

Version 2025 Q1 For Use With Excel 2013-2019

Reference Guide

Copyright

Software copyright 1991-2025 by Frontline Systems, Inc.

User Guide copyright 2025 by Frontline Systems, Inc.

GRG/LSGRG Solver: Portions copyright 1989 by Optimal Methods, Inc. SOCP Barrier Solver: Portions

copyright 2002 by Masakazu Muramatsu. LP/QP Solver: Portions copyright 2000-2010 by International

Business Machines Corp. and others. Neither the Software nor this User Guide may be copied, photocopied,

reproduced, translated, or reduced to any electronic medium or machine-readable form without the express
written consent of Frontline Systems, Inc., except as permitted by the Software License agreement below.

Trademarks
Frontline Solvers®, XLMiner®, Analytic Solver®, Risk Solver®, Premium Solver®, Solver SDK®, and RASON®

are trademarks of Frontline Systems, Inc. Windows and Excel are trademarks of Microsoft Corp. Gurobi is a

trademark of Gurobi Optimization, Inc. Knitro is a trademark of Artelys. MOSEK is a trademark of MOSEK

ApS. OptQuest is a trademark of OptTek Systems, Inc. XpressMP is a trademark of FICO, Inc. @Risk is a

trademark of Lumivero.

Patent Pending
Systems and Methods for Automated Risk Analysis of Machine Learning Models.

Acknowledgements

Thanks to Dan Fylstra and the Frontline Systems development team for a 25-year cumulative effort to build the
best possible optimization and simulation software for Microsoft Excel. Thanks to Frontline’s customers who

have built many thousands of successful applications, and have given us many suggestions for improvements.

Risk Solver Pro and Risk Solver Platform have benefited from reviews, critiques, and suggestions from several

risk analysis experts:

• Sam Savage (Stanford Univ. and AnalyCorp Inc.) for Probability Management concepts including SIPs,

SLURPs, DISTs, and Certified Distributions.

• Sam Sugiyama (EC Risk USA & Europe LLC) for evaluation of advanced distributions, correlations, and

alternate parameters for continuous distributions.

• Savvakis C. Savvides for global bounds, censor bounds, base case values, the Normal Skewed distribution

and new risk measures.

How to Order

Contact Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450.

Tel (775) 831-0300 Fax (775) 831-0314 Email info@solver.com Web http://www.solver.com

mailto:info@solver.com
http://www.solver.com/

Frontline Solvers 2025 Q1 Reference Guide Page 3

Contents

Start Here: V2025 Q1 Essentials 16

Getting the Most from This Reference Guide ... 16
Start with the User Guide ... 16
Understand Product Subsets ... 16
Desktop and Cloud Versions .. 16
Using the Ribbon and Task Pane .. 16
Understanding Solver Result Messages .. 16
Using Solver Engine Options ... 17
Using PSI Functions .. 17
Using the Object-Oriented API... 17
Using the Traditional VBA Functions... 17
Using Large-Scale Solver Engines ... 17

Using the Ribbon and Task Pane 18

Introduction ... 18
Table Names in the Solver Task Pane .. 18
Using the Ribbon ... 19
Dynamic Dialogs ... 22
Using the Solver Task Pane ... 23

Model Tab ... 25
Output Tab .. 42
Tools Tab .. 47

Table Names in the Solver Task Pane .. 47
Right-Click Context Menus ... 48
Context-Sensitive Charts ... 49
Using the Distribution Galleries ... 52

Common Distributions ... 52
Advanced Distributions .. 53
Exotic Distributions ... 53
Discrete Distributions .. 54
Custom Distributions ... 54
Distribution Wizard ... 55
Import Model... 55
Convert.. 56

Using the Results Galleries .. 58
Output Menu ... 59
Statistics Functions .. 60
Range Functions .. 62
Six Sigma Functions .. 64

Using the Uncertain Variable Dialog .. 65
Title Toolbar .. 66
Tabs and Panes .. 67
Editable Confidence Intervals... 69
Parameters View .. 69
Analytic Moments View .. 70
Compound Distributions .. 71
Percentiles View .. 72
Chart Settings Views.. 73
PDF Tab .. 73

Frontline Solvers 2025 Q1 Reference Guide Page 4

CDF / Reverse CDF Tabs ... 74
Navigating Among Variable Cells .. 75
Overlay Charts of Variables ... 76

Using the Uncertain Function Dialog ... 77
Chart Settings Views.. 90
Overlay Charts of Functions ... 90
Distribution Fitting .. 91

Running a Simulation .. 92
Distribution Fitting .. 92

Using PsiData() to Fit a Distribution .. 99
Charts and Graphs for Presentations ... 100
Exporting Data to Microsoft's Power BI ... 101
Exporting Data to Tableau ... 104

Tableau Data Extract.. 105
Tableau Web Connector ... 106

Using the Decisions Menu ... 110
Decision Variable Plot ... 110
Normal .. 112
Recourse .. 113

Using the Optimize Menu .. 113
Chart Formatting, Copy/Paste and Printing .. 115

Chart Type... 115
Chart Options .. 119
Axis Options .. 120
Chart Markers .. 122
Copying and Pasting Charts ... 125
Printing Charts ... 125

Load or Start Solver App in Excel for the Web... 126
Load or Start the Solver App in Excel 2013/2016 ... 127

Using the Options Dialog... 127
Simulation Tab .. 128
Trials, Simulations, and Random Seed ... 129
Value to Display .. 130
Random Number Generation and Sampling .. 131
Using Correlations ... 132
Using PSI Technology or Excel for Trials .. 133
CLT Threshold .. 134
Optimization tab .. 134
General Options ... 135
Transformation Options ... 136
Advanced Options ... 139
General Options Tab .. 142
Dimensional Calculation .. 144
Tree Options Tab ... 144
Bounds Options Tab .. 146
Chart Options Tab.. 147
Setting Default Chart Properties ... 148
Controlling Pop-Up Charts and Dialogs.. 148
Markers Tab .. 149
Problem Tab .. 151

Controlling Use of Multiple Processor Cores.. 151
Managing Your License... 152
Product Selection Wizard .. 155
Getting Help .. 157

AI Agent.. 157
Analytic Solver Help Center... 158

Frontline Solvers 2025 Q1 Reference Guide Page 5

Examples ... 159
Knowledge Base .. 159
User Guide .. 159
Submit a Support Ticket ... 159
Operating Mode ... 159
Solver Academy .. 160
Video Tutorials/Live Webinars .. 160
Learn more! ... 160

Solver Result Messages 162

Introduction ... 162
Result Messages and Codes ... 162

Standard Solver Result Messages ... 163
Large Scale Frontline Engines .. 163
Analytic Solver Result Messages.. 170
Interval Global Solver Result Messages.. 179

Problems with Poorly Scaled Models ... 180
Dealing with Poor Scaling .. 180

The Tolerance Option and Integer Constraints .. 180
Limitations on Smooth Nonlinear Optimization ... 181

GRG Solver Stopping Conditions ... 182
GRG Solver with Multistart Methods ... 183
GRG Solver and Integer Constraints ... 183

Limitations on Global Optimization ... 183
Rounding and Possible Loss of Solutions ... 184
Interval Global Solver Stopping Conditions .. 185
Interval Global Solver and Integer Constraints.. 186

Limitations on Non-Smooth Optimization .. 186
Effect on the GRG and LP/Quadratic Solvers ... 187
Evolutionary Solver Stopping Conditions ... 187

Platform Option Reference 190

Setting Options Programmatically .. 190
Object-Oriented API .. 190

Platform Solver Options .. 192
Optimization Model ... 192
Optimizations to Run ... 192
Run Specific Optimization ... 193
Optimization Interpreter ... 193
Solve Mode ... 194
Solve Uncertain Models ... 194
Use Psi Functions to Define Model on Worksheet .. 195
Use Interactive Optimization .. 195
Number of Threads .. 195
Simulation Model .. 195
Simulations to Run .. 196
Run Specific Simulation .. 196
Trials per Simulation.. 196
Simulation Interpreter .. 197
Use Correlations .. 198
Value to Display .. 198
Trial to Display .. 198
Dimensional Calculation .. 199
Number of Threads .. 199

Frontline Solvers 2025 Q1 Reference Guide Page 6

Decision Model ... 199
Calculations to Run .. 200
Run Specific Calculation .. 200
Certainty Equivalents ... 201
Decision Node EV/CE ... 201
Risk Tolerance ... 201
Scalar A... 201
Scalar B ... 201
Diagnosis... 201
Intended Model Type ... 202
Intended Use of Uncertainty ... 202
Transformation .. 203
Nonsmooth Model Transformation ... 203
Big M Value .. 204
Stochastic Transformation .. 205
Chance Constraints Use ... 205
Auto Adjust Chance Constraints ... 205
Default Bounds .. 206
Decision Vars Lower ... 207
Decision Vars Upper .. 207
Cutoff Measure .. 207
Lower Cutoff ... 208
Upper Cutoff ... 208
Censure Measure ... 208
Lower Censure .. 209
Upper Censure ... 209
Advanced .. 210
Supply Engine with .. 210
Use Incremental Parsing .. 210
Use Sparse Variables ... 211
Only Parse Active Sheet ... 212
Scan for Bounds .. 212
Formula Dependency Test.. 212
Recursive Parsing .. 213
Generate Loops for Copied Formulas ... 213
Hessian Method ... 214
Evaluation Diagnostics .. 214
General .. 215
Log Level .. 215
Wrap Text in Output Pane .. 215
Solver Parameters Dialog ... 216
Operating Mode ... 216
Support Mode .. 216
Autoselect Plug-in Solvers ... 216

Solver Engine Option Reference 218

Setting Options Programmatically .. 218
Object-Oriented API .. 218

The Basic Microsoft Excel Solver .. 220
Common Solver Options ... 220

Max Time and Iterations .. 221
Precision .. 222
Tolerance and Convergence ... 223
Use Automatic Scaling / Scaling .. 223
Assume Non-Negative / AssumeNonNeg ... 223

Frontline Solvers 2025 Q1 Reference Guide Page 7

Show Iteration ... 224
Bypass Solver Reports / Bypass Reports ... 224

LP/Quadratic Solver Options ... 225
Use Classic Search ... 226
Primal Tolerance / PrimalTolerance and Dual Tolerance / DualTolerance 226
Presolve ... 226
Derivatives for the Quadratic Solver ... 226
Max Subproblems/ MaxSubProblems ... 227
Max Feasible (Integer) Solutions / MaxFeasibleSols 227
Integer Tolerance / IntTolerance ... 227
Integer Cutoff / IntCutoff ... 228
Preprocessing .. 228
Cuts & Heuristics... 229
Tau .. 230
Tolerance... 230
Compute Confidence Interval ... 230
Objective Error .. 230
Objective Improvement .. 231
Compute Recourse Statistics .. 231

SOCP Barrier Solver Options .. 231
Gap Tolerance / GapTolerance ... 232
Step Size Factor / StepSizeFactor ... 232
Feasibility Tolerance / FeasiblityTolerance ... 232
Search Direction / SearchDirection ... 232
Power Index .. 233

GRG Nonlinear Solver Options.. 233
Convergence .. 234
Recognize Linear Variables / RecognizeLinear ... 234
Derivatives and Other Nonlinear Options ... 236

Multistart Search Options .. 237
Multistart Search / Multistart .. 238
Topographic Search / TopoSearch ... 238
Require Bounds on Variables / RequireBounds... 239
Population Size / PopulationSize .. 239
Random Seed / RandomSeed .. 239

Interval Global Solver Options... 240
Accuracy ... 240
Resolution ... 241
Max Time w/o Improvement / MaxTimeNoImp ... 241
Absolute vs. Relative Stop / AbsRelStep .. 241
Assume Stationary / AssumeStationary .. 241
Method Options Group / Method .. 242

Evolutionary Solver Options .. 243
Convergence .. 244
Population Size / PopulationSize .. 245
Mutation Rate / MutationRate .. 245
Random Seed / RandomSeed ... 245
Require Bounds on Variables / RequireBounds... 246
Local Search / LocalSearch .. 246
Fix Nonsmooth Variables / FixNonSmooth .. 248
Global Search / GlobalSearch ... 249
Model Based Search / ModelBasedSearch .. 249
Feasibility Pump / FeasibilityPump .. 250
Max Subproblems / MaxSubProblems .. 250
Max Feasible Solutions / MaxFeasibleSols ... 250
Tolerance / IntTolerance .. 250

