selected;

 FALSE otherwise

13 TRUE if the Show Iteration Results check box is selected;

 FALSE otherwise

14 The Number of Solutions to Report (as a decimal number)

15 TRUE if the Stop when Objective Hasn’t Improved check box

 is selected; FALSE otherwise

16 The Iterations limit for Stop when Objective Hasn’t Improved

 (as a decimal number)

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverOPTQOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the OptQuest Solver is

selected in the Solver Engines dropdown list. Specifies options for the OptQuest

Solver.

VBA Syntax

SolverOPTQOptions (MaxTime:=, Iterations:=, ObjPrecision:=,

VarPrecision:=, NumSolutions:=, PopulationSize:=, BoundFreq:=, FixedSeed:=,

RandomSeed:=, CheckDup:=, StepThru:=, AssumeNonneg:=, BypassReports:=,

SolveWithout:=, AutoStop:=, AutoStopIter:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted.

MaxTime is an integer greater than zero corresponding to the Max Time edit box.

Iterations (formerly called Max Trial Solutions) is an integer greater than zero

corresponding to the Iterations edit box.

ObjPrecision is a number between zero and one corresponding to the Precision (Obj

Fun) edit box.

VarPrecision is a number between zero and one corresponding to the Precision (Dec

Var) edit box.

NumSolutions is an integer greater than zero corresponding to the Number of

Solutions to Report edit box.

PopulationSize is an integer corresponding to the Population Size edit box (no

longer used).

BoundFreq is a number between zero and one corresponding to the Boundary Freq

edit box (no longer used).

FixedSeed is a logical value corresponding to the Use Same Sequence of Random

Numbers check box. If TRUE, the Solver uses a fixed random number seed that is

Solver Engine User’s Guide V2021 Programming the Solver Engines • 129

supplied in the RandomSeed parameter. If FALSE, the Solver does not use a fixed

random number seed.

RandomSeed is an integer between zero and 999 corresponding to the random

number seed edit box.

CheckDup is a logical value corresponding to the Check for Duplicated Solutions

check box. If TRUE, the Solver checks for duplicated solutions. If FALSE, the

Solver does not check for duplicated solutions.

StepThru is a logical value corresponding to the Show Iteration Results check box.

If TRUE, Solver pauses at each trial solution. If FALSE, it does not. If you have

supplied SolverSolve with a valid VBA function argument, your function will be

called each time Solver pauses; otherwise the standard Show Trial Solution dialog

box will appear.

AssumeNonneg is a logical value corresponding to the Assume Non-Negative check

box. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check

box. If TRUE, Solver will skip preparing the information needed to create Solver

Reports. If FALSE, Solver will prepare for the reports. For large models, bypassing

the Solver Reports can speed up the solution considerably.

SolveWithout is a logical value corresponding to the Solve Without Integer

Constraints check box. If TRUE, the Solver ignores the integer constraints for

decision variables. If FALSE, no action is taken.

AutoStop is a logical value corresponding to the Stop when Objective Hasn’t

Improved check box. If TRUE, the Solver stops when the objective value of the best

solution found so far hasn’t improved after AutoStopIter iterations. If FALSE, no

action is taken.

AutoStopIter is an integer greater than zero corresponding to Stop when Objective

Hasn’t Improved after Iterations edit box.

Functions for Mixed-Integer Problems
Analytic Solver provides the following VBA functions to either set (with

SolverIntOptions) or get (with SolverIntGet) the current option and parameter

settings that affect the performance of the Large-Scale GRG, Large-Scale SQP, and

Knitro Solver engines on mixed-integer problems.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverIntOptions.

SolverIntGet

Returns integer option settings for the current Solver problem on the specified sheet.

These settings are entered on the Integer Options dialog, or the Integer dialog tab for

any of the Solver engines.

VBA Syntax

SolverIntGet (TypeNum:=, SheetName:=)

130 • Programming the Solver Engines Solver Engine User’s Guide V2021

TypeNum is a number specifying the type of information you want. The following

settings are specified on the Integer Options dialog tab box.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Integer Sols value (as a decimal number)

3 The Integer Tolerance value (as a decimal number)

4 The Integer Cutoff value (as a decimal number)

5 TRUE if the Solve Without Integer Constraints check box is

 selected; FALSE otherwise

6 TRUE if the Probing / Feasibility check box is selected;

 FALSE otherwise

7 TRUE if the Bounds Improvement check box is selected;

 FALSE otherwise

8 TRUE if the Optimality Fixing check box is selected;

 FALSE otherwise.

9 TRUE if the Primal Heuristic check box is selected;

 FALSE otherwise.

10 TRUE if the Use Dual Simplex for Subproblems check box

 is selected; FALSE otherwise.

11 The Gomory Cuts value (as a decimal number)

12 The Gomory Passes value (as a decimal number)

13 The Knapsack Cuts value (as a decimal number)

14 The Knapsack Passes value (as a decimal number)

The Large-Scale GRG and Knitro Solver engines support return values for

TypeNum = 1 through 5 only. The Large-Scale SQP and MOSEK Solver engines

support return values for TypeNum = 1 through 9, 13 and 14. SheetName is the

name of a worksheet that contains the Solver problem for which you want

information. If SheetName is omitted, it is assumed to be the active sheet.

SolverIntOptions

Equivalent to choosing Premium Solver... from the Add-Ins tab, choosing the

Options button in the Solver Parameters dialog box, then clicking the Integer tab in

the Solver Options dialog. Specifies integer options for Solver engines (other than

the Interval Global, Evolutionary, Large-Scale LP/QP, and OptQuest Solvers).

VBA Syntax

SolverIntOptions (MaxSubproblems:=, MaxIntegerSols:=, IntTolerance:=,

IntCutoff:=, SolveWithout:=, UseDual:=, ProbingFeasibility:=,

BoundsImprovement:=, OptimalityFixing:=, VariableReordering:=,

UsePrimalHeuristic:=, MaxGomoryCuts:=, GomoryPasses:=,

MaxKnapsackCuts:=, KnapsackPasses:=)

The arguments correspond to the options on the Integer Options dialog tab. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

Solver Engine User’s Guide V2021 Programming the Solver Engines • 131

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the Max

Subproblems edit box.

MaxIntegerSols must be an integer greater than zero. It corresponds to the Max

Integer Sols (Solutions) edit box.

IntTolerance is a number between zero and one, corresponding to the Tolerance edit

box.

IntCutoff is a number (any value is possible) corresponding to the Integer Cutoff

edit box.

SolveWithout is a logical value corresponding to the Solve Without Integer

Constraints check box. If TRUE, the Solver ignores any integer constraints and

solves the “relaxation” of the mixed-integer programming problem. If FALSE, the

Solver uses the integer constraints in solving the problem.

UseDual is a logical value corresponding to the Use Dual Simplex for Subproblems

check box. If TRUE, the Solver uses the Dual Simplex method, starting from an

advanced basis, to solve the subproblems generated by the Branch & Bound method.

If FALSE, the Solver uses the Primal Simplex method to solve the subproblems.

ProbingFeasibility is a logical value corresponding to the Probing / Feasibility

check box. If TRUE, the Solver attempts to derive settings for binary integer

variables, and implications for feasibility of the subproblem, from the subproblem’s

bounds on binary integer variables. If FALSE, the Solver does not employ these

strategies.

BoundsImprovement is a logical value corresponding to the Bounds Improvement

check box. If TRUE, the Solver attempts to tighten the bounds of non-binary integer

variables, based on the initial or derived settings of binary integer variables in the

subproblem. If FALSE, the Solver does not employ this strategy.

OptimalityFixing is a logical value corresponding to the Optimality Fixing check

box. If TRUE, the Solver attempts to fix the values of binary integer variables based

on their coefficients in the objective function and constraints, and on the initial or

derived settings of other binary integer variables. If FALSE, the Solver does not

employ this strategy.

VariableReordering is a logical value corresponding to the Variable Reordering

check box. In Version 5 and above of the Premium Solver products, this option is no

longer used and its value is ignored.

UsePrimalHeuristic is a logical value corresponding to the Primal Heuristic check

box. If TRUE, the Solver uses heuristic methods to attempt to discover an integer

feasible solution at the beginning of the Branch & Bound process. If FALSE, the

Solver does not employ this strategy.

MaxGomoryCuts must be an integer greater than or equal to zero. It corresponds to

the Gomory Cuts edit box (in Analytic Solver Comprehensive and Analytic Solver

Optimization's LP/Quadratic Solver Options dialog).

GomoryPasses must be an integer greater than or equal to zero. It corresponds to

the Gomory Passes edit box (in Analytic Solver Comprehensive and Analytic Solver

Optimization’s LP/Quadratic Solver Options dialog).

MaxKnapsackCuts must be an integer greater than or equal to zero. It corresponds

to the Knapsack Cuts edit box.

132 • Programming the Solver Engines Solver Engine User’s Guide V2021

KnapsackPasses must be an integer greater than or equal to zero. It corresponds to

the Knapsack Passes edit box.

The Large-Scale SQP Solver supports only the arguments ProbingFeasibility,

BoundsImprovement, OptimalityFixing, UsePrimalHeuristic, MaxKnapsackCuts and

KnapsackPasses.

Large-Scale LP/QP Solver Functions
The Large-Scale LP/QP Solver provides the following VBA functions to either set or

get the current option and parameter settings that affect the performance of this

Solver engine. The SolverLSLPOptions and SolverLSLPGet functions affect the

options on the General tab, and the SolverLSLPIntOptions and SolverLSLPIntGet

functions affect the options on the Integer tab of the Large-Scale LP/QP Solver

Options dialog.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed for SolverLSLPOptions and SolverLSLPIntOptions.

SolverLSLPGet

Returns Large-Scale LP/QP Solver option settings for the current Solver problem on

the specified sheet. These settings are entered in the Solver Options dialog when the

Large-Scale LP/QP Solver is selected in the Solver Engines dropdown list.

VBA Syntax

SolverLSLPGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Primal Tolerance (as a decimal number)

4 The Dual Tolerance (as a decimal number)

5 TRUE if the Assume Non-Negative check box is selected; FALSE

 otherwise

6 TRUE if the Use Automatic Scaling check box is selected;

 FALSE otherwise

7 TRUE if the Show Iteration Results check box is selected;

 FALSE otherwise

8 TRUE if the Bypass Solver Reports check box is selected;

 FALSE otherwise.

9 TRUE if the Do Presolve check box is selected;

 FALSE otherwise

10 TRUE if Assume Quadratic Objective is selected; FALSE

 otherwise (no longer used)

11 A number corresponding to the type of Derivatives:

 1 = Forward

 2 = Central

Solver Engine User’s Guide V2021 Programming the Solver Engines • 133

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverLSLPIntGet

Returns Large-Scale LP/QP Solver integer option settings for the current Solver

problem on the specified sheet. These settings are entered in the Solver Options

dialog, on the Integer tab, when the Large-Scale LP/QP Solver is selected in the

Solver Engines dropdown list.

VBA Syntax

SolverLSLPIntGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Feasible Sols value (as a decimal number)

3 The Integer Tolerance value (as a decimal number)

4 The Integer Cutoff value (as a decimal number)

5 TRUE if the Solve Without Integer Constraints check box is

 selected; FALSE otherwise

6 (Compatibility Option) The Maximum Cut Passes at Root value

(as a decimal number)

7 (Compatibility Option) The Maximum Cut Passes in Tree value

(as a decimal number)

8 (Compatibility Option) TRUE if the Use Strong Branching check

box is selected; FALSE otherwise

9 (Compatibility option) TRUE if the Lift and Cover check box

 is selected; FALSE otherwise.

10 (Compatibility option) TRUE if the Rounding check box is

 selected; FALSE otherwise

11 (Compatibility Option) TRUE if the Knapsack check box is

selected; FALSE otherwise

12 (Compatibility Option) TRUE if the Gomory check box is

selected; FALSE otherwise.

13 (Compatibility Option) TRUE if the Probing check box is

selected; FALSE otherwise

14 (Compatibility option) TRUE if the Odd Hole check box is

 selected; FALSE otherwise

15 (Compatibility Option) TRUE if the Clique check box is

selected;FALSE otherwise

16 (Compatibility Option) TRUE if the Rounding Heuristic check

box is selected; FALSE otherwise

17 (Compatibility Option) TRUE if the Local Search Heuristic

check box is selected; FALSE otherwise

18 (Compatibility Option) TRUE if the Flow Cover check box is

selected; FALSE otherwise

134 • Programming the Solver Engines Solver Engine User’s Guide V2021

19 (Compatibility Option) TRUE if the Mixed Integer Rounding

check box is selected; FALSE otherwise

20 (Compatibility Option) TRUE if the Two Mixed Integer Rounding

check box is selected; FALSE otherwise

21 (Compatibility Option) TRUE if the Reduce and Split check box

is selected; FALSE otherwise

22 (Compatibility Option) TRUE if the Special Ordered Sets check

box is selected; FALSE otherwise

23 TRUE if the Preprocessing check box is selected;

 FALSE otherwise

24 TRUE if the Feasibility Pump check box is selected;

 FALSE otherwise

25 TRUE if the Greedy Cover Heuristic check box is selected;

 FALSE otherwise

26 TRUE if the Local Tree check box is selected;

 FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverLSLPOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the Large-Scale LP/QP

Solver is selected in the Solver Engines dropdown list. Specifies options for the

Large-Scale LP/QP Solver.