Frontline Solvers 2025 Q1 Reference Guide Page 8

Max Time without Improvement / MaxTimeNoImprove 251
Integer Section of the Engine Tab Options ... 251

Max Subproblems / MaxSubProblems .. 251
Max Feasible Solutions / MaxFeasibleSols ... 252
Integer Tolerance / IntTolerance ... 252
Integer Cutoff / IntCutoff ... 253

The Current Problem and Engine Limits Sections .. 253
Loading, Saving and Merging Solver Models ... 253

Saved Model Formats .. 254
Using Multiple Solver Models.. 258
Merging Solver Models.. 259

PSI Function Reference 260

Using PSI Functions .. 260
Using PSI Optimization Functions ... 260
PsiCalcParam .. 261
PsiCalcValue ... 261
PsiCon ... 261
PsiCurrentOpt .. 262
PsiDualLower .. 262
PsiDualUpper .. 262
PsiDualValue ... 262
PsiEngine .. 263
PsiFinalValue .. 263
PsiInitialValue ... 264
PsiInput ... 264
PsiModel ... 264
PsiModelDesc .. 264
PsiObj ... 265
PsiOption... 265
PsiOptParam .. 265
PsiOptStatus .. 266
PsiOptValue .. 266
PsiSenParam .. 266
PsiSenValue .. 266
PsiSlackValue .. 266
PsiVar ... 267
Using PSI Distribution Functions ... 267
Using PSI Property Functions .. 268
Using PSI Statistics Functions .. 268

Continuous Analytic Distributions ... 270
PsiBeta .. 270
PsiBetaGen .. 271
PsiBetaSubj ... 272
PsiBurr12 .. 273
PsiCauchy.. 274
PsiChiSquare ... 275
PsiDagum .. 276
PsiDblTriang ... 277
PsiErf .. 278
PsiErlang ... 279
PsiExponential ... 280
PsiFatigueLife ... 281
PsiFDist ... 282
PsiFrechet .. 283

Frontline Solvers 2025 Q1 Reference Guide Page 9

PsiGamma ... 284
PsiHypSecant .. 285
PsiInvNormal .. 286
PsiJohnsonSB .. 287
PsiJohnsonSU .. 288
PsiKumaraswamy .. 289
PsiLaplace ... 289
PsiLevy ... 290
PsiLogistic ... 291
PsiLogLogistic... 292
PsiLogNormal ... 293
PsiLogNorm2 .. 294
PsiMakeInput .. 295
PsiMaxExtreme ... 296
PsiMetalog .. 297
PsiMetalogFit .. 298
PsiMetalogSPT .. 299
PsiMinExtreme .. 300
PsiMomentFit .. 301
PsiMyerson .. 302
PsiNormal.. 304
PsiNormalSkew ... 305
PsiPareto ... 307
PsiPareto2.. 308
PsiPearson5 ... 309
PsiPearson6 ... 310
PsiPert ... 311
PsiRayleigh ... 312
PsiReciprocal ... 313
PsiStudent.. 314
PsiTriangGen ... 315
PsiTriangular ... 317
PsiUniform .. 318
PsiVary.. 319
PsiWeibull ... 320

Discrete Analytic Distributions .. 321
PsiBernoulli ... 321
PsiBinomial ... 322
PsiGeometric ... 323
PsiHyperGeo ... 324
PsiIntUniform .. 325
PsiLogarithmic .. 326
PsiNegBinomial ... 327
PsiPoisson ... 328

Custom Distributions ... 329
PsiCumul ... 329
PsiCumulD .. 330
PsiDiscrete .. 330
PsiDisUniform ... 331
PsiGeneral ... 332
PsiHistogram ... 333

Special Distributions ... 334
PsiCertified .. 334
PsiDistInfo .. 335
PsiFit ... 335
PsiMVLogNormal ... 335

Frontline Solvers 2025 Q1 Reference Guide Page 10

PsiMVNormal ... 336
PsiResample .. 337
PsiMVResample .. 337
PsiMVShuffle .. 338
PsiSip .. 338
PsiSlurp ... 338

Psi Time Series Functions .. 338
Time Series Functions .. 339
PsiAR1 .. 340
PsiAR2 .. 341
PsiMA1 ... 341
PsiMA2 ... 341
PsiARMA11 .. 342
PsiARCH1 ... 342
PsiGARCH11 .. 343
PsiEGARCH11 .. 343
PsiAPARCH11 .. 344
PsiTSSip .. 344

PSI Property Functions .. 345
PsiBaseCase .. 345
PsiCategory ... 345
PsiCensor .. 346
PsiCertify .. 346
PsiCollect .. 346
PsiCompound .. 347
PsiConvergence ... 347
PsiCopula .. 349
PsiCopulaGauss ... 352
PsiCopulaStudent... 353
PsiCorrectCorrmat ... 354
PsiCorrDepen .. 355
PsiCorrIndep.. 355
PsiCorrMatrix .. 355
PsiFitInfo... 356
PsiIsDate ... 356
PsiIsDiscrete .. 356
PsiLibrary .. 356
PsiLock ... 356
PsiName .. 356
PsiSample .. 356
PsiSeed .. 357
PsiShift .. 357
PsiStatic .. 357
PsiTruncate .. 357
PsiTruncateP.. 360
PsiUnits ... 361
Time Series Properties ... 361
PsiTSIntegrate ... 361
PsiTSSeasonality ... 361
PsiTSTransform ... 362
PsiTSLen ... 362

PSI Statistics Functions ... 362
PsiAbsDev ... 363
PsiBVaR .. 363
PsiCITrials .. 364
PsiCoeffVar ... 364

Frontline Solvers 2025 Q1 Reference Guide Page 11

PsiConverged .. 364
PsiCorrelation .. 365
PsiCount .. 365
PsiCVaR .. 366
PsiData .. 366
PsiExpGain .. 366
PsiExpGainRatio ... 367
PsiExpLoss .. 367
PsiExpLossRatio .. 367
PsiExpValMargin .. 367
PsiFrequency ... 367
PsiKendallTau ... 368
PsiKurtosis .. 368
PsiMax .. 369
PsiMean .. 369
PsiMeanCI ... 369
PsiMeanCIB .. 370
PsiMedian.. 370
PsiMin ... 370
PsiMode .. 371
PsiOutput... 371
PsiPercentile/PsiPtoX .. 372
PsiPercentileCI .. 373
PsiPercentileD/PsiQtoX ... 373
PsiPercentiles .. 373
PsiRange ... 374
PsiSemiDev ... 374
PsiSemiDev2 ... 374
PsiSemiVar .. 374
PsiSemiVar2 .. 375
PsiSimData .. 375
PsiSimOutput .. 376
PsiSkewness .. 376
PsiSpearmanRho .. 377
PsiStdDev .. 377
PsiStdErr ... 377
PsiStdDevCI .. 378
PsiTarget ... 378
PsiTargetCI ... 378
PsiTargetD .. 378
PsiTheoKurtosis .. 379
A Note on PsiTheo Functions ... 379
PsiTheoMax .. 379
PsiTheoMean ... 379
PsiTheoMedian .. 379
PsiTheoMin ... 379
PsiTheoMode .. 379
PsiTheoPercentile/PsiTheoPtoX ... 380
PsiTheoPercentileD/PsiTheoQtoX.. 380
PsiTheoRange .. 380
PsiTheoSkewness .. 380
PsiTheoStdDev .. 380
PsiTheoTarget/PsiTheoXtoP .. 381
PsiTheoTargetD/PsiTheoXtoQ ... 381
PsiTheoVariance .. 381
PsiTheoXtoY ... 381

Frontline Solvers 2025 Q1 Reference Guide Page 12

PsiVariance ... 382
Psi Six Sigma Functions .. 382

PsiSigmaCP ... 382
PsiSigmaCPK .. 382
PsiSigmaCPKLower .. 383
PsiSigmaCPKUpper... 383
PsiSigmaCPM ... 383
PsiSigmaDefectPPM .. 384
PsiSigmaDefectShiftPPM .. 384
PsiSigmaDefectShiftPPMLower .. 384
PsiSigmaDefectShiftPPMUpper ... 384
PsiSigmaK ... 385
PsiSigmaLowerBound ... 385
PsiSigmaProbDefectShift ... 385
PsiSigmaProbDefectShiftLower ... 386
PsiSigmaProbDefectShiftUpper ... 386
PsiSigmaSigmaLevel ... 386
PsiSigmaUpperBound .. 386
PsiSigmaYield ... 387
PsiSigmaZLower ... 387
PsiSigmaZMin ... 387
PsiSigmaZUpper .. 388
PsiSixSigma .. 388

Functions for Multiple Simulations .. 389
PsiCurrentTrial .. 389
PsiCurrentSim ... 389
PsiSimParam ... 389

Functions for Classification, Prediction & Forecasting ... 390
PsiForecast() .. 390
PsiPosteriors() ... 391
PsiPredict() .. 392
PsiTransform()... 394

About Microsoft Excel Functions and Operators .. 395
Excel's Custom Types .. 395
Excel's LAMBA Function .. 396
Excel's LET Function ... 397
Excel @ Operator .. 397
Excel Forecast Functions ... 397
Using PsiForecastETS() and PsiForecastLinear() .. 398
PsiForecastETS() ... 398
PsiForecastLinear() .. 399
Unsupported Excel Functions ... 399

Solver Add-in Math Functions 401

Introduction ... 401
Functions .. 402

COLOP ... 402
MATOP .. 403
MSOLVE .. 404
MTRACE .. 405
MNORM ... 405
MEIGENVEC ... 405
MEIGENVAL ... 406
ROWOP .. 406
DOTPRODUCT .. 407

Frontline Solvers 2025 Q1 Reference Guide Page 13

QUADPRODUCT ... 408

Dimensional Modeling Psi Functions 410

Introduction ... 410
Psi Cube Functions .. 410

PsiCube ... 410
PsiCubeData .. 413
Function Signature ... 413
PsiCubeOutput... 414
PsiDim .. 416
PsiOptData .. 418
PsiOptValue .. 421
PsiParamDim ... 424
PsiPivotCube ... 427
PsiPivotDim .. 428
PsiReduce .. 431
Psi Statistics Functions... 436

RASON Conversion Functions .. 439
PsiDataSrc ... 439
PsiModelSrc .. 440

Psi Decision Table Functions ... 441
PsiDecTable .. 441
PsiCalcValue ... 442
PsiJoin ... 442

Psi Custom Functions .. 443
PsiBoxFunction ... 443
PsiBoxIterator .. 444

Solver Reports 447

Introduction ... 447
Report Types ... 447

Structure and Transformation Reports .. 447
Answer, Sensitivity and Limits Reports .. 447
Scaling Report ... 448
Structure and Feasibility Reports .. 448
Solutions Report .. 448
Population Report .. 449
Selecting the Reports ... 449

The Scaling Report .. 451
An Example Model ... 453
The Answer Report ... 454
The Sensitivity Report ... 455

Interpreting Reduced Costs and Shadow Prices... 456
Interpreting Reduced Gradients and Lagrange Multipliers............................. 458

The Limits Report ... 458
The Feasibility Report ... 459
The Structure Report ... 460
The Population Report ... 461
The Solutions Report ... 462

Integer Programming Problems .. 463
Global Optimization Problems ... 463
Non-Smooth Optimization Problems .. 464
Solutions for Systems of Inequalities .. 464
Solutions for Systems of Equations .. 465

Frontline Solvers 2025 Q1 Reference Guide Page 14

Uncertainty Report .. 469

VBA Object Model Reference 471

Introduction ... 471
Adding a Reference in the VBA Editor ... 471
Analytic Solver Object Model .. 472
Using the VBA Object Browser ... 473

Object-Oriented API Structure ... 473
Primary Objects ... 473
Secondary Objects ... 475

Primary Objects ... 475
Problem Object .. 476
Solver Object ... 479
Engine Object .. 482
Evaluator Object .. 484
Model Object ... 487
Variable Object .. 490
Function Object ... 494

Secondary Objects ... 499
ModelParam Object ... 499
EngineParam Object .. 500
EngineLimit Object.. 501
EngineStat Object .. 502
OptIIS Object .. 503
Statistics Object ... 503
DoubleMatrix Object ... 505
DependMatrix Object ... 507
Distribution Object .. 507

Traditional VBA Function Reference 511

Controlling the Solver’s Operation ... 511
Running Predefined Solver Models .. 511
Using the Macro Recorder ... 511
Using Microsoft Excel Help ... 512
Referencing Functions in Visual Basic ... 512
Checking Function Return Values .. 512
Standard, Model and Premium Macro Functions... 513

Standard VBA Functions ... 513
SolverAdd (Form 1) ... 513
SolverAdd (Form 2) ... 514
SolverChange (Form 1) .. 515
SolverChange (Form 2) .. 515
SolverDelete (Form 1) ... 516
SolverDelete (Form 2) ... 516
SolverFinish .. 516
SolverFinishDialog .. 518
SolverGet .. 519
SolverLoad .. 521
SolverOk ... 522
SolverOkDialog ... 523
SolverOptions .. 523
SolverReset ... 525
SolverSave .. 525
SolverSolve ... 526

Frontline Solvers 2025 Q1 Reference Guide Page 15

Solver Model VBA Functions .. 528
SolverModel .. 528
SolverModelCheck .. 531
SolverModelGet .. 531
SolverDependents .. 533
SolverFormulas.. 533

Premium VBA Functions ... 534
SolverEVGet ... 534
SolverEVOptions ... 535
SolverGRGGet .. 536
SolverGRGOptions .. 537
SolverIGGet .. 539
SolverIGOptions .. 540
SolverIntGet .. 541
SolverIntOptions .. 543
SolverLimGet .. 546
SolverLimOptions.. 547
SolverLPGet .. 547
SolverLPOptions ... 549
SolverOkGet .. 550
SolverSizeGet .. 551

RASON Error Codes 553

Introduction ... 553
Error Messages .. 553

Appendix: Differences between Analytic Solver Desktop and
Analytic Solver Cloud 559

Introduction ... 559
Differences .. 559

General .. 559
Dimensional Modeling ... 560
Simulation ... 561
Optimization .. 563
Parameters ... 565
Deploy Model for Rason .. 565
Tools ... 565

Appendix: @Risk to Analytic Solver Psi Function Conversion Table
 566

Introduction ... 566
Distribution Functions.. 566
Distribution Property Functions.. 568
Statistics Functions .. 568
Six Sigma Statistics ... 570
Time Series Functions .. 570

Frontline Solvers 2025 Q1 Reference Guide Page 16

Start Here: V2025 Q1 Essentials

Getting the Most from This Reference Guide

Start with the User Guide

The Analytic Solver User Guide covers installation, licensing, using Help and

example models, using transition aids for Excel Solver and previous version

users, and other topics to help you use the software effectively. This Reference

Guide contains detailed reference information about advanced features of the

software.

Understand Product Subsets

Read the overview of our Frontline Solvers including Analytic Solver

Comprehensive and its subset products: Analytic Solver Optimization, Analytic

Solver Simulation, Analytic Solver Data Science and Analytic Solver Upgrade

in the User Guide.

Desktop and Cloud Versions

Analytic Solver V2025 Q1 comes in two versions: Analytic Solver Desktop – a

traditional “COM add-in” that works only in Microsoft Excel for Windows PCs

(desktops and laptops), and Analytic Solver Cloud – a modern “JavaScript add-

in” that works in Excel for Windows and Excel for Macintosh (desktops and

laptops), and also in Excel for the Web using Web browsers such as Chrome,

FireFox and Safari. Your license gives you access to both versions, and your

Excel workbooks and optimization, simulation and data science models work in

both versions, no matter where you save them (though OneDrive is most

convenient).

Using the Ribbon and Task Pane

The chapter “Using the Ribbon and Task Pane” covers the features of Analytic
Solver’s graphical user interface. There are many capabilities in the GUI that

aren’t covered in the User Guide, due to space limits, that you can learn about in

this chapter.

Understanding Solver Result Messages

The chapter “Solver Result Messages” documents in detail the meaning of the

various Solver Result Messages. Note that these descriptions are also available

in online Help, when you click the hyperlinked Result Message that appears in

the Task Pane Output tab.

Frontline Solvers 2025 Q1 Reference Guide Page 17

Using Solver Engine Options

The chapter “Solver Engine Option Reference” documents all of the options of

Analytic Solver’s five built-in Solver Engines for optimization, and Risk Solver

Engine for simulation. Note that these descriptions are also available in online

Help, when you click the hyperlinked option names at the bottom of the Task

Pane Engine tab.

Using PSI Functions

The topic “Using Psi Functions” within the chapter, “PSI Function Reference,”

documents all of the PSI functions that you can use in formula cells for

optimization and for simulation (PSI Distribution functions, PSI Property

functions, and PSI Statistics functions).

Using the Object-Oriented API

For use in Analytic Solver Desktop only, the chapter “VBA Object Model

Reference” documents the objects, properties and methods supported by

Analytic Solver’s Objected-Oriented API. You should read this chapter in

conjunction with the chapters “Automating Optimization in VBA” and

“Automating Simulation in VBA” in the Analytic Solver User Guide, which
provide programming hints and examples.

Using the Traditional VBA Functions

For use in Analytic Solver Desktop only, the chapter “Traditional VBA Function

Reference” documents functions such as SolverOK and SolverSolve, that

Analytic Solver supports for upward compatibility with the standard Excel

Solver and older versions of Analytic Solver, Risk Solver Platform and Premium

Solver Platform. Note that VBA (Visual Basic for Applications) is available

only in traditional desktop Excel; Microsoft has no plans to offer VBA in Excel

for the Web.

Using Large-Scale Solver Engines

Read the Platform Solver Engines Guide to learn more about Frontline’s eight
large-scale Solver Engines for optimization, including their Solver Options and

special Solver Result Messages. All Large-Scale Engines are installed via the

SolverSetup installation program.

Frontline Solvers 2025 Q1 Reference Guide Page 18

Using the Ribbon and Task Pane

Introduction
Analytic Solver was designed from the ground up with the “Ribbon-based”
graphical user interface first introduced in Excel 2007 – in mind. You can select

input probability distributions and output statistics from dropdown galleries that

work just like the galleries in Excel 2013 - 2019. Just click, drag and drop to

create a formula that computes a statistic or risk measure for one of your

uncertain functions. Double-click a cell in your model to immediately display

Risk Solver’s charts and graphs. Or just hover over an uncertain variable or

function cell to see a pop-up miniature chart of its PDF or frequency

distribution.

Since your risk analysis model is defined by functions such as PsiNormal() and

PsiMean() in worksheet cells, you can create or edit your model by working

with formulas in Excel, if you like. But visual aids are at your fingertips! This
chapter describes the graphical user interface features of Analytic Solver and it's

subset products.

Table Names in the Solver Task Pane
Analytic Solver now recognizes tables in the Solver Task Pane, improving

model clarity and organization. Data in the table is reported, in general, as

Table_Name[Column_Name]. For example, assume cells I21:J27 are contained

within the table, Cash_Liability, as shown in the screenshot below.

When the constraint (I22:I27 >= J22:J27) is entered, Solver automatically

identifies the table range cells I22:I27 as “Cash_Liability[Total w Int]” and table

range cells J22:J27 as “Cash_Liability[Liability]” in the Add Constraint dialog.

Frontline Solvers 2025 Q1 Reference Guide Page 19

When new data is added to the table, Solver expands the constraint cell

addresses to include it. Since these cells are located in a table, all Excel formulas

update accordingly. Solver automatically detects the new table dimensions, so

there’s no need to adjust the Solver dialog—just click "Solve" to generate the
solution.

Using the Ribbon
The Ribbon is your ‘gateway’ to the Analytic Solver’s graphical user interface.

Most often, you simply click a button on the Ribbon to open a dropdown gallery

with more buttons, then you click one of these choices.

In Excel 2013 - 2019 and in Excel for the Web, the Analytic Solver Ribbon

appears as a tab on the standard Ribbon at the top of the Excel application

window, and it stays in this position:

The small downward pointing arrow below most of the buttons indicates that

you can open a dropdown gallery of options related to that button. If no arrow
exists, simply click the button to open a cascading menu (shown below). For

example, clicking on the Distributions button opens a menu containing options

for different types of probability distributions built into Analytic Solver:

The buttons on the Ribbon play the following roles:

• Clicking the Model button displays or hides the Task Pane (see more on this
below). Click the down arrow to add Dimensional Modeling capability to

your model.

Frontline Solvers 2025 Q1 Reference Guide Page 20

• The Simulation Model group of buttons relate to setting up simulation models:

o Clicking the Distribution button gives you a range of pre-defined

probability distributions you may choose to represent uncertainty in

your model and access to our new Distribution wizard.

o Clicking the Correlations button brings up a dialog to allow you to
easily create, edit or delete correlation matrices or fit a copula. The

down-arrow allows you to turn the use of correlations on and off.

o Clicking the Results button opens a gallery of options that allow you to

designate a cell as an output cell for an uncertain function (to obtain

statistics, charts or other simulation results), or insert calls to PSI

Statistics functions to compute statistics, risk measures, or range values

for uncertain functions.

• The Optimization Model group of buttons relate to setting up optimization

models:

o Clicking the Decisions button creates a new “normal” decision variable
using the currently selected cell. Clicking the down arrow allows you

to designate a cell as a decision variable, and in stochastic optimization,

choose normal or recourse decisions.

o Clicking the Constraints button opens the Add Constraint dialog

which lets you easily define constraints, including bounds and integer

restrictions on decision variables, and chance constraints in stochastic

optimization. Clicking the down arrow allows you to do all of the

above plus gives you access to our new Constraints wizard.

o Clicking the Objective button opens the Add Objective dialog which

allows you to designate a cell as the objective function, and choose

whether it should be maximized or minimized. Clicking the down

arrow allows you to do all of the above plus “summarize” an objective
containing uncertainty if solving a stochastic optimization model.

• The Decision Model group of buttons relate to setting up decision trees or

decision table models or models that use custom box functions.

o Click Decision Tree to easily create decision nodes and branches,

event nodes and branches, and terminal nodes. The tree is drawn in

graphic form on the spreadsheet; standard Excel worksheet formulas

compute ‘rollback’ values at each node, and the best-choice value at the

root node, based on either expected value or utility function (certainty

equivalent) criteria. With a Ribbon choice, you can graphically
highlight the optimal path through the tree.

• Clicking the Parameters button allows you designate a cell as a parameter to

be varied on optimization, simulation or calculation runs, or designate a cell as

input data for another cell. You can even find candidate cells for parameters

automatically, displaying a tornado chart that shows which cell have the

greatest impact on your model results.

• The Solve Action group of buttons relate to solving your optimization or

simulation model:

o Clicking the Simulate button turns on Interactive Simulation, and

lights up the bulb; clicking it again turns off Interactive Simulation and
the bulb. The arrow allows you to run a single simulation at a time.

o Clicking the Optimize button runs an optimization, while clicking the

downward arrow gives you a list of choices for how to solve the model.

You can use the Analyze Original Model option to find out what type

Frontline Solvers 2025 Q1 Reference Guide Page 21

of model (linear, nonlinear, etc.) you’ve defined, and what Solver

Engine can be used to solve it.

o Clicking the Deploy Model button opens a new dialog with a list of

choices that automatically convert your existing optimization,

simulation or simulation optimization model into a model written in the
new RASON Modeling Language that can be solved or shared in Rason

Cloud Services, Power BI or Tableau with the Solver SDK, from

within a customized Web application or shared via Microsoft Teams.

This feature reduces months of development work to a single button

click!

• The Analysis group of buttons relate to analyzing your results:

o Clicking the Reports button gives you access to a full range of reports

for optimization, simulation and sensitivity analysis.
o Clicking the Charts button similarly lets you create and manipulate

charts related to your optimization, simulation, or sensitivity analysis

results – including charts that cover multiple optimization or simulation

runs, with varying parameters.

• The Tools group of buttons on the Ribbon or the Tools tab on the Task Pane in

Analytic Solver Cloud are covered more fully in the User Guide: They allow

you to set up decision trees, create probability distributions that fit historical

data, see the results of specific simulations or optimization, manage results

and publish an optimization or simulation model to the new Excel for the Web

Solver app or Google Sheets Solver add-on.

• Use the Get Data button to draw a random sample of data, or summarize data

from a (i) an Excel worksheet, (ii) the PowerPivot “spreadsheet data model”

which can hold 10 to 100 million rows of data in Excel, (iii) an external SQL

database such as Oracle, DB2 or SQL Server, or (iv) a dataset with up to

billions of rows, stored across many hard disks in a compute cluster running

Apache Spark (https://spark.apache.org/), using the new Big Data feature. See

the Analytic Solver Data Science User Guide (formerly Analytic Solver Data

Mining User Guide) for help with this new feature.

• Clicking the Options button displays a dialog of options for controlling the

optimization and simulation processes as well as for formatting charts and
graphs.