VBA Syntax

SolverLSLPOptions (MaxTime:=, Iterations:=, PrimalTolerance:=,

DualTolerance:=, StepThru:=, Scaling:=, AssumeNonneg:=, BypassReports:=,

Presolve:=, Derivatives:=, AssumeQP:=, CoeffTol:=, SolutionTol:=, PivotTol:=,

ReducedTol:=, Crash:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit

box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit

box.

PrimalTolerance must be a number between zero and one, but not equal to zero or

one. It corresponds to the Primal Tolerance edit box.

DualTolerance must be a number between zero and one, but not equal to zero or

one. It corresponds to the Dual Tolerance edit box.

StepThru is a logical value corresponding to the Show Iteration Results check box.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function argument, your function will be

called each time Solver pauses; otherwise the standard Show Trial Solution dialog

box will appear.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 135

Scaling (or ScalingOption, for backward compatibility) is a logical value

corresponding to the Use Automatic Scaling checkbox. If TRUE, then Solver

rescales the objective and constraints internally to similar orders of magnitude. If

FALSE, Solver uses values directly from the worksheet.

AssumeNonneg is a logical value corresponding to the Assume Non-Negative check

box. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check

box. If TRUE, Solver will skip preparing the information needed to create Solver

Reports. If FALSE, Solver will prepare for the reports. For large models, bypassing

the Solver Reports can speed up the solution considerably.

Presolve is a logical value corresponding to the Do Presolve checkbox. If TRUE, the

Solver will perform a Presolve step before applying the Primal or Dual Simplex

method.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for

Forward and 2 for Central.

AssumeQP is included for compatibility with earlier versions, but is ignored.

CoeffTol is included for compatibility with earlier versions, but is ignored.

SolutionTol is included for compatibility with earlier versions, but is ignored

PivotTol is included for compatibility with earlier versions, but is ignored.

ReducedTol is included for compatibility with earlier versions, but is ignored.

Crash is included for compatibility with earlier versions, but is ignored.

SolverLSLPIntOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the Large-Scale LP/QP

Solver is selected in the Solver Engines dropdown list, and selecting the Integer tab.

Specifies integer options for the Large-Scale LP/QP Solver.

VBA Syntax

SolverLSLPIntOptions (MaxSubproblems:=, MaxIntegerSols:=,

IntTolerance:=, IntCutoff:=, SolveWithout:=, MaxRootCutPasses:=,

MaxTreeCutPasses:=, StrongBranching:=, PreProcess:=, KnapsackCuts:=,

GomoryCuts:=, MirCuts:=, ProbingCuts:=, TwoMirCuts:=, CliqueCuts:=,

RedSplitCuts:=, FlowCoverCuts:=, LocalTree:=, SOSCuts:=, GreedyCover:=,

FeasibilityPump:=, LocalHeur:=, RoundingHeur:=, LiftAndCoverCuts:=,

RoundingCuts:=, OddHoleCuts:=)

The arguments correspond to the options in the Integer tab of the dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted. The last three arguments are included for

compatibility with earlier Large-Scale LP/QP Solver versions.

MaxSubproblems must be an integer greater than zero. It corresponds to the Max

Subproblems edit box.

MaxIntegerSols must be an integer greater than zero. It corresponds to the Max

Feasible Sols (Solutions) edit box.

136 • Programming the Solver Engines Solver Engine User’s Guide V2021

IntTolerance is a number between zero and one, corresponding to the Tolerance edit

box.

IntCutoff is a number (any value is possible) corresponding to the Integer Cutoff

edit box.

SolveWithout is a logical value corresponding to the Solve Without Integer

Constraints check box. If TRUE, the Solver ignores any integer constraints and

solves the “relaxation” of the mixed-integer programming problem. If FALSE, the

Solver uses the integer constraints in solving the problem.

MaxRootCutPasses must be an integer greater than or equal to -1. It corresponds to

the Maximum Cut Passes at Root edit box. A value of -1 means that the Solver

should choose the number of passes automatically.

MaxTreeCutPasses must be an integer greater than or equal to zero. It corresponds

to the Maximum Cut Passes in Tree edit box.

StrongBranching is a logical value corresponding to the Use Strong Branching

check box. If TRUE, strong branching will be performed throughout the Branch &

Bound process.

PreProcess is a logical value corresponding to the Preprocessing check box. If

TRUE, preprocessing will be performed.

KnapsackCuts is a logical value corresponding to the Knapsack check box. If

TRUE, Knapsack cuts will be generated.

GomoryCuts is a logical value corresponding to the Gomory check box. If TRUE,

Gomory cuts will be generated.

MirCuts is a logical value corresponding to the Mixed Integer Rounding check box.

If TRUE, Mixed Integer Rounding cuts will be generated.

ProbingCuts is a logical value corresponding to the Probing check box. If TRUE,

Probing cuts will be generated.

TwoMirCuts is a logical value corresponding to the Two Mixed Integer Rounding

check box. If TRUE, Two Mixed Integer Rounding cuts will be generated.

CliqueCuts is a logical value corresponding to the Odd Hole check box. If TRUE,

Clique cuts will be generated.

RedSplitCuts is a logical value corresponding to the Reduce and Split check box. If

TRUE, Reduce and Split cuts (variants of Gomory cuts) will be generated.

FlowCoverCuts is a logical value corresponding to the Flow Cover check box. If

TRUE, Flow Cover cuts will be generated.

LocalTree is a logical value corresponding to the Local Tree check box. If TRUE,

when new incumbents are found, a local Branch & Bound tree search will be used to

seek improved integer solutions.

SOSCuts is a logical value corresponding to the Special Ordered Sets check box. If

TRUE, cuts for Special Ordered Sets will be generated.

GreedyCover is a logical value corresponding to the Greedy Cover check box. If

TRUE, the Greedy Cover search heuristic will be used to seek improved integer

solutions.

FeasibilityPump is a logical value corresponding to the Feasibility Pump check box.

If TRUE, the Feasibility Pump heuristic will be used to seek improved integer

solutions.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 137

LocalHeur is a logical value corresponding to the Local Search Heuristic check box.

If TRUE, the local search heuristic will be used to seek improved integer solutions.

RoundingHeur is a logical value corresponding to the Rounding Heuristic check

box. If TRUE, the rounding heuristic will be used to seek improved integer solutions.

LiftAndCoverCuts is a logical value, included for compatibility with earlier Large-

Scale LP/QP Solver versions. If TRUE, Lift and Cover cuts will be generated.

RoundingCuts is a logical value, included for compatibility with earlier Large-Scale

LP/QP Solver versions. If TRUE, Rounding cuts will be generated.

OddHoleCuts is a logical value, included for compatibility with earlier Large-Scale

LP/QP Solver versions. If TRUE, Odd Hole cuts will be generated.

MOSEK Solver Functions
The MOSEK Solver provides the following traditional VBA functions to either set or

get the current option and parameter settings that affect the performance of this

Solver engine. The SolverMOSEKOptions and SolverMOSEKGet functions affect

the options on the General, LP/QP/QCP, Conic, and Nonlinear tabs, and the

SolverMOSEKIntOptions and SolverMOSEKIntGet functions affect the options on

the Integer tab of the MOSEK Solver Options dialog.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverMOSEKOptions and

SolverMOSEKIntOptions.

SolverMOSEKGet

Returns MOSEK Solver option settings for the current Solver problem on the

specified sheet. These settings are entered in the Solver Options dialog when the

MOSEK Solver is selected in the Solver Engines dropdown list.

VBA Syntax

SolverMOSEKGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Pivot Tolerance (as a decimal number)

5 TRUE if the Show Iteration Results check box is selected;

 FALSE otherwise

6 TRUE if the Assume Non-Negative check box is selected; FALSE

 otherwise

7 TRUE if the Bypass Solver Reports check box is selected;

 FALSE otherwise.

8 A number corresponding to the type of Ordering:

 1 = Automatic Choice

138 • Programming the Solver Engines Solver Engine User’s Guide V2021

 2 = Local Fill-In 1

 3 = Local Fill-In 2

 4 = Graph Partitioning

 5 = Alt. Graph Partitioning

 6 = No Ordering

9 A number corresponding to the type of Scaling:

 1 = Automatic Choice

 2 = Aggressive Scaling

 3 = No Scaling

 4 = Conservative Scaling

10 The Dual Feasibility Tolerance value on the LP/QP/QCP tab

 (as a decimal number)

11 The Primal Feasibility Tolerance value on the LP/QP/QCP tab

 (as a decimal number)

12 The Model Feasibility Tolerance value on the LP/QP/QCP tab

 (as a decimal number)

13 The Complementarity Gap Tolerance value on the LP/QP/QCP tab

 (as a decimal number)

14 The Central Path Tolerance value on the LP/QP/QCP tab

 (as a decimal number)

15 The Gap Termination Tolerance value on the LP/QP/QCP tab

 (as a decimal number)

16 The Relative Step Size value on the LP/QP/QCP tab (as a

 decimal number)

17 The Dual Feasibility Tolerance value on the Conic tab

 (as a decimal number)

18 The Primal Feasibility Tolerance value on the Conic tab

 (as a decimal number)

19 The Model Feasibility Tolerance value on the Conic tab

 (as a decimal number)

20 The Complementarity Gap Tolerance value on the Conic tab

 (as a decimal number)

21 The Gap Termination Tolerance value on the Conic tab

 (as a decimal number)

22 The Dual Feasibility Tolerance value on the Nonlinear tab

 (as a decimal number)

23 The Primal Feasibility Tolerance value on the Nonlinear tab

 (as a decimal number)

24 The Complementarity Gap Tolerance value on the Nonlinear tab

 (as a decimal number)

25 The Gap Termination Tolerance value on the Nonlinear tab

 (as a decimal number)

26 The Relative Step Size value on the Nonlinear tab (as a

 decimal number)

27 The NonConvex Feasibility Tol value on the Nonlinear tab

 (as a decimal number)

28 The NonConvex Optimality Tol value on the Nonlinear tab

 (as a decimal number)

29 The maximum number of barrier iterations on the General tab

(as an integer number)

Solver Engine User’s Guide V2021 Programming the Solver Engines • 139

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverMOSEKIntGet

Returns MOSEK Solver integer option settings for the current Solver problem on the

specified sheet. These settings are entered in the Solver Options dialog, on the

Integer tab, when the MOSEK Solver is selected in the Solver Engines dropdown

list.

VBA Syntax

SolverMOSEKIntGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Feasible Sols value (as a decimal number)

3 The Integer Tolerance value (as a decimal number)

4 The Integer Cutoff value (as a decimal number)

5 TRUE if the Solve Without Integer Constraints check box is

 selected; FALSE otherwise

6 The Maximum Cut Passes at Root value (as a decimal number)

7 The Maximum Cut Passes in Tree value (as a decimal number)

8 TRUE if the Preprocessing check box is selected;

 FALSE otherwise

9 TRUE if the Knapsack check box is selected;

 FALSE otherwise

10 TRUE if the Gomory check box is selected;

 FALSE otherwise.

11 TRUE if the Mixed Integer Rounding check box is selected;

 FALSE otherwise

12 TRUE if the Probing check box is selected;

 FALSE otherwise

13 TRUE if the Two Mixed Integer Rounding check box is selected;

 FALSE otherwise

14 TRUE if the Clique check box is selected;

 FALSE otherwise

17 TRUE if the Reduce and Split check box is selected;

 FALSE otherwise

14 TRUE if the Flow Cover check box is selected;

 FALSE otherwise

15 TRUE if the Local Tree check box is selected;

 FALSE otherwise

16 TRUE if the Special Ordered Sets check box is selected;

 FALSE otherwise

17 TRUE if the Greedy Cover Heuristic check box is selected;

 FALSE otherwise

140 • Programming the Solver Engines Solver Engine User’s Guide V2021

18 TRUE if the Feasibility Pump check box is selected;

 FALSE otherwise

19 TRUE if the Local Search Heuristic check box is selected;

 FALSE otherwise

20 TRUE if the Rounding Heuristic check box is selected;

 FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverMOSEKOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the MOSEK Solver is

selected in the Solver Engines dropdown list. Specifies options for the MOSEK

Solver.

VBA Syntax

SolverMOSEKOptions (MaxTime:=, Iterations:=, Precision:=,

PivotTolerance:=, StepThru:=, AssumeNonneg:=, BypassReports:=,

Ordering:=, Scaling:=, DualFeasibility:=, PrimalFeasibility:=,

ModelFeasibility:=, CompGapTol:=, CentralPathTol:=, GapTerminationTol:=,

StepSize:=, DualFeasibilityCone:=, PrimalFeasibilityCone:=,

ModelFeasibilityCone:=, CompGapTolCone:=, GapTerminationTolCone:=,

DualFeasibilityNLP:=, PrimalFeasibilityNLP:=, CompGapTolNLP:=,

GapTerminationTolNLP:=, StepSizeNLP:=, NCvxFeasibilityTol:=,

NCvxOptimalityTol:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit

box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit

box.