• If optimization, Monte Carlo simulation or stochastic programming are new

for you, don’t worry – you can learn a lot about them by consulting our AI

Agent, Frontline’s artificial intelligence technical support assistant. AI

Agent is designed to provide assistance and support for users of Frontline

Frontline Solvers 2025 Q1 Reference Guide Page 22

Solvers' Analytic Solver and Analytic Solver Data Science (formerly

Analytic Solver Data Mining) software. The AI Agent is knowledgeable

about the functionality and features of the software, as well as the concepts

and processes involved in optimization, simulation and data

science/forecasting. Just enter a topic or question such as “What is
stochastic optimization?” and click Submit Query to get started.

• Use the License button to manage your account and licenses.

• Use the Help button to open example models, open the Help Center, where

you can find pre-recorded webinars or access our Knowledge Base or

explore our User Guides.

Each of these GUI functions is described in later sections of this chapter.

Solver Home Tab Removed in V2020

The Solver Home tab was removed from Analytic Solver Desktop V2020. You

can use the License menu to Login and Logout, browse to www.solver.com,

start a Live Chat, etc. See the section below for more information.

Dynamic Dialogs
Introducing Analytic Solver’s new dialog zooming feature! This improvement

enables users to zoom in and zoom out of all Analytic Solver dialogs and the

Analytic Solver Task Pane effortlessly, allowing for more personalized and

efficient interaction. Simply press the CTRL key while simultaneously using the

scroll wheel on your mouse to magnify or shrink the contents of the task pane or
any dialog, to view more content or focus on specific details. This new feature

not only improves accessibility but also enhances overall user experience by

accommodating various screen sizes. This functionality brings both flexibility

and control to your application!

Zoomed-in Distribution Dialog

http://www.solver.com/

Frontline Solvers 2025 Q1 Reference Guide Page 23

Zoomed-in Task Pane

Using the Solver Task Pane
The Solver Task Pane in Frontline Solvers is a modeless interface tool integrated

into Excel. Unlike the modal Solver Parameters dialog, the Task Pane allows

users to interact with Excel while working on optimization tasks. It initially

appears docked to the right of the Excel window, but it can be undocked,

repositioned, and resized as needed.

The Task Pane enhances user experience by facilitating continuous workflow,

enabling edits and model adjustments without needing to close a separate dialog

box.

Clicking the Model button displays the Task Pane, normally docked at the right

edge of the Excel window. On the Task Pane Model tab, you’ll see an outlined
list of all the elements of your model: (i) objective, decision variables, and

constraints for optimization models, (ii) uncertain variables, uncertain functions,

statistics, and correlations for simulation models, (iii) parameters for both kinds

of models and (iv) datasets and results for data mining, text mining, and time

series models. As explained below, other tabs on the Task Pane provide quick

access to option settings, a log of events that happen during an optimization or

simulation, and for long-running optimization models, a continually updated

status report plus a dynamic chart of the objective.

Frontline Solvers 2025 Q1 Reference Guide Page 24

Analytic Solver Desktop Analytic Solver Cloud

As you can see, the Task Pane Model tab and the Solver Parameters dialog

contain the same information. But where the basic Excel Solver Parameters

dialog is modal (moving the mouse outside the dialog displays a wait cursor –

you must close the dialog to do anything else), the Task Pane is modeless: You

can move the mouse outside the pane, edit formulas on the worksheet, or use

other commands.

The Task Pane is initially docked to the right side of the Excel window, but you

can select its title bar with your mouse, drag it to another position, and resize it,

as shown on the next page. To “re-dock” the Task Pane, select its title bar with

the mouse, drag to a position just beyond the right edge of the Excel window,

then release the mouse.

• Use the Model tab to view your model in outline form, and optionally

edit model elements in-place. Analytic Solver supports seven top level

categories: Sensitivity, Optimization, Simulation, Data Science,

Decisions, Data Source and Input Data. See below for an explanation of

each. You can find more information on the Model tab in the next

section, below.

• Use the Platform tab to view or change Platform options, such as the

number of optimizations or simulations to run, or default bounds on

decision variables or uncertain variables. See the Platform Option

Reference chapter for a description of each. See the Platform Option

Frontline Solvers 2025 Q1 Reference Guide Page 25

Reference chapter, appearing later in this guide, for more information

on the various options contained on this tab.

• Use the Engine tab to select a Solver Engine and view or change its

options. See the chapter, Solver Engine Option Reference, for a

description of each. You can find more information on this tab in the
next section, below.

• Use the Output tab to view a log of solution messages, or a chart of

the objective values. See below for more information. You can find

more information on this tab in the next section, below.

• Workflow Tab: Using the Workflow tab in the Task Pane, you can

either “drag and drop” icons onto a “canvas” to create a workflow

diagram, or you can simply turn on a workflow recorder, carry out the

steps as you’ve always done by choosing menu options and dialog

selections, and the workflow diagram will be created automatically.

Once the diagram or pipeline is created, you can “run” it in one step –
each data science method in the workflow will be executed in

sequence. For more information, see the Analytic Solver Data Science

User Guide.

• Tools Tab: Use the Tools tab to cycle through calculation,

optimization, sensitivity and simulation parameter results as well as

access the Freeze and Thaw options which allow you to share Analytic

Solver models containing PSI function calls with users who don’t have

Analytic Solver installed. (“Freeze” will save PSI function call

formulas in cell comments, and “Thaw” will restore them later as

formulas.) You can find more information on this tab in the next

section, below.

Model Tab

On the Model Tab in the Analytic Solver Task Pane, you can view your

optimization model in outline form and optionally edit model elements in place.

Use the buttons at the top of the Model tab to add or remove model elements

(you can also use the Ribbon options to do this), refresh the model outline when

you’ve made unusual changes to the worksheet, analyze the structure of your

model, or solve (run) the optimization or simulation model:

Analytic Solver Desktop

Analytic Solver Cloud

You’ll find the results of the Analyze model button at the bottom of the Model

tab.

Remove element

Add element

Analyze model

Solve model

Refresh model

Remove element

Add element Refresh model

Analyze model

Solve model

Frontline Solvers 2025 Q1 Reference Guide Page 26

Solver Diagnosis Results

Click the down arrow next to the Analyze without Solving icon and select

Analyze Original Model on the Model Platform or Output tabs of the Solver

Task Pane to diagnose your model as a linear programming, quadratic or conic,

smooth nonlinear, or non-smooth optimization model, and determine the

convexity of your model. When this option is selected, the interpreter will

pinpoint formulas that are causing your model to be nonlinear or non-smooth

(see the Structure Report in the “Solver Reports” chapter) or are causing your

model to be poorly scaled (see the Structure Report in the “Solver Reports”

chapter).

Select Analyze Transformed Model to run the Interpreter to diagnose the
transformed model as a linear programming, quadratic or conic, smooth

nonlinear, or non-smooth optimization model and determine the convexity of

your model. If your model contains non-smooth functions with arguments that

depend on the decision variables, the Analytic Solver products will

automatically transform your model, replacing IF, MIN, MAX, ABS, AND,

OR, and NOT functions and <= and >= operators with additional variables and

linear constraints that achieve the same effect, for optimization purposes, as

these functions. A Linearization Report will be available under Reports –

Optimization containing a list of these additional variables and constraints.

Problem statistics, for either option, are displayed on the Model tab within the

Solver Task Pane.

Model Type: This field displays the Type (linear, nonlinear, etc.) of

optimization or simulation model you have defined, after you choose Optimize –

Analyze Without Solving from the Ribbon, or click the Analyze Without

Solving button in the Task Pane. The following values may appear:

LP Convex – You have a linear programming problem, which is always convex.

QP Convex – You have a quadratic programming problem, and it is convex.

QP NonCvx – You have a quadratic programming problem, but the objective is

non-convex.

QCP Convex – You have a quadratically constrained QP programming

problem, and it is convex.

QCP NonCvx – You have a quadratically constrained QP programming

problem, but it is non-convex.

SOCP Convex – You have a second order cone programming problem, which is

always convex.

NLP Convex – You have a smooth nonlinear optimization problem, and it is

convex.

Frontline Solvers 2025 Q1 Reference Guide Page 27

NLP NonCvx – You have a smooth nonlinear optimization problem, but it is

non-convex.

NLP – You have a smooth nonlinear optimization problem, but its convexity

could not be determined.

NSP – You have a non-smooth optimization problem; its convexity could not be

determined.

UNK – Your model type could not be determined, perhaps because it includes

user-written VBA functions.

If your optimization model includes uncertainty, the following values may

appear:

Stochastic LP – You have a stochastic linear programming problem; you can

set the Platform tab option Solve Uncertain Models to Stochastic

Transformation for a fast solution.

Stochastic QP – You have a stochastic quadratic programming problem.

Stochastic NLP – You have a stochastic smooth nonlinear optimization

problem.

Stochastic NSP – You have a stochastic non-smooth optimization problem.

If your model is a pure simulation model, containing only uncertain variables

and functions, the following values may appear:

Simulation Linear - Your simulation model is linear.

Simulation Quadratic - Your simulation model is quadratic.

Simulation NonLinear - You have a smooth nonlinear simulation model./P>

Simulation NonSmooth (Gradient available) - You have a nonsmooth

simulation model. However, gradient information may be computed.

Simulation NonSmooth - You have a nonsmooth simulation model; gradient

information is not available.

Diagnosis is not supported for decision table (calculation) models, unless the

model also contains an optimization or simulation model.

All: This Model Diagnosis element displays the total number of decision

variables, functions (including Constraints and Objective), and dependencies in

your model. A dependency is counted whenever a constraint or objective

depends on a decision variable. For example, if you have variables A1:A5 and a
constraint 2*A1 + A3*A4 <= 5, this would account for 3 dependencies; this

constraint is linearly dependent on A1, quadratically dependent on A3 and A4,

and independent of A2 and A5.

Smooth: The total number of smoothly occurring variables, functions and

dependencies in the model.

Linear: The total number of linearly occurring variables, functions and

dependencies in the model.

Recourse: The total number of recourse variables, functions and dependencies

in the model. See the “Mastering Stochastic Optimization Concepts” chapter

within Analytic Solver User Guide for more information on recourse variables.

Uncertain: The total number of uncertain variables in your model. These are

cells containing PSI Distribution functions such as =PsiNormal(0,1), which

contribute uncertainty to your model.

mk:@MSITStore:C:/Platform/CHM/RiskSolver/RiskSolver.chm::/RiskSolver_rtf/Solve_Uncertain_Models.htm

Frontline Solvers 2025 Q1 Reference Guide Page 28

Bounds: The total number of simple bounds on decision variables in your

model. Although they are entered like constraints, simple bounds such as A1 >=

0 or A1 <= 5 on a decision variable A1 are not counted in the totals of All,

Smooth or Linear Constraints, since they do not require this type of dependence.

All Solver Engines handle simple bounds on the variables very efficiently.

Integers: Displays the total number of integer decision variables in your model.

This will include all variables included in constraints of the form A1 = Integer,

A1 = Binary, or A1:A3 = AllDifferent. Semi-continuous decision variables are

not classified as integer variables.

Chance Constraints: Displays the total number of Chance Constraints in your

model. Chance constraints are used only in optimization models with

uncertainty. For more information, see “Mastering Stochastic Optimization

Concepts” in the Frontline Solvers User Guide.

Sparsity: Displays the Sparsity of your optimization model, as a percentage

figure. This is computed as (All Dependencies) / (All Variables * All
Functions). Large optimization models are typically very sparse, so this

percentage may be quite low (2% or 3%). Frontline’s plug-in large-scale Solver

Engines are designed to exploit model sparsity to find faster solutions.

Solver Task Pane Window

Further down, the Task Pane Window is divided into multiple sections to keep

your model clear and organized.

Sensitivity – Sensitivity Analysis components are contained here.

Optimization - This section includes model components related to solving an

optimization model.

Simulation - This section consists of model components related to solving an

simulation model.

Data Science - This section is comprised of model components related to solving

a data science model.

Decisions - This section contains model components related to solving models

containing decision tables, decision trees and custom functions.

Data Source – Data Sources, to be used when exporting a model to Power BI or

Tableau, are cataloged here.

Input Data – Model data to be used as input parameters to a model solved Solver

SDK are listed here.

Frontline Solvers 2025 Q1 Reference Guide Page 29

Sensitivity

Sensitivity | Parameters: Automatically vary a cell(s) during a

sensitivity analysis.

Address: The cell address of the

sensitivity parameter.

Formula: The formula of the sensitivity

parameter. For more information on the

PsiSenParam() function, see the Psi

Function Reference chapter that appears

later in this guide.

Type: Select the parameter type. The

default is “Sensitivity”. If Optimization,
Simulation, or Calculation is selected, the

parameter will be relocated to the

corresponding section of the Model tab.

Values or Lower Bound: The values or the

lower bound of the sensitivity parameter.

Upper Bound: The upper bound of the sensitivity parameter.

BaseCase: The base case of the parameter. This value will appear in the cell

when the sensitivity parameter is not in use.

Sensitivity | Results: Cells containing PsiSenValue parameters

appear here. This function returns the specific value for a cell or

function of a sensitivity analysis.
Address: The cell address where the

PsiSenValue() function is located.

Formula: The formula appearing in the

cell address above. See the Psi Function

Reference chapter for more information

on the PsiSenValue() function.

Frontline Solvers 2025 Q1 Reference Guide Page 30

Optimization

Optimization | Objective: The objective to be maximized or

minimized.
Address: Cell address where the

objective function is located.

Sense: Select Maximize, Minimize or

Value Of.

• Maximize: The goal of a

maximization model is to find the largest

possible value for the objective function

while satisfying all constraints.

• Minimize: The goal of a

minimization model is to find the

smallest possible value of the objective

function while satisfying all constraints.

• Select Value Of to set the objective value to a specific value. For example,

setting Sense: Value Of and Value Of: 1000 is equal to adding the

constraint that the objective = 1000.

Value Of: Used only when Sense: Value Of. Enter a value in this field that

objective function must equal, at the end of the solving process. Using Value Of

is equivalent to adding an equality constraint on the objective function.

Comment: Enter a comment to document the purpose and nature of the

objective function.

Monitor Value: If True, data for this item will be collected across multiple

optimizations. Click Charts – Multiple Optimizations – Monitored Cells to

generate a chart displaying the value of the objective across the multiple

optimizations. This field is set to True by default for the objective function.

Note: Set Optimizations to Run to a value greater than 1 on the Platform tab to run multiple

optimizations. See the chapter, Examples: Parameters and Sensitivity Analysis within the Analytic

Solver User Guide for more information on running multiple optimizations.

Stochastic Type: This option is set to “Normal” by default. Use this option

(only) when solving an optimization model with uncertainty, and the objective

formula cell depends – directly or indirectly – on uncertain variables in the
model. Choose from Normal, Expected, VaR, CVaR and USet:

• Normal means that the Objective cell has a single value that can be

maximized or minimized.

• Expected means that the expected value of the Objective cell, across all

scenarios or Monte Carlo trials, should be maximized or minimized. If the

Objective cell is A1, this is equivalent to entering =PsiMean(A1) in cell B1,

and making B1 the Objective cell with Stochastic Type: Normal.

• VaR means that the Value at Risk of the Objective cell (at the percentile

given by the Objective Chance option), across all scenarios or Monte Carlo

trials, should be maximized or minimized. If the Objective cell is A1, this is
equivalent to entering =PsiBVaR(A1, ObjChance) in B1, and making B1

the Objective cell with a Type of Normal.

• CVaR means that the Conditional Value at Risk of the Objective cell (at the

percentile given by the Objective Chance option), across all scenarios or

Monte Carlo trials, should be maximized or minimized. If the Objective cell

Frontline Solvers 2025 Q1 Reference Guide Page 31

is A1, this is equivalent to entering =PsiCVaR(A1, ObjChance) in B1, and

making B1 the Objective cell with a Type of Normal.

• USet applies only to linear objectives, and is rarely used; its effect is the

same as CVaR, but the Objective Chance value is specified in terms of the

size of an uncertainty set, rather than as a percentile.

Stochastic Chance: This option has an effect only if you set the Objective

Type option to VaR, CVaR or USet. For VaR and CVaR, it specifies the

percentile value of the Optimization Objective, across all scenarios or

Monte Carlo trials, that should be maximized or minimized; hence its value

must be between 0.01 and 0.99. For USet (rarely used), it specifies the size

of an uncertainty set, which is equivalent to a CVaR percentile value, for

the Objective cell; hence its value should be a small positive number.

Optimization | Variables: Normal or Resource variables are listed

here. These are the cells that Solver will change during the solution

process.

For more information on Normal and Recourse variables see the Analytic Solver User Guide

chapters: Examples: Conventional Optimization for Normal variables and Examples: Stochastic

Optimization for Recourse Variables (Help – User Guides).

Address: The cell address or range where

the normal or recourse variables are

located.

Type: Normal for normal optimization

variables and Recourse for recourse

variables.

Comment: (Optional) Enter a comment to
describe and document the variable’s

purpose.

Monitor Value: If True, data for this item

will be collected across multiple optimizations. Click Charts – Multiple

Optimizations – Monitored Cells to generate a chart displaying the value of the

variable across the multiple optimizations. This field is set to True by default for

both variable types.

Frontline Solvers 2025 Q1 Reference Guide Page 32

Optimization | Constraints: Normal, Chance, Recourse, Bound,

Conic or Integers or Resource constraints are listed here.

Constraints are conditions or restrictions placed on the variables, or

formulas based on the variables, in an optimization model that

limit the possible solutions.

For more information on all constraint types, see the Analytic Solver User Guide chapters:

Examples: Conventional Optimization for Normal, Bound and Conic constraints and Examples:

Stochastic Optimization for Chance and Recourse Constraints (Help – User Guides).

Left Hand Side: The cell address or cell

range to be restricted.

Relation: The type of restriction to be

applied to the cells on the left hand side of

the constraint: <=, =, >=, integer, binary,

alldifferent, cone, rotated cone,

semicontinuous.

Right Hand Side: The value(s) or cell(s) to

be compared to the Left Hand Side.

Comment: (Optional) Enter a comment to

describe and document the constraint’s

purpose.

Monitor Value: If True, data for this item

will be collected across multiple

optimizations. Click Charts – Multiple

Optimizations – Monitored Cells to

generate a chart displaying the value of

the constraint across the multiple optimizations. This field is set to False by

default for all constraint types.

Optimization | Stochastic Constraints: Chance and Recourse

constraint options are listed here.

Type: Use this option (only) when you’re solving an optimization model with

uncertainty, and the constraint formula cell depends – directly or indirectly – on

uncertain variables in your model, so you want to create a chance constraint.

You can choose from Normal, Expected, VaR, CVaR and USet:

• Normal means that the constraint left hand side (LHS) cell has a single

value that can be compared to the right hand side (RHS).

• VaR means that the Value at Risk of the Constraint LHS cell (at the

percentile given by the constraint chance option), across all scenarios or

Monte Carlo trials, should be compared to the RHS. If the Constraint LHS
is A1, this is equivalent to entering =PsiBVaR(A1, Chance) in B1, and

making B1 the Constraint LHS with a Type of Normal.

• CVaR means that the Conditional Value at Risk of the Constraint LHS cell

(at the percentile given by the constraint chance option), across all scenarios

or Monte Carlo trials, should be compared to the RHS. If the Constraint

LHS is A1, this is equivalent to entering =PsiBVaR(A1, Chance) in B1, and

making B1 the Constraint LHS with a Type of Normal.

• USet applies only to linear constraints. It means that the constraint should

be satisfied for all “combined perturbations” of the constraint coefficients

Frontline Solvers 2025 Q1 Reference Guide Page 33

that lie within the uncertainty set whose size is given by the constraint

chance option.

Chance: This option has an effect only if you set the constraint type option to

VaR, CVaR or USet. For VaR and CVaR, it specifies the percentile value of

the constraint LHS, across all scenarios or Monte Carlo trials, that should be
compared to the RHS; hence its value must be between 0.01 and 0.99. For USet,

it specifies the size of an uncertainty set, which is equivalent to a CVaR

percentile value, for a linear constraint; hence its value should be a small

positive number.

Optimization | Parameters: Automatically vary a cell(s) when

running multiple optimizations.

For more information on the PsiOptParam parameter, see the Stock Portfolio Optimization example

under Help – Examples – Optimization Examples.

Address: The cell address of the

optimization parameter.

Formula: The formula of the optimization

parameter.

Type: Select the parameter type. The
default is “Optimization”. If Sensitivity,

Simulation, or Calculation is selected, the

parameter will be relocated to the

corresponding section of the Model tab.

Values or Lower Bound: The values or the

lower bound of the optimization

parameter.

Upper Bound: The upper bound of the

optimization parameter.

BaseCase: The base case of the parameter. This value will appear in the cell
when the optimization parameter is not in use.

Optimization | Results: Cells containing PsiOptValue parameters

appear here. This function returns the specific value for a cell or

function of an optimization analysis.

Address: The cell address where the

PsiOptValue() function is located.

Formula: The formula appearing in the

cell address above. See the Psi Function

Reference chapter for more information

on the PsiOptValue() function.

Monitor Value: If True, data for this item

will be collected across multiple

optimizations. Click Charts – Multiple

Optimizations – Monitored Cells to

generate a chart displaying the value of

the variable across the multiple

optimizations. This field is set to True by default for both variable types.

Frontline Solvers 2025 Q1 Reference Guide Page 34

Simulation

Simulation | Uncertain Variables: An Uncertain Variable is an

input cell (initially empty, or containing a number), that

participates in the calculation of your uncertain functions.

Address: The cell address of the uncertain

function.

Formula: The formula located in the

uncertain function cell.

Distribution: The distribution of the

uncertain variable.

Alternate Form: If set to Yes, specify the

distribution using alternate parameters

such as percentiles, mean or standard

deviation, in Formula.

Parameters: Enter the required parameters.

Parameters are dependent upon the

uncertain variable’s distribution. See the

Psi Function Reference chapter for a
description of all distributions in Analytic

Solver.

Compound: If an uncertain variable uses

the PsiCompound() property to create a

compound distribution, then this field will

contain the arguments passed to

PsiCompound(). If the uncertain variable

does not use a compound distribution, this

field will be blank. PsiCompound takes

three arguments: one required argument (number_cell) and two optional

arguments (deduction and limit). All arguments passed to PsiCompound() will
appear in this field. For an example illustrating how to compute a compound

distribution, see the Examples: Simulation and Risk Analysis chapter in the

Frontline Solvers User Guide.

Control Parameters: For more information on Control parameters, see the

Uncertain Variable section that occurs later in this guide. These parameters are

editable.

Name: The name of the uncertain variable, surrounded by quotes.

Lock: Use this field to “lock” this Uncertain Variable to a fixed value.

Enter a number in the Lock field that you want this PSI Distribution

function to return on every Monte Carlo simulation trial – overriding
the random sample values that would ordinarily be returned.

Seed: Random number seed for the uncertain variable.

Shift: Amount of shift applied to the domain of the uncertain variable.

Lower Cutoff: Lower truncation bound for the uncertain variable.

Upper Cutoff: Upper truncation bound for the uncertain variable.

Cutoff Measure: Use this option only if you want to set global default

bounds on the probability distributions of all uncertain variables. This

option specifies the “units of measure” for the values you enter in the

Frontline Solvers 2025 Q1 Reference Guide Page 35

Upper Cutoff and Lower Cutoff options. Choose None (the default) if

you don't want to set these global bounds.

Lower Censor: Lower censor bound for the uncertain variable.

Upper Censor: Upper censor bound for the uncertain variable.

BaseCase Value: This field is used to store a Base Case value for the

uncertain variable. It represents the value that would be entered into

this input cell if the cell were not treated as an Uncertain Variable (i.e.,

if it did not include a PSI Distribution function).

Analytic Moments: For more information on Analytic Moments, see the

Uncertain Variable section that occurs later in this guide. Analytic Moments are

read-only as they are calculated from the distribution.

Mean: The mean or average value of the distribution.

Standard Deviation: The square root of the variance of the distribution.

Variance: Spread or dispersion of the distribution.

Skewness: Describes the asymmetry of the distribution.

Kurtosis: The peakedness of the distribution.

Mode: The most frequently occurring value in the distribution.

Median: The 50th percentile of the distribution.

Minimum: The minimum value in the distribution.

Maximum: The maximum value in the distribution.

Range: The difference between the maximum and minimum values, in
the distribution.

Simulation | Uncertain Functions: An Uncertain Function is an

output cell (containing a formula) whose values you want to

monitor across simulation trials.
Address: Cell address of the uncertain

function.

Formula: Formula contained in the cell

address of the uncertain function.