Precision must be a number between zero and one, but not equal to zero or one. It

corresponds to the Precision edit box.

PivotTolerance must be a number between zero and one, but not equal to zero or

one. It corresponds to the Pivot Tolerance box.

StepThru is a logical value corresponding to the Show Iteration Results check box.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function argument, your function will be

called each time Solver pauses; otherwise the standard Show Trial Solution dialog

box will appear.

AssumeNonneg is a logical value corresponding to the Assume Non-Negative check

box. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check

box. If TRUE, Solver will skip preparing the information needed to create Solver

Solver Engine User’s Guide V2021 Programming the Solver Engines • 141

Reports. If FALSE, Solver will prepare for the reports. For large models, bypassing

the Solver Reports can speed up the solution considerably.

Ordering is the number 1, 2, 3, 4 or 5 and corresponds to the Ordering option group:

1 for Automatic Choice, 2 for Local Fill-In 1, 3 for Local Fill-In 2, 4 for Graph

Partitioning, 5 for Alt. Graph Partitioning, and 6 for No Ordering.

Scaling (or ScalingOption) is the number 1, 2, 3 or 4 and corresponds to the Scaling

option group: 1 for Automatic Choice, 2 for Aggressive Scaling, 3 for No Scaling,

and 4 for Conservative Scaling.

DualFeasibility must be a number between zero and one, but not equal to zero or

one. It corresponds to the Dual Feasibility Tolerance edit box on the LP/QP/QCP

tab.

PrimalFeasibility must be a number between zero and one, but not equal to zero or

one. It corresponds to the Primal Feasibility Tolerance edit box on the LP/QP/QCP

tab.

ModelFeasibility must be a number between zero and one, but not equal to zero or

one. It corresponds to the Model Feasibility Tolerance edit box on the LP/QP/QCP

tab.

CompGapTol must be a number between zero and one, but not equal to zero or one.

It corresponds to the Complementarity Gap Tolerance edit box on the LP/QP/QCP

tab.

CentralPathTol must be a number between zero and one, but not equal to zero or

one. It corresponds to the Central Path Tolerance edit box on the LP/QP/QCP tab.

GapTerminationTol must be a number between zero and one, but not equal to zero

or one. It corresponds to the Gap Termination Tolerance edit box on the

LP/QP/QCP tab.

StepSize must be a number between zero and one, but not equal to zero or one. It

corresponds to the Relative Step Size edit box on the LP/QP/QCP tab.

DualFeasibilityCone must be a number between zero and one, but not equal to zero

or one. It corresponds to the Dual Feasibility Tolerance edit box on the Conic tab.

PrimalFeasibilityCone must be a number between zero and one, but not equal to

zero or one. It corresponds to the Primal Feasibility Tolerance edit box on the Conic

tab.

ModelFeasibilityCone must be a number between zero and one, but not equal to

zero or one. It corresponds to the Model Feasibility Tolerance edit box on the Conic

tab.

CompGapTolCone must be a number between zero and one, but not equal to zero

or one. It corresponds to the Complementarity Gap Tolerance edit box on the Conic

tab.

GapTerminationTolCone must be a number between zero and one, but not equal to

zero or one. It corresponds to the Gap Termination Tolerance edit box on the Conic

tab.

DualFeasibilityNLP must be a number between zero and one, but not equal to zero

or one. It corresponds to the Dual Feasibility Tolerance edit box on the Nonlinear

tab.

PrimalFeasibilityNLP must be a number between zero and one, but not equal to

zero or one. It corresponds to the Primal Feasibility Tolerance edit box on the

Nonlinear tab.

142 • Programming the Solver Engines Solver Engine User’s Guide V2021

CompGapTolNLP must be a number between zero and one, but not equal to zero or

one. It corresponds to the Complementarity Gap Tolerance edit box on the

Nonlinear tab.

GapTerminationTolNLP must be a number between zero and one, but not equal to

zero or one. It corresponds to the Gap Termination Tolerance edit box on the

Nonlinear tab.

StepSizeNLP must be a number between zero and one, but not equal to zero or one.

It corresponds to the Relative Step Size edit box on the Nonlinear tab.

NCvxFeasibilityTol must be a number between zero and one, but not equal to zero

or one. It corresponds to the NonConvex Feasibility Tol edit box on the Nonlinear

tab.

NCvxOptimalityTol must be a number between zero and one, but not equal to zero

or one. It corresponds to the NonConvex Optimality Tol edit box on the Nonlinear

tab.

SolverMOSEKIntOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the MOSEK Solver is

selected in the Solver Engines dropdown list, and selecting the Integer tab. Specifies

integer options for the MOSEK Solver.

VBA Syntax

SolverMOSEKIntOptions (MaxSubproblems:=, MaxIntegerSols:=,

IntTolerance:=, IntCutoff:=, SolveWithout:=, MaxRootCutPasses:=,

MaxTreeCutPasses:=, PreProcess:=, KnapsackCuts:=, GomoryCuts:=,

MirCuts:=, ProbingCuts:=, TwoMirCuts:=, CliqueCuts:=, RedSplitCuts:=,

FlowCoverCuts:=, LocalTree:=, SOSCuts:=, GreedyCover:=,

FeasibilityPump:=, LocalHeur:=, RoundingHeur:=)

The arguments correspond to the options in the Integer tab of the dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If any

of the arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the

function returns a positive integer corresponding to its position. A zero return value

indicates that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the Max

Subproblems edit box.

MaxIntegerSols must be an integer greater than zero. It corresponds to the Max

Feasible Sols (Solutions) edit box.

IntTolerance is a number between zero and one, corresponding to the Tolerance edit

box.

IntCutoff is a number (any value is possible) corresponding to the Integer Cutoff

edit box.

SolveWithout is a logical value corresponding to the Solve Without Integer

Constraints check box. If TRUE, the Solver ignores any integer constraints and

solves the “relaxation” of the mixed-integer programming problem. If FALSE, the

Solver uses the integer constraints in solving the problem.

MaxRootCutPasses must be an integer greater than or equal to -1. It corresponds to

the Maximum Cut Passes at Root edit box. A value of -1 means that the Solver

should choose the number of passes automatically.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 143

MaxTreeCutPasses must be an integer greater than or equal to zero. It corresponds

to the Maximum Cut Passes in Tree edit box.

PreProcess is a logical value corresponding to the Preprocessing check box. If

TRUE, preprocessing will be performed.

KnapsackCuts is a logical value corresponding to the Knapsack check box. If

TRUE, Knapsack cuts will be generated.

GomoryCuts is a logical value corresponding to the Gomory check box. If TRUE,

Gomory cuts will be generated.

MirCuts is a logical value corresponding to the Mixed Integer Rounding check box.

If TRUE, Mixed Integer Rounding cuts will be generated.

ProbingCuts is a logical value corresponding to the Probing check box. If TRUE,

Probing cuts will be generated.

TwoMirCuts is a logical value corresponding to the Two Mixed Integer Rounding

check box. If TRUE, Two Mixed Integer Rounding cuts will be generated.

CliqueCuts is a logical value corresponding to the Odd Hole check box. If TRUE,

Clique cuts will be generated.

RedSplitCuts is a logical value corresponding to the Reduce and Split check box. If

TRUE, Reduce and Split cuts (variants of Gomory cuts) will be generated.

FlowCoverCuts is a logical value corresponding to the Flow Cover check box. If

TRUE, Flow Cover cuts will be generated.

LocalTree is a logical value corresponding to the Local Tree check box. If TRUE,

when new incumbents are found, a local Branch & Bound tree search will be used to

seek improved integer solutions.

SOSCuts is a logical value corresponding to the Special Ordered Sets check box. If

TRUE, cuts for Special Ordered Sets will be generated.

GreedyCover is a logical value corresponding to the Greedy Cover check box. If

TRUE, the Greedy Cover search heuristic will be used to seek improved integer

solutions.

FeasibilityPump is a logical value corresponding to the Feasibility Pump check box.

If TRUE, the Feasibility Pump heuristic will be used to seek improved integer

solutions.

LocalHeur is a logical value corresponding to the Local Search Heuristic check box.

If TRUE, the local search heuristic will be used to seek improved integer solutions.

RoundingHeur is a logical value corresponding to the Rounding Heuristic check

box. If TRUE, the rounding heuristic will be used to seek improved integer solutions.

Gurobi Solver Basic Functions
The Gurobi Solver provides the following VBA functions to either set (with

SolverGurobiOptions) or get (with SolverGurobiGet) the general option and

parameter settings that affect the performance of this Solver engine. These options

and parameters appear on the General tab in the Gurobi Solver Options tabbed dialog

box. The options and parameters that appear on other tabs are described in following

sections.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

144 • Programming the Solver Engines Solver Engine User’s Guide V2021

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverGurobiOptions.

SolverGurobiGet

Returns general Gurobi Solver option settings for the current Solver problem on the

specified sheet. These settings appear on the General tab in the Gurobi Solver

Options tabbed dialog box.

VBA Syntax

SolverGurobiGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Feasibility Tolerance (as a decimal number)

4 The Optimality Tolerance (as a decimal number)

5 The Integrality Tolerance (as a decimal number)

6 TRUE if the Assume Non-Negative check box is selected; FALSE

 otherwise

7 TRUE if Show Iteration Result check box is selected; FALSE

 otherwise

8 TRUE if the Bypass Solver Reports check box is selected;

 FALSE otherwise.

9 A number corresponding to the Method option:

 0 = Primal Simplex

 1 = Dual Simplex

 2 = Barrier

10 A number corresponding to the Presolve option:

 -1 = Determine automatically

 0 = Presolve off

 1 = Conservative

 2 = Aggressive

11 A number corresponding to the Pricing option:

 -1 = Determine automatically

 0 = Partial pricing

 1 = Steepest Edge

 2 = Devex

 3 = Quickstart Steepest Edge

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverGurobiOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the Gurobi Solver is

selected in the Solver Engines dropdown list. Specifies options that appear on the

General tab in the Gurobi Solver Options tabbed dialog box.

VBA Syntax

Solver Engine User’s Guide V2021 Programming the Solver Engines • 145

SolverGurobiOptions (MaxTime:=, Iterations:=, FeasibilityTol:=,

OptimalityTol:=, IntegralityTol:=, AssumeNoneg:=, StepThru:=,

BypassReports:=, LPMethod:=, Presolve:=, Pricing:=)

The arguments correspond to the General tab in the Gurobi Solver Options tabbed

dialog box. If an argument is omitted, the Solver maintains the current setting for

that option. If any of the arguments are of the wrong type, the function returns the

#N/A error value. If all arguments are of the correct type, but an argument has an

invalid value, the function returns a positive integer corresponding to its position. A

zero return value indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit

box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit

box.

FeasibilityTol is a number between zero and one, corresponding to the Feasibility

Tolerance edit box.

OptimalityTol is a number between zero and one, corresponding to the Optimality

Tolerance edit box.

IntegralityTol is a number between zero and one, corresponding to the Integrality

Tolerance edit box.

AssumeNonneg is a logical value corresponding to the Assume Non-Negative check

box. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

StepThru is a logical value corresponding to the Show Iteration Results check box.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function argument, your function will be

called each time Solver pauses; otherwise the standard Show Trial Solution dialog

box will appear.

BypassReports is a logical value corresponding to the Bypass Solver Reports check

box. If TRUE, Solver will skip preparing the information needed to create Solver

Reports. If FALSE, Solver will prepare for the reports. For large models, bypassing

the Solver Reports can speed up the solution considerably.

LPMethod corresponds to the Method group of options:

 LPMethod Option specified

 0 Primal Simplex

 1 Dual Simplex

 2 Barrier method

Presolve corresponds to the Presolve group of options:

 Crashing Option specified

 -1 Determine automatically

 0 Presolve off

 1 Conservative

 2 Aggressive

Pricing corresponds to the Pricing group of options:

 Pricing Option specified

 -1 Determine automatically

 0 Use Partial pricing

 1 Use Steepest Edge pricing

146 • Programming the Solver Engines Solver Engine User’s Guide V2021

 2 Use Devex pricing

 3 Use Quickstart Steepest Edge pricing

Gurobi Solver Barrier Functions
The Gurobi Solver provides the following VBA functions to either set (with

SolverGurobiBarrierOptions) or get (with SolverGurobiBarrierGet) the option and

parameter settings that affect the performance of the Barrier method in this Solver

engine. These options and parameters appear on the Barrier tab in the Gurobi Solver

Options tabbed dialog box.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverGurobiBarrierOptions.

SolverGurobiBarrierGet

Returns Gurobi Solver Barrier option settings for the current Solver problem on the

specified sheet. These settings appear on the Barrier tab in the Gurobi Solver

Options tabbed dialog box.