Statistics: This section of the Task Pane

Model tab displays statistics for this

uncertain function, computed across the

Monte Carlo trials of the most recent

simulation. For more information on each,

see the Psi Function Reference chapter

that appears later in this guide.

Mean: The mean of the uncertain function.

Standard Deviation: The square root of

the variance, of the uncertain function.

Variance: Sample variance of the

uncertain function.

Skewness: Describes the asymmetry of the

uncertain function.

Kurtosis: Describes the peakedness of the uncertain function.

Frontline Solvers 2025 Q1 Reference Guide Page 36

Mode: The most frequently occurring value in the uncertain function

distribution.

Minimum: The minimum value for the uncertain function.

Maximum: The maximum value for the uncertain function.

Range: The difference between the Maximum and Minimum values

for the uncertain function.

Advanced Statistics: This section of the Task Pane Model tab displays advanced

statistics for this uncertain function, computed across the Monte Carlo trials of

the most recent simulation. For more information on each, see the Psi Function

Reference chapter that appears later in this guide.

Mean Abs. Deviation: The mean absolute deviation of the uncertain

function.

SemiVariance: The semivariance of the uncertain function.

SemiDeviation: The semideviation of the uncertain function.

Value at Risk 95%: The value at risk at 95% of the uncertain function.

Cond. Value at Risk 95%: The conditional value at risk at 95% of the

uncertain function.

Mean Confidence 95%: The 95% confidence interval on the mean of

the uncertain function.

Std. Dev. Confidence 95%: The 95% confidence interval on the

standard deviation of the uncertain function.

Coefficient of Variation: The coefficient of variation of the uncertain
function.

Standard Error: The standard error of the uncertain function.

Expected Loss: The expected loss of the uncertain function.

Expected Loss Ratio: The expected loss ration of the uncertain

function.

Expected Gain: The expected gain of the uncertain function.

Expected Gain Ratio. The expected gain ratio of the uncertain

function.

Simulation | Statistic Functions: A rank correlation matrix

provides a way to induce a specified degree of correlation among

the random samples drawn from several uncertain variables on

each trial of a Monte Carlo simulation.

Address: The address of the statistical

function.

Formula: The formula contained within

the statistic function cell.

Value: The computed value of the

statistic function.

Frontline Solvers 2025 Q1 Reference Guide Page 37

Simulation | Correlation Matrices: A Statistic Function is a cell

on the worksheet where the value of a summary statistic is

computed for some uncertain function cell.

Address: The address of the correlation

matrix.

Name: The name given to the correlation

matrix in the Edit Matrix dialog. Click the

Correlations icon on the Analytic Solver

ribbon to open.

Simulation | Parameters: Automatically vary a cell(s) when

running multiple simulations.

For more information on the PsiSimParam parameter, see the Yield Management Model 2

Simulation example under Help – Examples – Simulation Examples.

Address: The cell address of the

simulation parameter.

Formula: The formula of the simulation

parameter.

Type: Select the parameter type. The

default is “Simulation”. If Sensitivity,

Optimization, or Calculation is selected,

the parameter will be relocated to the

corresponding section of the Model tab.

Values or Lower Bound: The values or the

lower bound of the simulation parameter.

Upper Bound: The upper bound of the

simulation parameter.

BaseCase: The base case of the parameter. This value will appear in the cell

when the simulation parameter is not in use.

Data Science

Check the Data Science section of the task pane for data, reports, and results

generated by Analytic Solver Data Science. For more information, see the

Analytic Solver Data Science User Guide.

Frontline Solvers 2025 Q1 Reference Guide Page 38

Decisions

You’ll find components of Decision Tables, Decision Trees and Box functions

included under Decisions, in the Solver Task Pane.

Decision Table – All decision tables included in the model are

organized under this table heading. A decision table is a tool used

to specify actions to perform based on specific conditions. It

contains a set of rules, or conditions, that are evaluated, and once a

condition is met, a specific set of actions is “triggered” or

performed.

For more information, see the chapter, Using Decision Tables, within the

Analytic Solver User Guide.

Name: The name of the Decision Table.

Address: The cell range of the decision

table, includes the decision table in it’s

entirety, excluding the decision table
name located in the upper left hand corner

of the table.

Address: The cell address of the

PsiDecTable() function.

Formula: The complete PsiDecTable()

function. For more information on this
function, see PsiDecTable that appears

later in this guide.

Decision Trees – Decision Trees are a useful graphical and

computational aid for problems that involve sequential decisions

and events, where there are a small number of decision alternatives

at each step, and a small number of alternative outcomes for each

event.

For more information on Decision Trees see the chapter, Examples: Decision
Trees, within the Analytic Solver User guide.

Location: The cell address where the decision tree is located. The column letter

indicates the column where first the node is located, while the row number

represents the topmost cell of the tree.

Certainty Equivalents: This option determines the evaluation criterion to be used

at each decision node in a decision tree. Choose Expected Value for a risk-

neutral criterion, that selects the alternative with the highest (if maximizing, or

the lowest if minimizing) expected value (probability-weighted average) at each

node. Choose Exponential Utility Function to use a criterion that incorporates

risk aversion. You can set the shape of the utility function with the Risk

Tolerance, Scalar A and Scalar B options.

Frontline Solvers 2025 Q1 Reference Guide Page 39

Decision Node EV/CE: This option

determines how a decision tree should be

evaluated. Choose Maximize to

maximize the Expected Value or

Certainty Equivalent of the alternatives at
each decision node or Minimize to

minimize the EV or CE at each node.

Risk Tolerance: This option determines

the shape of the exponential utility

function, used to choose an alternative at

each decision code, when you select the

Certainty Equivalents option Exponential

Utility Function. The exponential utility

function takes the form U = A – B*EXP(-

x/RT) where x is the value of the

alternative, RT is the Risk Tolerance you

set with this option, and A and B are
parameters you set with the Scalar A and

Scalar B options.

Scalar A: This option determines the

shape of the exponential utility function,

used to choose an alternative at each

decision code, when you select the

Certainty Equivalents option Exponential

Utility Function. The exponential utility

function takes the form U = A – B*EXP(-

x/RT) where x is the value of the

alternative, RT is the Risk Tolerance option, A is the value you set with this
option, and B is the Scalar B option.

Scalar B: This option determines the shape of the exponential utility function,

used to choose an alternative at each decision code, when you select the

Certainty Equivalents option Exponential Utility Function. The exponential

utility function takes the form U = A – B*EXP(-x/RT) where x is the value of

the alternative, RT is the Risk Tolerance option, A is the value you set with this

option, and B is the Scalar B option.

Decision Tree Nodes – Represent a point in the tree where a choice

must be made. The decision node splits into branches representing

different decisions or actions. The initial node determines the

objective of the tree: to maximize or minimize some value at the

node.

Name: The name of the decision tree.

Address: The location of the first node in the tree.

Node Type: Decision Node, Event Node or Terminal Node

• A decision node represents a point where a decision or test is made.

• An event node represents an outcome that is uncertain.

• A terminal node is the final node in a decision tree. It does not split any

further and represents the outcome or prediction for a given input.

Optimal Value: This value is computed automatically by the formulas on the

Excel worksheet; you cannot edit it in the Task Pane. If you change the Decision

Node EV/CE option on the Platform tab from Maximize to Minimize or vice

versa, the number will be recomputed and will probably change.

Frontline Solvers 2025 Q1 Reference Guide Page 40

Rollback Value: This value is also

computed automatically by the formulas

on the Excel worksheet; you cannot edit

it in the Task Pane. The field holds the

“rollback value” at this node, taking into
account the values and probabilities of

each “downstream” event node, and the

best-choice value at each “downstream”

decision node (as well as this node). If

you change the Decision Node EV/CE

option on the Platform tab from

Maximize to Minimize or vice versa, the

rollback value will be recomputed and

will probably change.

Decision Tree Branch – A decision tree branch represents a

possible outcome or path that results from a decision or test made

at a decision node in a decision tree.

Name: The name of the branch.

Value: This is the value of a Decision

Tree Event Branch. It represents a gain or

loss associated with this alternative. You

can edit the value as it appears in the Task

Pane; when you press Enter, the value is
updated automatically on the Excel

worksheet.

Chance: This is the chance (probability)

of occurrence of a Decision Tree Event

Branch. It must be a value between 0 and

1. You can edit the value as it appears in

the Task Pane; when you press Enter, the value is updated automatically on the

Excel worksheet. When you edit the Chance associated with one Event Branch,

you may cause the sum of the chances (probabilities) of all the Event Branches

related to one Event Node to be different from 1. If this occurs, the Event Node

will be highlighted in red in the Task Pane. You should edit the Chance entries
for the other Event Branch(es) so the probabilities sum to 1; then the red

highlight will disappear.

Box Functions – Custom functions are designed to enhance

functionality by allowing users to define and utilize their own

specialized operations within models. They are invoked similarly

to standard functions using a name and parameter values. These

custom functions are polymorphic, meaning they can operate on

different data types, and multithreaded, allowing concurrent

computation to improve performance.

For more information, see the Using Custom Functions chapter within the

Analytic Solver User Guide.

Frontline Solvers 2025 Q1 Reference Guide Page 41

Address: The cell address of the box

function.

Box Function Function – A Box Function is invoked using the

PsiBoxFunction() function.

For more information on this function see

the Psi Function Reference chapter that

appears later in this guide.

Address: The cell address of
PsiBoxFunction().

Formula: The formla in the cell addresss.

Value: The calculated value of the box

function.

Decisions | Parameters – PsiCalcParam() functions appearing in

the worksheet are listed here. This function automatically varies a

cell when running multiple calculations.

For more information on the PsiCalcParam

parameter, see the Calculation Parameter Example

under Help – Examples – Decision Table and

Decision Tree Examples.

Address: The cell address of the

calculation parameter.

Formula: The formula of the calculation

parameter.

Type: Select the parameter type. The

default is “Calculation”. If Sensitivity,

Optimization, or Simulation is selected,
the parameter will be relocated to the

corresponding section of the Model tab.

Frontline Solvers 2025 Q1 Reference Guide Page 42

Values or Lower Bound: The values or the lower bound of the calculation

parameter.

Upper Bound: The upper bound of the calculation parameter.

BaseCase: The base case of the parameter. This value will appear in the cell
when the calculation parameter is not in use. Note: it is not possible to "see" the

basecase value in action unless another type of parameter analysis is being

performed.

Data Source

When creating a custom visual in Power BI or Tableau, use

PsiDataSrc() and PsiModelSrc() to specify the parameters in the

Excel model that you would like to be able to edit or chart in

Power BI or Tableau.

For more information on these two functions, see the Tableau and Power BI

chapters within the Analytic Solver User Guide as well as the PowerBI/Tableau
optimization and simulation examples at Help – Examples – Optimization

Examples or Help – Examples – Simulation Examples.

Address: The address of the

PsiModelSrc() or PsiDataSrc() functions.

Formula: The formula contained in the

cell address.

Input Data

Cells denoted as inputs using PsiInput functions. PsiInput marks a cell as an

input to a workbook being solved by the Solver SDK or through Frontline’s

RASON service.

Address: The cell address of the PsiInput

function.

Formula: The formula contained within
the cell address.

Output Tab

The Output tab acts as a central hub for monitoring and exporting results during

and after the optimization process. If solving takes more than a few seconds, the

Output tab will automatically appear to display real-time information about the

solving process, presenting a "running chart" to track the best objective achieved

as the model progresses.

Use the buttons at the top of the Output tab to pause or stop the Solver,

restore the original values of the decision variables, copy the solution message

log to the Windows Clipboard (so you can paste it into another application),

erase the solution log, export the Solver results to Microsoft's Power BI or

Tableau, analyze or solve the model.

Frontline Solvers 2025 Q1 Reference Guide Page 43

Note: For more information on diagnosing a model, see the Solver Diagnosis

Results topic that appears later in this guide. For more information on exporting

final results to Power BI or Tableau, see the Analytic Solver User Guide.

 Analytic Solver Desktop

 Analytic Solver Cloud

The current best objective and other vital information, including a running chart

of the objective value, are displayed at the bottom of the Output tab. This

provides users with an ongoing view of the optimization progress. Use the
"Verbose" option for log level, on the Platform tab, to choose how much detail

is included in the solution log. Click the green hyperlinks in the output to bring

up the integrated help.

The screenshot below displays the Output pane while a large mixed-integer

programming (MIP) model is being solved, using the LP/Quadratic Solver.

Notice the fields at the top, above the graph:

Best Integer Objective: The best objective found so far that satisfies all

constraints including the MIP constraints.

Current Objective: The objective for the node currently being solved in the

branch and bound tree.

Nodes: The number of solved nodes in the branch and bound tree.

Iterations: Number of trial points solved.

Relaxed Objective: This is the objective of the model when solved without

integer constraints.

Best Possible Objective: The "best bound" on the global optimum's objective

value that the Solver has uncovered, thus far.

Integer Gap: The maximum percentage difference between the objective value

of the current best integer solution, Best Integer Objective, and the best possible

objective value, Best Possible Objective. The integer gap is an indicator of how
close the current integer solution is to being optimal. A smaller integer gap

suggests that the current solution is near-optimal. In practice, monitoring the

integer gap can help decide whether to keep searching for better solutions or to

accept the current solution as adequately optimal.

Pause Solver

Restore Original Variable Values

Copy to Clipboard Erase Solution Log

Solve Model

Export Final Results to Power BI or Tableau - The

final solution can be used to produce visual and

detailed analytical results that can be shared or further

processed in Tableau or Power BI.

Restore Variables

Pause Solver Copy to Clipboard

Solve Model

Analyze model – For more results on diagnosis

results, see the Solver Diagnosis Results topic.

Frontline Solvers 2025 Q1 Reference Guide Page 44

Output Pane for LP/QP Solver Engine solving MIP

In the case of a nonlinear model solving with the GRG Solver, the following
fields are displayed.

Current Objective: The best objective value found, so far.

Iterations: The number of trial points solved.

Number of Infeasibilities: The number of infeasible constraints.

Output Pane for GRG Nonlinear Solver Engine solving nonlinear model

Frontline Solvers 2025 Q1 Reference Guide Page 45

When the Evolutionay engine solves a nonsmooth model, the following fields

are displayed.

Current Objective: The objective value for the current iteration.

Iterations: The number of trial points solved.

Local Searches: When the evolutionary algorithm generates a new best point, a

local search is conducted to try to improve that point. This field reports the

number of local searches performed, thus far, in the solution process.

Generations: The number of generations of starting points generated so far in the

solution process.

Best Objective: The best objective found so far, that satisfies all constraints.

Output Pane for Evolutionary Engine solving nonsmooth model

Finally, the screenshot below displays the output pane when either the SOCP or

Interval Solvers are in use.

Output Pane for SOCP or Interval Solvers

Frontline Solvers 2025 Q1 Reference Guide Page 46

Output Pane Example Output

Example of solved linear model Example of completed simulation

 Example of completed stochastic

 optimization model

Frontline Solvers 2025 Q1 Reference Guide Page 47

Tools Tab

Use the Tools tab to cycle through simulation trials, calculation, optimization,

sensitivity and simulation parameter results as well as access the Freeze and

Thaw options. The Freeze and Thaw options allow you to share Analytic

Solver models containing PSI function calls with users who do not have

Analytic Solver installed. (“Freeze” will save PSI function call formulas in cell

comments, and “Thaw” will restore them later as formulas.) You can find more
information on this tab in the next section, below.

Simulation: Cycle through the results of

PsiSimParam().

Optimization: Cycle through the results of

PsiOptParam:

Calculation: Cycle through the resuls

from PsiCalcParam.

Trials: Set the number of trials to be

performed in a simulation.

Trial to Display: Sets the trial number to

be displayed on the worksheet.

For more information PsiSimParam,

PsiOptParam and PsiCalcParam, see the PSI Function Reference chapter that

appears later in this guide.

Table Names in the Solver Task Pane
Analytic Solver now recognizes tables in the Solver Task Pane, improving

model clarity and organization. Data in the table is reported, in general, as

Table_Name[Column_Name]. For example, assume cells I21:J27 are contained

within the table, Cash_Liability, as shown in the screenshot below.

When the constraint (I22:I27 >= J22:J27) is entered, Solver automatically

identifies the table range cells I22:I27 as “Cash_Liability[Total w Int]” and table

range cells J22:J27 as “Cash_Liability[Liability]” in the Add Constraint dialog.

Frontline Solvers 2025 Q1 Reference Guide Page 48

When new data is added to the table, Solver expands the constraint cell

addresses to include it. Since these cells are located in a table, all Excel formulas

update accordingly. Solver automatically detects the new table dimensions, so

there’s no need to adjust the Solver dialog—just click "Solve" to generate the

solution.

Right-Click Context Menus
With the Ribbon, you can easily ‘discover’ and access the function you want

with a few mouse clicks. But you can access most of the same functions without

using the Ribbon: Just select any worksheet cell, and right-click to display the

Excel context menu. At the bottom of this menu, select the Analytic Solver
choice, as shown on the next page. (Analytic Solver Cloud does not support a

right-click menu.)

Frontline Solvers 2025 Q1 Reference Guide Page 49

The choices on the Analytic Solver context submenu correspond one-for-one

with most of the buttons on the Ribbon. Cascading submenus appear for each

option, corresponding one-for-one with the dropdown galleries and menu
choices that appear for the buttons on the Ribbon. Just select (left-click) the one

you want.

Context-Sensitive Charts
With the Ribbon, you can access many GUI functions with a few mouse clicks.

But you can work with existing uncertain variables and functions without even

using the Ribbon.

• Hold the mouse pointer over an uncertain variable cell (any cell

containing a PSI Distribution function call) for about one second to

display a pop-up miniature probability density function (PDF) chart for

that variable, whenever Interactive Simulation is enabled. (Supported

only in Analytic Solver Desktop.)

• Double-click an uncertain variable cell to display the Uncertain

Variable dialog in Analytic Solver Desktop. This dialog displays a

chart of the distribution and allows you to change the distribution type

and parameters, fit a distribution to your data, and view statistics and

percentiles.

Frontline Solvers 2025 Q1 Reference Guide Page 50

When using Anlaytic Solver Cloud, double click the uncertain variable

cell in the Model tab of the Solver task pane to open the Uncertain

Variable dialog.

• Hold the mouse pointer over an uncertain function cell (any cell

containing a PsiOutput() call, or any cell referenced by a PSI Statistics

function call) for about one second to display a pop-up miniature fre-

quency distribution chart, whenever Interactive Simulation is enabled.

(Supported only in Analytic Solver Desktop.)

Frontline Solvers 2025 Q1 Reference Guide Page 51

• Double-click an uncertain function cell to display the Uncertain

Function dialog (shown below), which displays a chart of simulation

results and sensitivity analysis, and allows you to adjust bounds, fit an

analytic distribution to the results, and view statistics and percentiles.

When using Anlaytic Solver Cloud, double click the Uncertain

Function cell in the Model tab of the Solver task pane to open the

Uncertain Function dialog.

The Uncertain Variable and Uncertain Function dialogs are described in later

sections of this chapter. When using both dialogs in Analytic Solver Desktop,

you can right-click the mouse over the chart and select from the context menu

to add or remove a Lower Cut, Upper Cut, or Marker to the chart.

Frontline Solvers 2025 Q1 Reference Guide Page 52

Using the Distribution Galleries
The Distribution Button on the Ribbon allows you to access a comprehensive set

of distributions in six groups: Common, Advanced, Exotic, Discrete, Custom,

and Certified. These are used to create new uncertain variables in your model,

by selecting a type of probability distribution to be placed into the currently

selected cell on the worksheet.

This will open the Uncertain Variables dialog, with the selected distribution

charted with default parameters. You can then adjust parameters, add ‘control’

parameters that will truncate and/or shift the distribution, and perform other

actions to obtain exactly what you want. When you click the Save icon in the

Uncertain Variables dialog title toolbar, a formula such as =PsiNormal(0,1) is
written to the currently selected (active) cell.

Three features are located at the top of the Distributions dialog and are visible

when any tab is selected: Distribution Wizard, Import Model and Convert

Model. See below for an in-depth explanation of each.

• The Distribution Wizard assists users in choosing the best

distribution(s) to model real world behavior.

• Use Import Model to import a probability distribution saved in

Frontline’s RASON format. (See www.RASON.com, for more

information on RASON, Frontline’s modeling language and REST

API.)

• Use Convert to translate an existing model using @RiskTM functions to

a model that can be solved by Analytic Solver.

Common Distributions

Clicking Common will display a gallery of common probability distributions.

You can select any of the 10 common probability distributions shown above.

For an explanation of continuous versus discrete distributions, see the section

“Uncertain Variables and Probability Distributions” in the Frontline Solver

User Guide chapter “Mastering Simulation and Risk Analysis Concepts.”

http://www.rason.com/

Frontline Solvers 2025 Q1 Reference Guide Page 53

Advanced Distributions

Clicking Advanced displays the gallery of Advanced probability distributions

shown below:

For an explanation of these advanced distributions, see the section “Uncertain

Variables and Probability Distributions” in the Frontline Solver User Guide

chapter “Mastering Simulation and Risk Analysis Concepts.”

Exotic Distributions

Clicking Exotic displays the gallery of custom probability distributions shown

below:

For an explanation of these Exotic distributions, see the “Psi Function

Reference” chapter within this guide.

Frontline Solvers 2025 Q1 Reference Guide Page 54

Discrete Distributions

Clicking Discrete displays the gallery of custom probability distributions shown

below:

For an explanation of continuous versus discrete distributions, see the section

“Uncertain Variables and Probability Distributions” in the Frontline Solver

User Guide chapter “Mastering Simulation and Risk Analysis Concepts.”

Custom Distributions

Scolling down and clicking Custom displays the gallery of custom probability

distributions shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 55

For an explanation of analytic versus custom distributions, see the section

“Uncertain Variables and Probability Distributions” in the Analytic Solver User

Guide chapter “Mastering Simulation and Risk Analysis Concepts.” For a

description of the Resample, Sip, TSSip and Slurp choices, see “Stochastic

Libraries: SIPs, TSSips and SLURPs” in the same chapter. For hints and
mathematical forms of each of these distributions, see the section “Custom

Distributions” in the chapter “PSI Function Reference” within this guide.

Distribution Wizard

Use the Distribution Wizard to assist in selecting the best distribution to model

behavior occurring in the real world. Select a blank cell in the active workbook

and click Analytic Solver – Distributions – Distribution Wizard to open the

Distribution Wizard. From here you can upload existing historical data, or

select one of over 50 distributions, in order to create a new uncertain variable in

your model. The distribution will be inserted into the selected cell in your

worksheet. The distribution wizard guides you into selecting a distribution that

will best model the real world behavior that you are attempting to simulate.

Import Model

Click Import Model to import a Probability Model defined using Frontline’s

RASON modeling language. Using these Shared Information Probability

resources (SIPs, SLURPs and DISTs), users can ensure that their group or

organization uses consistent data about uncertain/risky variables across
simulation or decision models, enabling model results to be meaningfully

compared.

Note: Only a license for Analytic Solver Comprehensive supports the Import

Model functionality. This button will be disabled for all other licenses:

Analytic Solver Optimization/Simulation/Data Science, Analytic Solver

Upgrade and Solver Academy.

Frontline Solvers 2025 Q1 Reference Guide Page 56

Importing Distributions into Excel

To import Probability Distributions from RASON into an Excel model, open a

new worksheet and click Distributions on the Analytic Solver ribbon to open the

Analytic Solver Distributions dialog. Click Import Model to open the Import

Dialog. Select the desired probability model to import the distribution library.

Click Import.

The Import Probability Model window opens displaying all the distributions that

were exported to the distribution library.

Select each distribution to expose the Location field.

Enter the address of a blank cell, say cell A1, then scroll down to the bottom of

the dialog and click Import.

The exported distribution will be imported into the Location cell address. Using

this Shared Information Probability resource, we can ensure that the uncertain

variables are consistent across platforms. See the Analytic Solver User Guide

for information on exporting a Probability Model to www.RASON.com.

Convert

Analytic Solver converts existing @RiskTM functions to Analytic Solver Psi

Functions at the click of a button. If you have an existing model setup to use

@Risk, click Distributions – Convert to automatically transform the @Risk
functions to Psi Functions, then solve with Analytic Solver. The steps below

illustrate the ease of use of this feature.

Steps to Convert Model

1. Open model with existing @Risk functions in Excel. Note that Solver will

overwrite the existing @Risk functions within the workbook. If you want

to keep the original version of your model, you’ll need to save a copy now.

2. Click Analytic Solver – Distributions – Convert.

http://www.rason.com/

Frontline Solvers 2025 Q1 Reference Guide Page 57

3. The following message appears. Click Yes to continue the conversion or No

to cancel the conversion and return to the unchanged workbook.

4. If Yes is selected, Solver will proceed to convert any @Risk functions

located anywhere within the workbook, to a comparable PSI function.