VBA Syntax

SolverGurobiBarrierGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Iteration Limit value (as a decimal number)

2 The Convergence Tolerance (as a decimal number)

3 A number corresponding to the Crossover Strategy option:

 -1 = Determine automatically

 0 = No crossover

 1 = Primal Simplex (dual variables first)

 2 = Dual Simplex (dual variables first)

 3 = Primal Simplex (primal variables first)

 4 = Dual Simplex (primal variables first)

4 A number corresponding to the Ordering option:

 -1 = Determine automatically

 0 = Approximate Minimum Degree

 1 = Nested Dissection

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverGurobiBarrierOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the Gurobi Solver is

selected in the Solver Engines dropdown list. Specifies options that appear on the

Barrier tab in the Gurobi Solver Options tabbed dialog box.

VBA Syntax

SolverGurobiBarrierOptions (BarIterLimit:=, BarConvTol:=, CrossOver:=,

Ordering:=)

Solver Engine User’s Guide V2021 Programming the Solver Engines • 147

The arguments correspond to the Barrier tab in the Gurobi Solver Options tabbed

dialog box. If an argument is omitted, the Solver maintains the current setting for

that option. If any of the arguments are of the wrong type, the function returns the

#N/A error value. If all arguments are of the correct type, but an argument has an

invalid value, the function returns a positive integer corresponding to its position. A

zero return value indicates that all options were accepted.

BarIterLimit must be an integer greater than zero. It corresponds to the Iteration

Limit edit box.

BarConvTol is a number between zero and one, corresponding to the Convergence

Tolerance edit box.

CrossOver corresponds to the Crossover Strategy group of options:

 CrossOver Option specified

 -1 Determine automatically

 0 No crossover

 1 Primal Simplex (dual variables first)

 2 Dual Simplex (dual variables first)

 3 Primal Simplex (primal variables first)

 4 Dual Simplex (primal variables first)

Ordering corresponds to the Method group of options:

 Ordering Option specified

 -1 Determine automatically

 0 Approximate Minimum Degree

 1 Nested Dissection

Gurobi Solver Integer Functions
The Gurobi Solver provides the following VBA functions to either set (with

SolverGurobiIntOptions) or get (with SolverGurobiIntGet) the option and parameter

settings that affect the mixed-integer performance of this Solver engine. These

options and parameters appear on the MIP and Advanced MIP tabs in the Gurobi

Solver Options tabbed dialog box.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverGurobiIntOptions.

SolverGurobiIntGet

Returns Gurobi Solver mixed-integer option settings for the current Solver problem

on the specified sheet. These settings appear on the MIP and Advanced MIP tabs in

the Gurobi Solver Options tabbed dialog box.

VBA Syntax

SolverGurobiIntGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Feasible Sols value (as a decimal number)

148 • Programming the Solver Engines Solver Engine User’s Guide V2021

3 The Integer Tolerance value (as a decimal number)

4 The Integer Cutoff value (as a decimal number)

5 The Threads value (as a decimal number)

6 The Max Submip Nodes value (as a decimal number)

7 The Heuristics value (as a decimal number)

8 TRUE if the Solve Without Integer Constraints check box is

 selected; FALSE otherwise

9 A number corresponding to the Variable Branching option:

 -1 = Determine automatically

 0 = Pseudo Reduced Cost Branching

 1 = Pseudo Shadow Price Branching

 2 = Maximum Infeasibility Branching

 3 = Strong Branching

10 A number corresponding to the Cut Generation option:

 -1 = Determine automatically

 0 = No cut generation

 1 = Conservative cut generation

 2 = Aggressive cut generation

 3 = Very aggressive cut generation

11 The Node File Start value (as a decimal number)

12 A number corresponding to the Root Method option:

 0 = Primal Simplex

 1 = Dual Simplex

 2 = Barrier method

13 A number corresponding to the Symmetric Detection option:

 -1 = Determine automatically

 0 = Symmetry detection off

 1 = Conservative

 2 = Aggressive

14 A number corresponding to the MIP Focus option:

 0 = Balanced approach

 1 = Feasible solutions

 2 = Prove optimality

 3 = Improve best bound

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverGurobiIntOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the Gurobi Solver is

selected in the Solver Engines dropdown list. Specifies options that appear on the

MIP and Advanced MIP tabs in the Gurobi Solver Options tabbed dialog box.

VBA Syntax

SolverGurobiIntOptions (MaxSubproblems:=, MaxIntegerSols:=,

IntTolerance:=, IntCutoff:=, Threads:=, SubMips:=, Heuristics:=,

SolveWithout:=, VarBranching:=, CutGeneration:=, NodeFileStart:=,

RootMethod:=, Symmetry:=, MIPFocus:=)

The arguments correspond to the MIP and Advanced MIP tabs in the Gurobi Solver

Options tabbed dialog box. If an argument is omitted, the Solver maintains the

current setting for that option. If any of the arguments are of the wrong type, the

function returns the #N/A error value. If all arguments are of the correct type, but an

Solver Engine User’s Guide V2021 Programming the Solver Engines • 149

argument has an invalid value, the function returns a positive integer corresponding

to its position. A zero return value indicates that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the Max

Subproblems edit box.

MaxIntegerSols must be an integer greater than zero. It corresponds to the Max

Feasible Sols (Solutions) edit box.

IntTolerance is a number between zero and one, corresponding to the Tolerance edit

box.

IntCutoff is a number (any value is possible) corresponding to the Integer Cutoff

edit box.

Threads must be an integer greater than or equal to 0. This is the number of threads

that will be used in the parallel Branch & Bound algorithm. A value of 0 means the

Solver should use as many threads as there are processors available.

SubMips must be an integer greater than or equal to 0. It corresponds to the Max

Submip Nodes edit box.

Heuristics is a number between zero and one, corresponding to the Heuristics edit

box.

SolveWithout is a logical value corresponding to the Solve Without Integer

Constraints check box. If TRUE, the Solver ignores any integer constraints and

solves the “relaxation” of the mixed-integer programming problem. If FALSE, the

Solver uses the integer constraints in solving the problem.

VarBranching corresponds to the Variable Branching group of options:

 VarBranching Option specified

 -1 Determine automatically

 0 Pseudo Reduced Cost Branching

 1 Pseudo Shadow Price Branching

 2 Maximum Infeasibility Branching

 3 Strong Branching

CutGeneration corresponds to the Cut Generation group of options:

 CutGeneration Option specified

 -1 Determine automatically

 0 No cut generation

 1 Conservative cut generation

 2 Aggressive cut generation

 3 Very aggressive cut generation

NodeFileStart is a decimal number greater than zero, corresponding to the Node

File Start edit box.

RootMethod corresponds to the Root Method group of options:

 RootMethod Option specified

 0 Primal Simplex

 1 Dual Simplex

 2 Barrier method

Symmetry corresponds to the Symmetry Detection group of options:

 Symmetry Option specified

 -1 Determine automatically

 0 Symmetry detection off

150 • Programming the Solver Engines Solver Engine User’s Guide V2021

 1 Conservative

 2 Aggressive

MIPFocus corresponds to the MIP Focus group of options:

 MIPFocus Option specified

 0 Balanced approach

 1 Feasible solutions

 2 Prove optimality

 3 Improve best bound

XPRESS Solver Basic Functions
The XPRESS Solver provides the following VBA functions to either set (with

SolverXPRESSOptions) or get (with SolverXPRESSGet) the most commonly used

option and parameter settings that affect the performance of this Solver engine.

These options and parameters appear on the “front row” of tabs in the XPRESS

Solver Options tabbed dialog box. The advanced options and parameters that appear

on the “back row” of tabs are described in the next section.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverXPRESSOptions.

SolverXPRESSGet

Returns basic XPRESS Solver option settings for the current Solver problem on the

specified sheet. These settings are entered in the “front row” of tabs in the XPRESS

Solver Options tabbed dialog box.

VBA Syntax

SolverXPRESSGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 A number corresponding to the Algorithm option:

 1 = Default (automatically determined)

 2 = Dual Simplex

 3 = Primal Simplex

 4 = Newton Barrier

2 A number corresponding to the Scaling group of options.

 This should be the sum of one or more of the following:

 1 = Row Scaling

 2 = Column Scaling

 4 = Row Scaling Again

 8 = Maximin

 16 = Curtis-Reid

 32 = Scale by Maximum Element (0 for Geometric Mean)

3 A number corresponding to the Presolve option:

 -1 = Do Not Apply Presolve

 0 = Apply Presolve, Do Not Declare Infeasibility

 1 = Apply Presolve

 2 = Apply Presolve, Keep Redundant Bounds

4 TRUE if the Bypass Solver Reports check box is selected;

 FALSE otherwise

Solver Engine User’s Guide V2021 Programming the Solver Engines • 151

5 TRUE if the Assume Non-Negative check box is selected; FALSE

 otherwise

6 The Maximum Time value (as a number in seconds)

7 The RHS Tolerance (as a decimal number)

8 The Markowitz Tolerance (as a decimal number)

9 The Matrix Elements Zero Tolerance (as a decimal number)

10 A number corresponding to the Crashing option:

 0 = No crashing method

 1 = Singletons only (one pass)

 2 = Singletons only (multi pass)

 3 = Multiple passes using slacks

 N = 11+ = Multiple passes (max N-10), slacks at end

11 A number corresponding to the Pricing option:

 1 = Use Devex pricing

 -1 = Use Partial pricing

 0 = Determine pricing automatically

12 TRUE if the Use 'Big M' Method check box is selected; FALSE

 otherwise

13 TRUE if the Use Automatic Perturbation check box is selected;

 FALSE otherwise

14 The Maximum Iterations value (max number of iterations)

15 The Infeasibility Penalty (as a decimal number)

16 The Perturbation Value (as a decimal number)

17 The Markowitz Tolerance for Factorization (as a decimal

 number)

18 A number corresponding to the Cross-Over Control option:

 0 = No cross-over if Presolve is turned off

 1 = Full cross-over to a basic solution

19 The Relative Duality Gap Tolerance (as a decimal number)

20 The Cache Size value (as a number in K bytes; -1 to

 determine automatically)

21 A number corresponding to the Cut Strategy option:

 -1 = Default (determined automatically)

 0 = No cuts

 1 = Conservative cut strategy

 2 = Moderate cut strategy

 3 = Aggressive cut strategy

22 The Absolute Integer Tolerance value (as a decimal number)

23 The Relative Integer Tolerance value (as a decimal number)

24 The Maximum Number of Nodes value (as a decimal number)

25 The Maximum Number of Solutions value (as a decimal number)

26 The Integer Cutoff value (as a decimal number)

27 The Amount to Add to Solution to Obtain New Cutoff value

 (as a decimal number)

28 The Percent to Add to Solution to Obtain New Cutoff value

 (as a decimal number)

152 • Programming the Solver Engines Solver Engine User’s Guide V2021

29 TRUE if the Solve Without Integer Constraints check box is

 selected; FALSE otherwise

30 A number corresponding to the Node Selection Control option:

 0 = Default – Choose automatically based on LP Matrix

 1 = Local First search

 2 = Best first search

 3 = Local Depth first search

 4 = Best first for N nodes, then Local first search

 5 = Pure Depth first search

31 TRUE if the Assume Quadratic Objective check box is

 selected; FALSE otherwise

32 The number of Nodes, for the Best First then Local First

 option (as a decimal number)

33 A number corresponding to the Heuristics Strategy option:

 -1 = Default – Automatically select heuristics strategy

 0 = Use no heuristics

 1 = Use basic heuristics

 2 = Use enhanced heuristics

 3 = Use extensive heuristics

34 The Maximum Depth for Heuristics (as a decimal number)

35 The Frequency for Heuristics (as a decimal number)

36 The Maximum Nodes for Heuristics (as a decimal number)

37 The Maximum Solutions for Heuristics (as a decimal number)

38 The Number of Threads for MIP problems (as a decimal number)

39 A number corresponding to the Presolve Options group, the sum

 of one or more of the following values:

 1 = Singleton Column Removal

 2 = Singleton Row Removal

 4 = Forcing Row Removal

 8 = Dual Reductions

 16 = Redundant Row Removal

 32 = Duplicate Column Removal

 64 = Duplicate Row Removal

 128 = Strong Dual Reductions

 256 = Variable Eliminations

 512 = No IP Reductions

 1024 = No Semi-Continuous Variable Detection

 2048 = No Advanced IP Reductions

 4096 = Linearly Dependent Row Removal

 8192 = No Integer Variable and SOS Detection

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverXPRESSOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the XPRESS Solver is

selected in the Solver Engines dropdown list. Specifies options that are entered in

the “front row” of tabs in the XPRESS Solver Options tabbed dialog box.

VBA Syntax

SolverXPRESSOptions (Algorithm:=, Scaling:=, AssumeQP:=,

BypassReports:=, AssumeNonneg:=, MaxTime:=, RHSTol:=, MarkowitzTol:=,

MatrixTol:=, Crashing:=, Pricing:=, UseBigM:=, UsePerturb:=, Iterations:=,

BigMPenalty:=, PerturbTol:=, FactorizationTol:=, Presolve:=,

PresolveOptions:=, CrossOver:=, BarrierDualityGapTol:=, CacheSize:=,

Solver Engine User’s Guide V2021 Programming the Solver Engines • 153

CutStrategy:=, AbsIntTol:=, RelIntTol:=, MaxNodes:=, MaxSolutions:=,

IntCutoff:=, AbsAddCut:=, RelAddCut:=, SolveWithout:=, numThreads:=,

NodeSelectionControl:=, BreadthFirst:=, HeurStrategy:=, HeurDepth:=,

HeurFreq:=, HeurMaxNodes:=, HeurMaxSol:=)

The arguments correspond to the “front row” of tabs in the XPRESS Solver Options

tabbed dialog box. If an argument is omitted, the Solver maintains the current

setting for that option. If any of the arguments are of the wrong type, the function

returns the #N/A error value. If all arguments are of the correct type, but an

argument has an invalid value, the function returns a positive integer corresponding

to its position. A zero return value indicates that all options were accepted.

General Tab

Algorithm corresponds to the Algorithm group of options:

 Algorithm Option specified

 1 Default (determined automatically)

 2 Dual Simplex

 3 Primal Simplex

 4 Newton Barrier

Scaling (or ScalingOption, for backward compatibility) corresponds to the Scaling

group of options. This should be the sum of one or more of the following values:

 Scaling Value Option specified

 1 Row Scaling

 2 Column Scaling

 4 Row Scaling Again

 8 Maximin

 16 Curtis-Reid

 32 Scale by Maximum Element (0 for Geometric Mean)

AssumeQP is a logical value corresponding to the Assume Quadratic Objective

check box. If TRUE, Solver will assume that the objective is a quadratic function of

the decision variables, and will seek to obtain its (constant) Hessian matrix from

Analytic Solver Comprehensive or Analytic Solver Optimization; if FALSE, it will

treat the objective as linear.

BypassReports is a logical value corresponding to the Bypass Solver Reports check

box. If TRUE, the Solver will skip preparing the information needed to create

Solver Reports. If FALSE, the Solver will prepare for the reports. For large models,

bypassing the Solver Reports can speed up the solution considerably.

AssumeNonneg is a logical value corresponding to the Assume Non-Negative check

box. If TRUE, the Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

MaxTime is an integer value greater than zero. It corresponds to the Maximum

Time edit box.

RHSTol is a number between zero and one, corresponding to the RHS Tolerance

edit box.

MarkowitzTol is a number between zero and one, corresponding to the Markowitz

Tolerance edit box.

MatrixTol is a number between zero and one, corresponding to the Matrix Elements

Zero Tolerance edit box.

154 • Programming the Solver Engines Solver Engine User’s Guide V2021

LP Tab

Crashing corresponds to the Crashing group of options:

 Crashing Option specified

 0 No crashing method

 1 Singletons only (one pass)

 2 Singletons only (multi pass)

 3 Multiple passes using slacks

 N = 11+ Multiple passes (max N-10), slacks at end

Pricing corresponds to the Pricing group of options:

 Pricing Option specified

 1 Use Devex pricing

 -1 Use Partial pricing

 0 Determine pricing automatically

UseBigM is a logical value corresponding to the Use ‘Big M’ method check box. If

TRUE, the ‘Big M’ method is used; if FALSE, the traditional Simplex Phase I and

Phase II method is used.

UsePerturb is a logical value corresponding to the Use Automatic Perturbation

check box. If TRUE, the problem will be perturbed automatically if the Simplex

method encounters an excessive number of degenerate pivot steps; if FALSE, the

problem will not be perturbed automatically.

Iterations is an integer value greater than zero. It corresponds to the Maximum

Iterations edit box.

BigMPenalty is a number corresponding to the Infeasibility Penalty edit box.

PerturbTol is a real number greater than or equal to zero, corresponding to the

Perturbation Value edit box.

FactorizationTol is a number between zero and one, corresponding to the

Markowitz Tolerance for Factorization edit box.

Presolve Tab

Presolve corresponds to the Presolve group of options:

 Presolve Option specified

 -1 Do Not Apply Presolve

 0 Apply Presolve, Do Not Declare Infeasibility

 1 Apply Presolve

 2 Apply Presolve, Keep Redundant Bounds

PresolveOptions corresponds to the Presolve Options group. This should be the

sum of one or more of the following values:

 PresolveOptions Option specified

 1 Singleton Column Removal

 2 Singleton Row Removal

 4 Forcing Row Removal

 8 Dual Reductions

 16 Redundant Row Removal

 32 Duplicate Column Removal

 64 Duplicate Row Removal

 128 Strong Dual Reductions

 256 Variable Eliminations

 512 No IP Reductions

 1024 No Semi-Continuous Variable Detection

Solver Engine User’s Guide V2021 Programming the Solver Engines • 155

 2048 No Advanced IP Reductions

 4096 Linearly Dependent Row Removal

 8192 No Integer Variable and SOS Detection

Newton-Barrier Tab

CrossOver corresponds to the Cross-Over Control group of options:

 CrossOver Option specified

 0 No cross-over if Presolve is turned off

 1 Full cross-over to a basic solution

BarrierDualityGapTol is a number between zero and one, corresponding to the

Relative Duality Gap Tolerance edit box.

CacheSize is either -1 or an integer value greater than zero, specifying an amount of

memory in kilobytes. It corresponds to the Cache Size edit box.

MIP Tab

CutStrategy corresponds to the Cut Strategy group of options:

 Algorithm Option specified

 -1 Default (determined automatically)

 0 No cuts

 1 Conservative cut strategy

 2 Moderate cut strategy

 3 Aggressive cut strategy

AbsIntTol is a number corresponding to the Absolute Integer Tolerance edit box.

RelIntTol is a number between zero and one, corresponding to the Relative Integer

Tolerance edit box.

MaxNodes must be an integer greater than zero. It corresponds to the Maximum

Number of Nodes edit box.

MaxSolutions must be an integer greater than zero. It corresponds to the Maximum

Number of Solutions edit box.

IntCutoff is a number (any value is possible) corresponding to the Integer Cutoff

edit box.

AbsAddCut is a number corresponding to the Amount to Add to Solution to Obtain

New Cutoff edit box.

RelAddCut is a number between zero and 100, corresponding to the Percent to Add

to Solution to Obtain New Cutoff edit box.

SolveWithout is a logical value corresponding to the Solve Without Integer

Constraints check box. If TRUE, the Solver ignores any integer constraints and

solves the “relaxation” of the mixed-integer programming problem. If FALSE, the

Solver uses the integer constraints in solving the problem.

numThreads is an integer greater than or equal to 0, corresponding to the Number

of Threads edit box. It is used to limit the number of threads and processors used to

solve mixed-integer problems; it is effective only if you’ve licensed the Parallel MIP

option. The default value of 0 means that all of your computer’s processors will be

used, up to the maximum allowed by your license.

156 • Programming the Solver Engines Solver Engine User’s Guide V2021

Node Selection Tab

NodeSelectionControl corresponds to the Control group of options on the Node

Selection tab:

 Algorithm Option specified

 0 Default – Choose automatically based on LP matrix

 1 Local First search

 2 Best First search

 3 Local Depth First search

 4 Best First for the first N nodes, then Local First search

 5 Pure Depth First search

BreadthFirst is a number corresponding to the edit box in the “Best First for the

first N nodes, then Local First search” choice in the Control group of options.

Heuristics Tab

HeurStrategy corresponds to the Strategy group of options on the Heuristics tab:

 Algorithm Option specified

 -1 Default – Choose automatically

 0 No Heuristics

 1 Basic Heuristics

 2 Enhanced Heuristics

 3 Extensive Heuristics

HeurDepth must be an integer greater than or equal to zero, corresponding to the

Maximum Depth edit box.

HeurFreq must be an integer greater than zero, corresponding to the Frequency edit

box.

HeurMaxNodes must be an integer greater than zero, corresponding to the

Maximum Nodes edit box.

HeurMaxSol must be an integer greater than zero, corresponding to the Maximum

Solutions edit box.

XPRESS Solver Advanced Functions
The XPRESS Solver provides the following VBA functions to either set (with

SolverXPRESSAdvancedOptions) or get (with SolverXPRESSAdvancedGet) the

advanced option and parameter settings that affect the performance of this Solver

engine.

All of these options and parameters may also be set via the object-oriented API, as

described above under “Accessing Object Properties.” Engine.Param names are

listed for each option in the chapter “Solver Options;” these names normally match

the named arguments listed below for SolverXPRESSAdvancedOptions.

SolverXPRESSAdvancedGet

Returns advanced XPRESS Solver option settings for the current Solver problem on

the specified sheet. These settings are entered in the “back row” of tabs in the

XPRESS Solver Options tabbed dialog box.

VBA Syntax

SolverXPRESSAdvancedGet (TypeNum:=, SheetName:=)

Solver Engine User’s Guide V2021 Programming the Solver Engines • 157

TypeNum is a number specifying the type of information you want.

TypeNum Returns

1 The Invert Frequency value

2 The Minimum Number of Iterations Between Inverts value

3 The Reduced Cost Tolerance (as a decimal number)

4 The Eta Elements Zero Tolerance (as a decimal number)

5 The Pivot Tolerance (as a decimal number)

6 The Relative Pivot Tolerance (as a decimal number)

7 The Pricing Candidate List Sizing (as a decimal number)

8 The Degradation Multiplication Factor – Option no longer used

9 The Integer Feasibility Tolerance (as a decimal number)

10 The Cut Frequency value

11 The Default Pseudo Cost (as a decimal number)

12 The Maximum Depth Cut Generation value

13 A number corresponding to the Integer Preprocessing group

 of options: –1 to indicate that the preprocessing options

 should be chosen automatically, 0 for no preprocessing,

 or the sum of one or more of the following:

 1 = Reduced Cost Fixing at Each Node

 2 = Logical Preprocessing at Each Node

 4 = Probing at the Top Node

14 The Lifted Cover Inequalities at the Top Node value;

 -1 = Determine automatically

15 The Gomory Cuts at the Top Node value; -1 = Determine

 automatically

16 The Lifted Cover Inequalities in the Tree value

17 The Gomory Cuts in the Tree value

18 The (Barrier Method) Maximum Iterations value

19 The Minimal Step Size value

20 The Cholesky Decomposition Tolerance (as a decimal number)

21 The Primal Infeasibility Tolerance (as a decimal number)

22 The Dual Infeasibility Tolerance (as a decimal number)

23 The Column Density Factor value

24 The Maximum Memory value (integer number of megabytes);

 no longer used

25 A number corresponding to the Ordering Algorithm option:

 0 = Choose ordering algorithm automatically

 1 = Use Minimum Degree algorithm

 2 = Use Minimum Local Fill algorithm

 3 = Use Nested Dissection algorithm

26 A number corresponding to the Problem to Solve option:

 Always 0 = Choose problem to be solved automatically

158 • Programming the Solver Engines Solver Engine User’s Guide V2021

27 A number corresponding to the Cholesky Vector option:

 0 = Pull Cholesky

 1 = Push Cholesky

28 A number corresponding to the Node Selection Criterion option:

 1 = Select node based on the Forrest-Hirst-Tomlin criterion

 2 = Select node with the best estimated objective value

 3 = Select node with the best bound on objective value

29 A number corresponding to the Degradation Estimate dropdown

 list: Superseded by 32, returns the same value as 32 in V5.5E

30 The Strong Branching Global Entities value; -1 = Determine

 automatically

31 The Strong Branching Dual Iterations value; -1 = Determine

 automatically

32 A number corresponding to the Integer Estimates option:

 1 = Sum minimum of up and down pseudo costs

 2 = Sum all of the up and down pseudo costs

 3 = Sum max + 2 * min of up and down pseudo costs

 4 = Sum maximum of up and down pseudo costs

 5 = Sum the down pseudo costs

 6 = Sum the up pseudo costs

33 The Max Number of Indefinite Iterations (as a decimal number)

SheetName is the name of a worksheet that contains the Solver problem for which

you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverXPRESSAdvancedOptions

Equivalent to choosing Premium Solver... from the Add-Ins taband then choosing the

Options button in the Solver Parameters dialog box when the XPRESS Solver is

selected in the Solver Engines dropdown list. Specifies options that are entered in

the “back row” of tabs in the XPRESS Solver Options tabbed dialog box.

VBA Syntax

SolverXPRESSAdvancedOptions (InvertFrequency:=, InvertMinimum:=,

ReducedTol:=, EtaTol:=, PivotTol:=, RelPivotTol:=, PricingCand:=,

DegradationFactor:=, IntegerFeasTol:=, CutFrequency:=, PseudoCost:=,

CutDepth:=, IntPreProcessing:=, CoverCutsTop:=, GomoryCutsTop:=,

CoverCutsTree:=, GomoryCutsTree:=, BarrierIterations:=, BarrierStepSize:=,

CholeskyTol:=, PrimalFeasTol:=, DualFeasTol:=, ColumnDensity:=,

BarrierIndefLimit:=, CholeskyOrder:=, CholeskyVector:=, BarrierProblem:=,

MaxMemory:=, NodeCriterion:=, StrongBranchGlobal:=,

StrongBranchDual:=, VarSelection:=, DegradationEstimate:=)

The arguments correspond to the “back row” of tabs in the XPRESS Solver Options

tabbed dialog box. If an argument is omitted, the Solver maintains the current

setting for that option. If any of the arguments are of the wrong type, the function

returns the #N/A error value. If all arguments are of the correct type, but an

argument has an invalid value, the function returns a positive integer corresponding

to its position. A zero return value indicates that all options were accepted.

Advanced LP Tab

InvertFrequency must be either -1 or an integer greater than zero. It corresponds to

the Invert Frequency edit box.

InvertMinimum must be an integer greater than zero. It corresponds to the

Minimum Number of Iterations Between Inverts edit box.

Solver Engine User’s Guide V2021 Programming the Solver Engines • 159

ReducedTol is a number between zero and one, corresponding to the Reduced Cost

Tolerance edit box.

EtaTol is a number between zero and one, corresponding to the Eta Elements Zero

Tolerance edit box.

PivotTol is a number between zero and one, corresponding to the Pivot Tolerance

edit box.

RelPivotTol is a number between zero and one, corresponding to the Relative Pivot

Tolerance edit box.

PricingCand is a number corresponding to the Pricing Candidate List Sizing edit

box.

Advanced MIP Tab

DegradationFactor is a number corresponding to the Degradation Multiplication

Factor edit box. This option is no longer used, but is included for backwards

compatibility.

IntegerFeasTol is a number between zero and one corresponding to the Integer

Feasibility Tolerance edit box.

CutFrequency must be an integer greater than zero. It corresponds to the Cut

Frequency edit box.

PseudoCost is a number corresponding to the Default Pseudo Cost edit box.

CutDepth must be an integer greater than zero. It corresponds to the Maximum

Depth Cut Generation edit box.

IntPreProcessing corresponds to the Integer Preprocessing group of options. This

should be –1 to indicate that the preprocessing options should be chosen automatic-

ally, 0 for no preprocessing, or the sum of one or more of the following values:

 Value Option specified

 1 Reduced Cost Fixing at Each Node

 2 Logical Preprocessing at Each Node

 4 Probing at the Top Node

CoverCutsTop must be an integer greater than or equal to –1. It corresponds to the

Lifted Cover Inequalities at the Top Node edit box. (–1 indicates that the number of

passes should be chosen automatically.)

GomoryCutsTop must be an integer greater than or equal to -1. It corresponds to

the Gomory Cuts at the Top Node edit box. (–1 indicates that the number of passes

should be chosen automatically.)

CoverCutsTree must be an integer greater than or equal to zero. It corresponds to

the Lifted Cover Inequalities in the Tree edit box

GomoryCutsTree must be an integer greater than or equal to zero. It corresponds to

the Gomory Cuts in the Tree edit box.

Advanced NB Tab

BarrierIterations must be an integer greater than zero. It corresponds to the

Maximum Iterations edit box.

BarrierStepSize is a number between zero and one corresponding to the Minimal

Step Size edit box.

CholeskyTol is a number between zero and one corresponding to the Cholesky

Decomposition Tolerance edit box.

160 • Programming the Solver Engines Solver Engine User’s Guide V2021

PrimalFeasTol is a number between zero and one corresponding to the Primal

Infeasibility Tolerance edit box.

DualFeasTol is a number between zero and one corresponding to the Dual

Infeasibility Tolerance edit box.

ColumnDensity must be an integer greater than or equal to zero. It corresponds to

the Column Density Factor edit box. (Zero means the column density factor should

be determined automatically.)

BarrierIndefLimit must be an integer greater than zero. It corresponds to the Max.

Number Indefinite Iterations edit box.

CholeskyOrder corresponds to the Ordering Algorithm group of options:

 CholeskyOrder Option specified

 0 Choose ordering algorithm automatically

 1 Use Minimum Degree algorithm

 2 Use Minimum Local Fill algorithm

 3 Use Nested Dissection algorithm

CholeskyVector corresponds to the Cholesky Vector group of options:

 CholeskyVector Option specified

 0 Pull Cholesky

 1 Push Cholesky

BarrierProblem is no longer used, but is included for backwards compatibility.

MaxMemory is no longer used, but is included for backwards compatibility.

Advanced Node Selection Tab

NodeCriterion corresponds to the Node Selection Criterion group of options:

 NodeCriterion Option specified

 1 Select node based on Forrest-Hirst-Tomlin criterion

 2 Select node with best estimated objective value

 3 Select node with best bound on objective value

StrongBranchGlobal is either –1, or the number of global entities on which to

perform strong branching. (-1 means determine the number automatically.)

StrongBranchDual is either –1, or the number of dual Simplex iterations to use

when performing strong branching. (-1 means determine the number automatically.)

VarSelection corresponds to the Integer Variable Estimates group of options:

 VarSelection Option specified

 -1 Determine Automatically

 1 Sum minimum of up and down pseudo costs

 2 Sum all of the up and down pseudo costs

 3 Sum max + 2 * min of up and down pseudo costs

 4 Sum maximum of up and down pseudo costs

 5 Sum the down pseudo costs

 6 Sum the up pseudo costs

DegradationEstimate is no longer used, but is included for backwards

compatibility.

Solver Engine User’s Guide V2021 Appendix: Solver Engine Methodologies • 161

Appendix: Solver Engine
Methodologies

Introduction
This Appendix briefly describes the technical characteristics and methods used in the

Solver Engines.

The Large-Scale SQP Solver Methodology
This section offers some insight into the methods used in the Large-Scale SQP

Solver Engine, which is based on the Sparse Nonlinear Optimizer developed by

Philip Gill, Walter Murray, and Michael Saunders, and the Evolutionary Solver

developed by Frontline Systems. The LSSQP Solver uses a Sequential Quadratic

Programming (SQP) method. Like other large-scale Solvers, it is designed to exploit

sparsity in the problem, and it is particularly effective at exploiting partial linearity

in an overall nonlinear problem.

An SQP method typically requires fewer major iterations or trial solutions than a

Generalized Reduced Gradient (GRG) method. In both methods, each major

iteration requires gradients of the problem functions. When computing gradients is

relatively expensive – for example, if you use Solve With = No Action in the

Analytic Solver Comprehensive and Analytic Solver Optimization, or if you don’t

define an Evaluator for derivatives in the Solver SDK Platform – an SQP method

that requires fewer major iterations is typically faster than a GRG method, even

though it “does more work” at each major iteration – and this speed advantage grows

with the size of the problem.

One disadvantage of an SQP method is that its trial solutions often violate the

constraints until it is very close to the final solution, whereas a GRG method’s trial

solutions are typically feasible throughout most of the solution process. Hence, if the

Solver must be stopped prior to finding an optimal solution, the GRG method’s best

trial solution found so far is more likely to be useful.

Sequential Quadratic Programming Method

At each major iteration or trial solution, an SQP method obtains an updated search

direction by solving a quadratic programming (QP) subproblem. The objective of

this QP subproblem is a quadratic approximation of a modified Lagrangian function

that depends on the nonlinear problem’s objective and constraints; the constraints of

162 • Appendix: Solver Engine Methodologies Solver Engine User’s Guide V2021

the QP subproblem are linearizations at the current point of the nonlinear problem’s

constraints.

The Large-Scale SQP Solver uses a smooth augmented Lagrangian merit function,

and maintains a limited-memory quasi-Newton approximation to the Hessian of the

Lagrangian. Its QP subproblems are solved using a reduced-Hessian active-set

method that allows for variables appearing linearly in the objective and the

constraints. It uses “elastic programming” techniques to deal with infeasibility in the

original problem and the QP subproblems; for infeasible models, it is more likely to

arrive at a “close to feasible” solution than most other SQP solvers.

Performance on LP and QP Problems

The QP solver used in the Large-Scale SQP Solver uses a sparse LU decomposition

of the matrix representing the linearized constraints. It is highly effective at solving

moderately large quadratic programming (QP) problems, and very large-scale linear

programming (LP) problems. It offers good performance on linear mixed-integer

problems, but the Large-Scale LP/QP Solver and the XPRESS Solver are likely to

offer better performance on these problems.

For more information on the Large-Scale SQP Solver’s methods, see Gill, Murray,

and Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization,

Numerical Analysis Report 97-2, Department of Mathematics, University of

California, San Diego, La Jolla, CA, 1997.

Evolutionary Solver Methods

The methods used by the Evolutionary Solver integrated with the Large-Scale SQP

Solver are described in the Analytic Solver User Guide. When used to solve a non-

smooth problem, the Evolutionary Solver acts as a global search method that uses the

SQP Solver for its local searches. The global search uses genetic algorithm mutation

and crossover operations, focusing on “nonsmoothly occurring” variables and

variables that belong to “alldifferent” groups, to seek improved solutions. A new

best point that passes certain tests (“distance and merit filters”) triggers a local search

for further improvement.

The Artelys Knitro Solver Methodology
This section offers some insight into the methods used in the Knitro Solver Engine,

which is based on the Knitro code developed by Richard Byrd, Jorge Nocedal and

Richard Waltz, first at Northwestern University and now at Ziena Optimization, Inc.

The Knitro Solver is a high performance implementation of new state-of-the-art

interior point nonlinear methods, the result of intense research in large-scale

nonlinear optimization in recent years. Starting in Version 8.0, the Knitro Solver

also includes a high performance implementation of ‘scalable’ active set methods,

similar in concept to the methods used in the Large-Scale SQP Solver, using a

Sequential Linear Quadratic Programming (SLQP) approach.

Interior Point Method

The Knitro Solver’s interior point method (also known as a barrier method) solves a

series of barrier subproblems, controlled by a barrier parameter. The algorithm uses

trust regions and a merit function to promote convergence. It performs one or more

minimization steps on each barrier problem, then decreases the barrier parameter,

and repeats the process until the original problem has been solved to desired

Solver Engine User’s Guide V2021 Appendix: Solver Engine Methodologies • 163

accuracy. Computational experience suggests that interior point methods are often

superior to active set methods for problems with many degrees of freedom.

The Knitro Solver can use either of two procedures in the minimization steps. In the

version known as Knitro-CG, each step is the sum of a normal step whose objective

is to improve feasibility, and a tangential step that aims toward optimality. The

tangential step is computed using a projected conjugate gradient iteration. The

version known as Knitro-Direct always attempts to compute a new iterate by solving

the primal-dual KKT system using direct linear algebra. In the case when this step

cannot be guaranteed to be of good quality, or if negative curvature is detected, then

the new iterate is computed by the Knitro-CG procedure.

Interior point methods generally require second derivative information (the Hessian

of the Lagrangian of the objective and constraints) at each major iteration. The

Knitro Solver has several alternatives for computing derivatives: It can obtain

analytic Hessians from the Polymorphic Spreadsheet Interpreter via automatic

differentiation; it can obtain analytic first derivatives via automatic differentiation,

and use these to construct a Hessian approximation using a quasi-Newton (BFGS) or

limited-memory quasi-Newton approach; or it can use analytic or estimated first

derivatives to compute approximations of the Hessian-vector products used by the

interior point method.

Active Set Method

The Knitro Solver’s active set method is best described as a Sequential Linear

Quadratic Programming (SLQP or SLP-EQP) method. In the first stage of its

subproblems, a linear programming problem is solved to estimate the active set at the

solution. This problem is obtained by making a linear approximation to the L1

penalty function inside a trust region. In the second stage, an equality constrained

quadratic program (EQP) is solved involving only those constraints that are active at

the solution of the first problem. The EQP incorporates a trust-region constraint and

is solved (inexactly) by means of a projected conjugate gradient method.

The active set method often outperforms the interior point method on highly

constrained problems. It is normally the better choice for mixed-integer nonlinear

problems, since the Branch & Bound method will typically create many subproblems

that are highly constrained or even infeasible as it tightens bounds on the variables.

For more information on the Knitro Solver’s interior point methods, see Byrd,

Gilbert, and Nocedal, A trust region method based on interior point techniques for

nonlinear programming, Mathematical Programming 89(1): 149-185, 2000, and

Byrd, Nocedal, and Waltz, Feasible interior methods using slacks for nonlinear

optimization, Computational Optimization and Applications, 26(1): 35–61, 2003.

For more information on the Knitro Solver’s active set methods, see Byrd, Gould,

Nocedal, and Waltz, An algorithm for nonlinear optimization using linear

programming and equality constrained subproblems, Mathematical Programming,

Series B, 100(1): 27–48, 2004.

The MOSEK Solver Methodology
This section offers some insight into the methods used in the MOSEK Solver

Engine, which is based on the code developed by Erling Andersen at MOSEK ApS

in Denmark. The MOSEK Solver includes high performance implementations of

both primal and dual Simplex methods and interior point methods, plus a

sophisticated Presolver and an automatic “dualizer.” The MOSEK Solver is capable

of handling problems with quadratic and second order cone constraints, and (in the

164 • Appendix: Solver Engine Methodologies Solver Engine User’s Guide V2021

Extended version) problems with general convex smooth nonlinear objectives and

constraints.

Interior Point Method

The MOSEK Solver’s interior point (barrier) method is based on the homogeneous

self-dual method, which does not require a feasible starting point. It internally solves

a problem – constructed from the primal and dual forms of the original problem –

that is homogeneous (all constraint right hand sides are zero, except for one

“normalizing” constraint) and self-dual (the primal and dual forms of the internal

problem are equivalent). Hence, the linear system that is solved on each major

iteration has the dimension of the original problem plus one. For linear, quadratic,

and second order cone problems, the barrier function can be evaluated efficiently,

without requiring re-evaluation of the problem functions at each trial point.

For more information about the MOSEK Solver’s interior point method, see

Andersen and Ye, A computational study of the homogeneous algorithm for large-

scale convex optimization, Computational Optimization and Applications, 10:243-

269, 1998, and Andersen and Andersen, The MOSEK interior point optimizer for

linear programming: an implementation of the homogeneous algorithm, High

Performance Optimization (Kluwer), 197-232, 2000.

Handling of Quadratic and Nonlinear Functions

The MOSEK Solver’s interior point method directly solves a second order cone

programming (SOCP) problem, which is a linear programming (LP) problem plus

one or more second order cone (SOC) constraints. Each SOC constraint specifies

that a group of d decision variables belongs to the second order cone of dimension d.

The MOSEK Solver Engine also handles problems with convex quadratic objectives

and constraints. It internally transforms such quadratic functions into an equivalent

set of decision variables and linear and SOC constraints.

General convex smooth nonlinear problems can be solved with the MOSEK Solver

Engine in combination with either Analytic Solver Comprehensive, Analytic Solver

Optimization or Solver SDK Platform. In the Analytic Solver Comprehensive and

Analytic Solver Optimization, the Polymorphic Spreadsheet Interpreter computes the

Hessian of each problem function at each trial point, using second order automatic

differentiation. In the Solver SDK Platform, the user must provide an Evaluator for

the Hessian of each problem function. This information is needed by the MOSEK

Solver Engine to construct its barrier function.

The Gurobi Solver Methodology

This section briefly summarizes the linear programming, quadratic programming and

integer programming methods used by the Gurobi Solver.

Primal/Dual Simplex Methods and Barrier Solver

The Gurobi Solver implements state of the art versions of the primal and dual

Simplex methods, with advanced strategies for matrix updating and refactorization,

multiple and partial pricing and pivoting and overcoming dependencies. In addition,

it also includes a parallel barrier solver. The Gurobi Solver is capable of solving

problems with millions of variables and constraints with very high speed and

consistency.

Solver Engine User’s Guide V2021 Appendix: Solver Engine Methodologies • 165

Branch and Bound

The Gurobi Solver Engine uses an integrated and highly tuned Branch and Cut

strategy, with a variety of node selection and branch variable selection strategies. It

was designed to take maximum advantage of multi-core processors by parallelizing

the Branch and Bound search. It supports the alldifferent constraint by generating an

equivalent matrix of 0-1 variables and incorporating these into the problem and takes

advantage of strong branching techniques.

Cutting Planes and Solution Heuristics

For MILP and MIQP problems the Gurobi Solver uses the latest methods including

cutting planes and powerful solution heuristics.

Parallel Algorithms for Multi-core Computers

All models also benefit from advanced presolve methods to simplify models and

slash solve times. In addition, the Gurobi Solver is able to simultaneously exploit any

number of processors and cores per processor. New internal algorithms for load

balancing mean that Gurobi performance scales better as the number of processors

increases. In addition, the implementation is deterministic, so that two separate runs

on the same model will produce identical solution paths.

The XPRESS Solver Methodology

This section briefly summarizes the linear programming, quadratic programming and

integer programming methods used by the XPRESS Solver, which is based on the

XpressMP mixed-integer linear optimizer from FICO, Inc.

Primal and Dual Simplex Methods

The XPRESS Solver implements a highly advanced version of the primal and dual

Simplex methods for linear programming, capable of solving problems with millions

of variables and constraints with very high speed and reliability. Each step in these

methods – scaling, presolving, finding an initial basis, basis matrix factorization,

basis updates, selection strategies for entering and leaving variables, and more – has

been tested and tuned for performance on many challenging LP problems.

Newton Barrier / Interior Point Method

The XPRESS Solver also implements a highly advanced version of the Newton

Barrier method, also known as the interior point method for linear and quadratic

programming, using advanced linear algebra methods to solve problems with

millions of variables and constraints, again with very high speed and reliability.

Branch and Cut Methods

The XPRESS Solver excels at solving mixed-integer programming problems. It

implements a wide range of strategies in an overall “Branch and Cut” framework that

combines cutting plane methods with a Branch and Bound search. Each step in this

framework – preprocessing and probing, cut generation, next node selection, and

next branching variable selection – includes a comprehensive set of strategies. These

166 • Appendix: Solver Engine Methodologies Solver Engine User’s Guide V2021

strategies may be tuned by the user, but the XPRESS Solver is also very good at

automatically choosing appropriate strategies for a specific problem.

Heuristic Methods

The XPRESS Solver also implements a wide array of heuristic methods, used within

its Branch and Cut framework to quickly find good (feasible) integer solutions. Such

integer solutions become “incumbents” that allow the XPRESS Solver to rapidly

prune the search at other nodes in the Branch and Bound tree. Like other strategies,

heuristics may be user controlled or chosen automatically. Although heuristics are

never guaranteed to speed up the solution process, the heuristics used in the

XPRESS Solver have been tested on a very wide range of real user problems and

found to improve performance in many cases.

The OptQuest Solver Methodology

This section offers some insight into the procedures implemented in the OptQuest

Solver engine that make possible the optimization of complex problems that cannot

be easily described with a linear or smooth nonlinear objective and constraints.

Meta-heuristics

As an alternative to classical optimization methods, heuristic methods can provide

approximate solutions to complex problems. For example, a production heuristic

might give priority to jobs with the shortest estimated processing time. Depending

on the context, this heuristic might work fairly well. However, in some other

situations the results might be very poor. Meta-heuristics arose with the goal of

providing something better. The aspiration was to integrate intelligent procedures

and fast computer implementations to find “high-quality” solutions.

How OptQuest Uses Meta-heuristics

The OptQuest Solver is a generic optimizer for problems represented by Excel

formulas, or a user-written Evaluator in Matlab, Java or another language. The

disadvantage of this “black box” approach is that the optimization procedure is

generic and does not know anything about what goes on inside of the model. The

clear advantage is that the same optimizer can be used for many different models.

The optimization procedure performs a special “non-monotonic search,” where the

successively generated inputs produce varying evaluations, not all of them

improving, but which over time provide a highly efficient trajectory to the best

solutions. The process continues until it reaches some termination criterion (usually

a time limit).

Scatter Search

Two of the best-known meta-heuristics are genetic algorithms and tabu search.

Genetic Algorithm (GA) procedures were developed by John Holland in the early

1970s at the University of Michigan. Parallel to the development of GAs, Fred

Glover of OptTek Systems established the principles and operational rules for tabu

search (TS) and a related methodology known as scatter search.

Scatter search operates on a set of points, called reference points, that result in good

solutions. The approach systematically generates linear combinations of the

reference points to create new points, each of which maps into an associated point

Solver Engine User’s Guide V2021 Appendix: Solver Engine Methodologies • 167

that yields integer values for discrete variables. Tabu search is then superimposed to

control the composition of reference points at each stage.

Tabu Search has its roots in the field of Artificial Intelligence. Memory is a

fundamental concept in Tabu Search, which uses search history to guide the process.

In its simplest form, memory prohibits the search from reinvestigating solutions that

have already been evaluated. However, the use of memory in the OptQuest Solver is

much more complex and uses memory functions to encourage search diversification

and intensification. These memory components let the search escape from locally

optimal solutions to find a globally optimal solution.

Unlike genetic algorithm methods, scatter search makes only limited use of

randomization when making choices among alternatives. As in probabilistic tabu

search, the approach incorporates strategic probabilistic biases, taking account of

evaluations and history. Scatter search focuses on generating relevant outcomes

while still producing diverse solutions, due to the way the generation process

(rounded linear combinations) is implemented. In particular, scatter search considers

that the generation of new points might contain information that is not contained in

the original points.

How OptQuest Uses Scatter Search

Scatter search is an information-driven approach, exploiting knowledge derived from

the search space, high-quality solutions found within the space, and trajectories

through the space over time. The combination of these factors creates a highly

effective solution process, giving the OptQuest Solver the ability to solve

challenging nonsmooth optimization problems.

Tabu search background can be found in a book by Fred Glover and Manuel Laguna

Tabu Search, Kluwer 1997 (ISBN 0-7923-9965-X). Scatter search background can

be found in a book by Manuel Laguna and Rafael Marti Scatter Search:

Methodology and Implementations in C, Kluwer 2003 (ISBN 1-4020-7376-3).

Index

A

Absolute Integer Tolerance............................... 102, 104

Algorithm to Use .. 94

alldifferent constraint 18, 34, 35, 58

Amount to Add to Solution to Obtain New Cutoff ... 103

Analytic 1st Derivatives 39, 40, 50

Analytic 2nd Derivatives 39, 40, 49

application programming interface 12

Assume Non-Negative option 55, 129

Assume Quadratic Objective 88, 94

automatic differentiation 49, 67, 68, 70, 71, 79

B

barrier method .. 162

barrier parameter... 162

basis selection ... 15

Bayesian test ... 34, 47

BFGS method (Search) ... 68

Boundary Frequency option 111, 128

BoundFreq SDK parameter 111

Bounds Improvement option 75

bounds on the variables 35, 36, 37, 47, 72, 82

BoundsImprovement SDK parameter 75

Branch & Bound ... 102

Branch & Bound method 33, 48, 75

Bypass Solver Reports option 60, 129

C

Cache Size .. 100

Central choice (Derivatives) 68, 71, 80

Central Path Tolerance option 85

CentralPathTol SDK parameter 85

Check for Duplicated Solutions option 111, 112, 129

CheckDup SDK parameter 111

Cholesky Decomposition Tolerance 100

Cholesky Vector ... 102

circular reference .. 32

clique .. 75

Clique Cuts option .. 65

CliqueCuts SDK parameter ... 65

Coefficient Tolerance .. 135

Column Density Factor ... 101

CompGapTol SDK parameter 85

CompGapTolCone SDK parameter 86

CompGapTolNLP SDK parameter 87

Complementarity Gap Tolerance option 85

Conic Complementarity Gap Tolerance option........... 86

Conic Dual Feasibility Tolerance option 86

Conic Gap Termination Tolerance option 86

Conic Model Feasibility Tolerance option 86

Conic Primal Feasibility Tolerance option 86

Conjugate choice (Search) .. 68

conjugate gradient method .. 68

constraint handling methods 74

constraint left hand side .. 55

constraint right hand side .. 55

Continue button ... 56

Control Options ... 107, 108

Convergence option 26, 46, 66, 69, 72, 78, 120, 123,

126

Convergence SDK parameter 66, 69, 72, 78

Crash Artificial Variables option 135

Crashing Options .. 95, 98, 99

crossover ... 72, 73

Cross-Over Control ... 99

customized user interface .. 19

Cut Frequency ... 104

Cut Strategy Options ... 102

cycling

in Solver ... 46

D

Decision Variable Precision option 110, 128

Default Pseudo Cost .. 104

defined names ... 33

degeneracy, nonlinear ... 15

degenerate problem ... 46

Degradation Estimate .. 108

Derivatives option 67, 68, 71, 80, 121, 123, 127, 135

Derivatives SDK parameter 68, 71, 73, 80

Deterministic Pattern Search 73

discontinuous functions ... 16, 48

distance filter ... 74

diversification ... 167

Dual Feasibility Tolerance option 85

Dual Infeasibility Tolerance 101

Dual Simplex method .. 42

DualFeasibility SDK parameter 85

DualFeasibilityCone SDK parameter 86

DualFeasibilityNLP SDK parameter 86

DualTolerance SDK parameter 60

Dynamic Link Libraries .. 20

E

Error condition at cell address 30, 32

Error in model ... 33

error value ... 29, 30

ESC key

to stop Solver ... 56

Estimates option.. 68, 121

Estimates SDK parameter ... 68

Eta Elements Zero Tolerance 97

evaluation license .. 25

Evolutionary Solver .. 11, 26, 27, 28, 30, 34, 48, 49, 161

Excel Scenario Manager ... 56

external name .. 32

F

Feasibility Report.. 18, 28

field-installable Solver engines 11, 19, 25

Filtered Local Search .. 73

finite differencing 67, 68, 70, 71, 79

finite precision .. 43, 55, 88, 94

fitness .. 26, 27, 72

Fix Nonsmooth Variables ... 74

FixedSeed SDK parameter 111, 112

floating point overflow ... 30

Flow Cover Cuts option .. 65

FlowCoverCuts SDK parameter 65

Forward choice (Derivatives) 68, 71, 80

function

unknown .. 30

unsupported .. 30

G

Gap Termination Tolerance option 85

GapTerminationTol SDK parameter 85

GapTerminationTolCone SDK parameter 86

GapTerminationTolNLP SDK parameter 87

Generalized Reduced Gradient 161

genetic algorithms ... 166

global optimization 16, 17, 34, 45, 47

limitations .. 46

globally optimal solution 17, 34, 47

Gomory Cuts ... 77

Gomory Cuts at the Top Node 106

Gomory Cuts in the Tree .. 107

Gomory Cuts option ... 64

Gomory Passes.. 77

GomoryCuts SDK parameter 64

good solution .. 48, 50

GRG Nonlinear Solver.. 11, 161

H

Help

Solver ... 24, 52

Hessian matrix ... 68, 118

Hessian of the Lagrangian 162, 163

heuristics ... 166

hybrid Evolutionary Solver ... 74

I

IF function ... 48

If You Aren’t Getting the Solution You Expect 24

incumbent .. 57, 58

Infeasibility Penalty .. 96

installation program viii, ix, 20

IntCutoff SDK parameter ... 58, 61, 62, 97, 98, 100, 101,

103, 104, 105, 106, 107, 108, 109, 110

integer constraint ... 55

Integer Cutoff option 58, 61, 62, 63, 93

Integer Feasibility Tolerance 104

Integer Options dialog 129, 130

Integer Tolerance option ... 44

intensification .. 167

interior point methods ... 162

Interpreter .. 25, 35

IntTolerance SDK parameter 57

Invert Frequency ... 97

Irreducibly Infeasible Subset 18

Iterations option 27, 54, 120, 122, 125, 134, 140, 145

Iterations SDK parameter 54, 96, 97, 100, 102, 104

J

Jacobian matrix 67, 68, 71, 117

K

Knapsack Cuts option ... 64, 76

Knapsack Passes option .. 77

KnapsackCuts SDK parameter 64

KnapsackPasses SDK parameter 77

KNITRO Solver .. 15, 39, 40

KNITRO Solver methodology 162, 163

KNITRO Solver stopping conditions 78

Kuhn-Tucker conditions .. 46

L

Large-Scale GRG Solver 14, 38, 49, 50, 54, 114, 118,

121, 124, 127, 137

Large-Scale LP Solver 13, 14, 54, 114, 132

Large-Scale SQP Solver .. 13, 14, 15, 39, 49, 50, 54, 114

Large-Scale SQP Solver methodology 161

left hand side

constraints .. 55

license record .. 25

Lift and Cover Cuts option .. 65

LiftAndCoverCuts SDK parameter 65

Lifted Cover Inequalities at the Top Node 106

Lifted Cover Inequalities in the Tree 107

linear function ... 27, 29

Linear Local Gradient Search 73

linear programming .. 14

solution .. 26

LinearConstraints SDK parameter 69, 78

LinearObjective SDK parameter 70, 78

Local Seaarch Heuristic option 66

Local Search options .. 73

LocalHeur SDK parameter 66, 87, 88, 89, 90, 91, 92,

94, 95, 96, 99, 102

locally optimal solutions 34, 39, 40, 45, 47, 50

Logical Preprocessing at Each Node 105

LP/Quadratic Solver ... 11, 161

LSGRG Solver stopping conditions 39, 40, 45, 66

LSSQP Solver stopping conditions....................... 45, 69

LU decomposition .. 162

M

maintainable models ... 24

Markowitz Tolerance 89, 90, 95

Markowitz Tolerance for Factorization 97

Matrix Elements Zero Tolerance 89, 90, 91, 92, 95

Max Feasible Sols option ... 103

Max Time option .. 31, 54, 120, 122, 125, 128, 134, 136,

140, 142, 143, 145

Max Time w/o Improvement option 27

Max Trial Solutions option 128

Maximum Cut Passes option 63

Maximum Depth Cut Generation 105

Maximum Iterations ... 96, 100

MaxIntegerSols SDK parameter 57

MaxKnapsackCuts SDK parameter 76, 98, 99

MaxRootCutPasses SDK parameter 63

MaxSubProblems SDK parameter 56, 77, 103

MaxTime SDK parameter........54, 96, 97, 100, 102, 104

MaxTreeCutPasses SDK parameter............................ 63

memory ... 31

virtual ... 31

memory allocation .. 20

merit filter ... 73

merit function ... 162

meta-heuristics .. 166

Minimal Step Size .. 100

Minimum Number of Iterations Between Inverts 97

MirCuts SDK parameter ... 64

Mixed Integer Rounding Cuts option 64

mixed-integer programming 16, 164, 165, 166, 167

solution .. 26

Model Feasibility Tolerance option 85

ModelFeasibility SDK parameter 85

ModelFeasibilityCone SDK parameter 86

Multi-area not supported .. 32

multistart methods18, 34, 45, 47, 81, 82, 83

MultiStart SDK parameter .. 81

Multistart Search option 82, 120, 123, 126

mutation .. 72, 73

Mutation Rate option .. 27, 72

MutationRate SDK parameter 72

N

NCvxFeasibilityTol SDK parameter 87

NCvxOptimalityTol SDK parameter 87

Newton Barrier method ... 42

Newton choice (Search) .. 68

no feasible solution ... 28

Node Selection Criterion ... 108

NonConvex Feasibility Tolerance option 87

NonConvex Optimality Tolerance option 87

Nonlinear Complementarity Gap Tolerance option 87

Nonlinear Dual Feasibility Tolerance option 86

nonlinear function ... 28

Nonlinear Gap Termination Tolerance option 87

Nonlinear Gradient Search .. 73

nonlinear optimization .. 14

solution ... 26

Nonlinear Primal Feasibility Tolerance option 86

nonlinear problems .. 45

Nonlinear Relative Step Size option 87

non-monotonic search ... 166

non-smooth functions .. 35, 39

non-smooth optimization

solution ... 26

non-smooth problems .. 48

numerical tolerances ... 52

O

Objective Function Precision option 110, 128

Objective Worse than Cutoff 41, 42

ObjPrecision SDK parameter 110

Odd Hole Cuts option ... 65

OddHoleCuts SDK parameter 65

optimal solution .. 25

optimality conditions... 46

Optimality Fixing option ... 75

OptimalityFixing SDK parameter 75

optimize function 39, 40, 70, 78, 79

Options

Solver 24, 43, 144, 146, 147, 150, 156

OptQuest Solver ... 14, 16, 17, 30, 34, 41, 42, 43, 47, 48,

50, 81, 82, 83, 114, 129, 166

OptQuest Solver methodology 164, 165, 166

Ordering Algorithm Options 101

Ordering SDK parameter 84, 85

Ordering Strategy option ... 84

orders of magnitude .. 43

P

Percent to Add to Solution to Obtain New Cutoff 103

Perturbation Value .. 96

Pivot Tolerance ... 98

Pivot Tolerance option .. 84

PivotTolerance SDK parameter 83

poorly scaled models 25, 43, 46

Population Size option 27, 72, 83, 120, 123, 126, 128

PopulationSize SDK parameter 72, 83

Precision (Dec Var) option 110, 128

Precision (Obj Fun) option 110, 128

Precision and Integer Constraints 55

Precision and Regular Constraints 55

Precision option 46, 55, 83, 120, 122, 126, 140

Precision SDK parameter...................................... 54, 83

Premium Solver Platform ... 11, 16, 20, 44, 54, 130, 161

Presolve SDK parameter 59, 60, 61

Pricing Candidate List Sizing 98

Pricing Options ... 95

Primal Feasibility Tolerance option 85

Primal Infeasibility Tolerance 101

Primal Simplex method .. 42

PrimalFeasibility SDK parameter 85

PrimalFeasibilityCone SDK parameter 86

PrimalFeasibilityNLP SDK parameter 86

PrimalTolerance SDK parameter 60

probabilistic tabu search ... 167

Probing at the Top Node ... 105

Probing Cuts option .. 64

Probing/Feasibility option... 75

ProbingCuts SDK parameter 64

ProbingFeasibility SDK parameter 75

problem size .. 29

Problems with Poorly Scaled Models 43, 88, 94

Programming the Solver ... 113

Q

QP subproblem ... 161

Quadratic choice (Estimates) 68

quadratic function ... 29

quadratic programming ... 15, 16

solution .. 26

quasi-Newton method ... 68

R

random number generator 72, 83

Random Seed option 72, 83, 111, 120, 123, 126, 129

Randomized Local Search .. 73

RandomSeed SDK parameter 72, 83, 111, 112

readable models .. 24

Reading model settings from VBA .. 115, 118, 121, 124,

127, 132, 133, 137, 139, 143, 146, 147, 150, 156

Recognize Linear Variables option 67, 120

RecognizeLinear SDK parameter 67

Reduced Cost Fixing at Each Node 105

Reduced Cost Tolerance.. 97

Reduced Costs ... 97

redundant constraints .. 27

Referencing functions in Visual Basic 114, 115, 117

Relative Duality Gap Tolerance 100

Relative Integer Tolerance .. 102

Relative Pivot Tolerance ... 98

Relative Step Size option .. 86

Relax Bounds on Variables option 67, 79, 120, 126

RelaxBounds SDK parameter 67, 79

Require Bounds on Variables option... 34, 121, 123, 127

RequireBounds SDK parameter 74, 82

Restart button .. 50, 56

RHS Tolerance .. 89, 95

right hand side

constraints .. 55

Rounding Cuts option ... 66

Rounding Heuristic option .. 66

RoundingCuts SDK parameter 66

RoundingHeur SDK parameter 66

S

satisfied

constraints .. 55

scaling ... 43, 46, 55

Scaling option ... 84

Scaling Options ... 88, 94

Scaling SDK parameter ... 55, 84

scatter search ... 16, 166

Scenario Manager.. 56

Search option ... 68, 121

SearchOption SDK parameter 68

Second Derivatives option 80, 126, 127

SecondDerivatives SDK parameter 80

selection process.. 72, 73

Sequential Quadratic Programming 15, 161

Set Cell values do not converge 27

Show Iteration Results option 56, 129

Show Trial Solution dialog .. 27, 29, 120, 123, 126, 129,

134, 140, 145

Simplex method .. 98

solution function.. 34

Solution Method option ... 79

SolutionMethod SDK parameter 79

Solve Without Integer Constraints option ... 58, 112, 129

Solver DLL Platform 11, 16, 20, 113, 117, 161

Solver encountered an error value 29, 31

Solver engine dropdown list .. 11

Solver engine size limits ... 29

Solver function return values 115

Solver Options ... 158

Solver Result Message 24, 38, 39, 40, 41, 42, 43

Solver Results dialog ... 24

SolverIntGet function ... 129

SolverIntOptions function .. 130

SolverKNITROGet macro function 124

SolverKNITROOptions macro function 125

SolverLSGRGGet macro function 118

SolverLSGRGOptions macro function 119

SolverLSLPGet macro function 132, 133, 137, 139

SolverLSLPOptions macro function . 134, 135, 140, 142

SolverLSSQPGet macro function 121

SolverLSSQPOptions macro function 122

SolverOPTQGet macro function 127

SolverOPTQOptions macro function 128

SolverSolve macro function 113, 115

SolverXPRESSAdvancedGet macro function 156

SolverXPRESSAdvancedOptions macro function ... 158

SolverXPRESSGet macro function .. 144, 146, 147, 150

SolverXPRESSOptions macro function .. 144, 146, 148,

152

SolveWithout SDK parameter ... 58, 101, 102, 105, 107,

108, 109

SOS constraint .. 75

sparse form ... 31

special functions ... 30, 49

Special Ordered Set .. 75

StepSize SDK parameter .. 86

StepSizeNLP SDK parameter 87

Stop button.. 56

Stopping conditions

KNITRO Solver ... 78

LSGRG Solver 39, 40, 45, 66

LSSQP Solver .. 45, 69

Stopping Solver

ESC key ... 56

StrongBranching SDK parameter 63

subproblem

Branch & Bound 58, 61, 62, 63, 93

swapping ... 31

T

tabu search .. 16, 166, 167

Tangent choice (Estimates)... 68

Tolerance option ... 25, 27, 44

Tolerance Option and Integer Constraints 44

Too many adjustable cells .. 29

Too many constraints .. 29

Too many integer adjustable cells 29

Tools References .. 114, 115

topographic search .. 82

Topographic Search option 82, 121, 123, 127

TopoSearch SDK parameter 82

Treat Constraints as Linear option .. 70, 78, 79, 123, 126

Treat Objective as Linear option 70, 78, 79, 123, 126

trial license .. 11, 25

trust regions .. 162

Two Mixed Integer Rounding Cuts option 64

TwoMirCuts SDK parameter 64

U

undefined identifier ... 32

unknown function ... 30

unsupported Excel function... 30

Use Automatic Perturbation .. 96

Use Automatic Scaling option 43, 46, 55

Use Big M Method .. 96

Use Same Sequence of Random Numbers option 111,

128

Use Strong Branching option 63

V

Variable Reordering .. 76

VarPrecision SDK parameter 110

Visual Basic .. 19, 113

W

When Solver Cannot Improve the Current Solution ... 46

When Solver has Converged to the Current Solution . 46

X

XPRESS Solver .. 13, 16

Z

Ziena Optimization ... 15