• If successful, a dialog will appear at the end of the conversion stating

the number of functions converted.

• Analytic Solver supports one uncertain variable per Excel cell. If this

message is returned, ensure that all cells contain no more than 1

uncertain variable, then try the conversion again.

• If there are unsupported @Risk functions present in the workbook, the

following message will be returned. You will need to manually enter a

comparable Psi function in order to solve your model with Analytic
Solver. A full list of all unsupported functions may be found below.

See the Psi Function Reference chapter, that appears later in this guide,

for a complete list of all PSI functions.

• If there are no @Risk functions present in the workbook, the following

message will be returned.

Frontline Solvers 2025 Q1 Reference Guide Page 58

Exceptions

Typically, model conversion will proceed without incident. However, the

transformation of a few @Risk functions is not supported. These functions are

listed below. If one or more of these functions is present in the workbook, the

error, “The Solver converted _ functions, and _ functions were ignored, or not

supported.”, (shown above) will be returned.

Distributions and Properties

RiskConvergenceLevel RiskResultsGraph RiskResultsGraph RiskSensitivityStatChange RiskSimulationInfo

RiskSplice RiskStopRun

Time Series

RiskBMMR RiskBMMRJD RiskGBM RiskGBMJD

Project

RiskProjectAddCost RiskProjectAddDelay RiskProjectRemoveTask

RiskProjectResourceAdd RiskProjectResourceRemove RiskProjectResourceUse

Alternative Distributions

RiskBetaGeneralAltD RiskCauchyAltD RiskExponAltD RiskExtvalueAltD RiskExtvalueMinAltD

RiskHypSecantAltD RiskInvgaussAltD RiskLaplaceAltD RiskLevyAltD RiskLogisticAltD

RiskLogLogisticAltD RiskLognormAltD RiskNormalAltD RiskParetoAltD RiskPareto2AltD

RiskPearson5AltD RiskPertAltD RiskRayleightAltD RiskTriangAltD RiskUniformAltD

RiskWeibullAltD

Using the Results Galleries
The Results button on the Ribbon allows you to access a full range of statistics

in four groups – Output, Statistic, Measure, and Range – which are used to

compute statistics over the full range of outcomes for the uncertain functions in

your model, by placing a PSI Statistics function call into a cell on the worksheet.

Click the Results button, then select the desired group on the left (Output,

Statistic, Measure and Range) and the desired statistic, measure, or range, on the
right. A second dialog will appear asking for the output cell for which to

compute the result and also a cell address where you'd like to place the statistic.

Click Insert.

Frontline Solvers 2025 Q1 Reference Guide Page 59

Output Menu

The Output menu is used to specify that a worksheet cell contains an uncertain

function. Any formula cell that depends, directly or indirectly, on an uncertain

variable cell contains a distribution of outcomes, but Analytic Solver saves the

outcomes – so they can be reported, charted, or summarized by statistics – only

for formula cells that are referenced by PSI Statistics functions, or that either

contain or are referenced by a PsiOutput() function.

You can tell Analytic Solver that a cell (for example B11) is an uncertain

function either by adding a call to PsiOutput() to the formula already in the cell

– so it reads for example =B4*(B5-B6)-B7 + PsiOutput() – or by placing a
formula =PsiOutput(cell) in some other cell, so it reads for example

=PsiOutput(B11). You can also tell Solver that cell is an uncertain function by

simply using cell as the first argument of a PSI Statistics function call in some

other cell – for example =PsiMean(B11) or =PsiFrequency(B11,0,n).

When you click the Output button, a special ‘gallery’ of two choices appears:

Frontline Solvers 2025 Q1 Reference Guide Page 60

The first choice, “In Cell,” adds PsiOutput() to the formula in the active cell.

This can be done by simply clicking the Results button. The second choice,

“Referred Cell,” displays a small dialog, like the one shown on the previous

page, where you can enter the cell address. The formula =PsiOutput(activecell)

is written to that cell.

Statistics Functions

Clicking the Statistic gallery/menu displays the PSI Statistics functions.

These fnctions compute classical statistics – measures of central tendency or

measures of dispersion:

• Mean, the average of all the values

• Mode, the most frequently occurring single value

• Variance, which describes the spread of the distribution of values

Frontline Solvers 2025 Q1 Reference Guide Page 61

• StdDev for standard deviation, the square root of variance

• Skewness, which describes the asymmetry of the distribution of values

• Kurtosis, which describes the peakedness of the distribution of values

• Correlation for the Pearson product moment correlation coefficient

• MeanCI, which finds a confidence interval for the mean

• MeanCIB, returns the lower or upper bound of the confidence interval (half

width) of the mean value, at the confidence level, for the specified uncertain

function

• PsiStdDevCI, which finds a confidence interval for the standard deviation

• PsiCITrials, which estimates the number of trials required to find a sample

mean value within a specified confidence interval

• PsiCoeffVar, which finds the coefficient of variation for the specified
uncertain function

• PsiStdErr, which finds the standard error of the mean of the specified

uncertain function

• PsiMedian, returns the median value for the specified uncertain function.

• PsiKendallTau, returns the correlation between the two specified uncertain

cells based on concordance.

• PsiSpearmanRho, which returns a non-parametric correlation coefficient

• PsiTargetCI, returns the confidence interval of the cumulative probability
of the target value in the distribution of trial values for the specifid

uncertain function.

• PsiPercentileCI, returns the confidence interval of a percentile (0.01 –

0.99) for the specified uncertain function.

For more information on these functions, see “PSI Statistics Functions” in the

chapter “PSI Function Reference.”

Risk Measure Functions

Clicking the Measure menu displays the gallery/menu options of PSI Statistics

functions shown below:

Frontline Solvers 2025 Q1 Reference Guide Page 62

These functions compute risk measures – they are most often used in

quantitative finance, but they may be used in any risk analysis model:

• MeanAbsDev which measures absolute deviations from the mean

• SemiVariance for semivariance or lower partial moment, which measures

and weights negative deviations from the mean

• SemiVariance2 returns the variance of the values in the distribution below

or above the mean

• SemiDeviation for semideviation, the square root of semivariance (qth root

for the lower partial moment)

• SemiDeviation2 returns the standard deviation of the values in the

distribution below or above the mean

• ValueAtRisk which measures Value at Risk for a given percentile (.01 to

.99)

• CondValueAtRisk, which measures Conditional Value at Risk

• ExpLoss which returns the expected loss for a specified uncertain function

• ExpLossRatio which returns the expected loss ratio for a specified

uncertain function

• ExpGain which returns the expected gain for a specified uncertain function

• ExpGainRatio which returns the expected gain ratio for a specified

uncertain function

• ExpValMargin which returns the expected value margin for a specified

uncertain function

 For more information on these functions, see “PSI Statistics Functions” in the

chapter “PSI Function Reference.”

Range Functions

Clicking the Range menu displays the menu/gallery of PSI Statistics functions

shown on the next page.

Frontline Solvers 2025 Q1 Reference Guide Page 63

These functions compute values related to the full range of outcomes of the

uncertain function:

• Maximum, the maximum value across all the trials

• Minimum, the minimum value across all the trials

• Percentile, which provides percentile values from 1% to 99%

• Range, the difference between PsiMax and PsiMin

• Target, the proportion of values less than or equal to a target value

• Frequency, which returns an array of frequencies with which values fall

into a number of “bins” that you specify

• Data, which returns an array of raw trial values from the Monte Carlo

simulation process

• Count, which returns a count of all, successful, or failed trials

• PercentileD, returns a descending percentile (0.01-0.99) value for the

specified uncertain function

• TargetD, returns the descending cumulative probability of the target value

in the distribution of trial values for the specified uncertain function

• PtoX, returns a percentile (0.01-0.99) value for the specified uncertain

function

• QtoX, returns a descending percentile (0.01-0.99) value for the specified

uncertain function

• XtoP, returns a cumulative probability of the target value in the distribution

of trial values for the specified uncertain function

• XtoQ, returns the descending cumulative probability of the target value in

the distribution of trial values for the specified uncertain function.

• Percentiles, returns all percentile (0.01-0.99) values for the specified

uncertain function.

For more information on these functions, see “PSI Statistics Functions” in the

chapter “PSI Function Reference.”

Frontline Solvers 2025 Q1 Reference Guide Page 64

Six Sigma Functions

Clicking the Six Sigma menu displays the gallery/menu options of PSI Statistics

functions shown below.

These functions (introduced in Analytic Solver V2015) compute values related

to the Six Sigma indices used in manufacturing and process control.

• SigmaCP calculates the Process Capability.

• SigmaCPK calculates the Process Capability Index.

• SigmaCPKLower calculates the one-sided Process Capability Index based

on the Lower Specification Limit.

• SigmaCPKUpper calculates the one-sided Process Capability Index based
on the Upper Specification Limit.

• SigmaCPM calculates the Taguchi Capability Index.

• SigmaDefectPPM calculates the Defect Parts per Million statistic.

• SigmaDefectShiftPPM calculates the Defective Parts per Million statistic

with a Shift.

• SigmaDefectShiftPPMLower calculates the Defective Parts per Million

statistic with a Shift below the Lower Specification Limit.

• SigmaDefectShiftPPMUpper calculates the Defective Parts per Million
statistic with a Shift above the Upper Specification Limit.

• SigmaK calculates the Measure of Process Center.

• SigmaLowerBound calculates the Lower Bound as a specific number of

standard deviations below the mean.

• SigmaProbDefectShift calculates the Probability of Defect with a Shift

outside the limits.

• SigmaProbDefectShiftLower calculates the Probability of Defect with a

Shift below the lower limit.

• SigmaProbDefectShiftUpper calculates the Probability of Defect with a
Shift above the upper limit.

• SigmaSigmaLevel calculates the Process Sigma Level with a Shift.

Frontline Solvers 2025 Q1 Reference Guide Page 65

• SigmaUpperBound calculates the Upper Bound as a specific number of

standard deviations above the mean.

• SigmaYield calculates the Six Sigma Yield with a shift, i.e. the fraction of

the process that is free of defects.

• SigmaZLower calculates the number of standard deviations of the process

that the lower limit is below the mean of the process.

• SigmaZMin calculates the minimum of ZLower and ZUpper.

• SigmaZUpper calculates the number of standard deviations of the process

that the upper limit is above the mean of the process.

For more information on these functions, see “PSI Six Sigma Functions” in the

chapter “PSI Function Reference.”

Using the Uncertain Variable Dialog
The Uncertain Variable dialog, pictured below in its simplest form and its most

comprehensive form, offers an easy way to create or edit an uncertain variable
with an analytic or custom probability distribution.

Analytic Solver Desktop – Uncertain Variable Dialog with Chart Options Pane Closed

Analytic Solver Desktop – Uncertain Variable Dialog with Chart Options Pane Open

Frontline Solvers 2025 Q1 Reference Guide Page 66

Analytic Solver Cloud

 It appears when you take any of four actions:

• When you double-click a cell that contains a PSI Distribution function.

Note: This action is not supported in Analytic Solver Cloud.

• When you double-click a cell address listed under “Uncertain

Variables” in the Model navigation pane

• When you select a distribution on any of the Distribution drop-down

galleries or menus (Continuous, Discrete, Custom, and Certified)

• For cells that are both uncertain variables and uncertain functions,

when you click the green Variable icon in the Uncertain Function title

bar. Note: This functionality is not supported in Analytic Solver

Cloud.

You can move the Uncertain Variable dialog by clicking and dragging its title

bar, and resize it by clicking and dragging any of its four edges. Once you do

this for a given uncertain variable cell, the position and size of the dialog are
remembered – if you close and reopen the dialog, it will appear just as before.

Title Toolbar

The toolbar, supported in Analytic Solver Desktop only, alongside the title of

the Uncertain Variable dialog provides quick tools to work with uncertain

variables. ToolTips appear for each one if you hover the mouse over the icon.

The role of each tool is explained below.

• The Variables tool (leftmost) displays a dropdown outline with check

boxes of all the uncertain variable cell addresses in your model. If you click
one of these cell addresses, the Excel selection will move to that cell, and

the Uncertain Variable dialog will display and edit the uncertain variable in

that cell. If you check boxes next to several uncertain variables, the dialog

displays Overlay charts that include all of these variables.

Frontline Solvers 2025 Q1 Reference Guide Page 67

• The Save tool writes a PSI Distribution function call into the currently

selected cell that reflects the distribution type, parameters, and property

functions currently chosen in the Uncertain Variable dialog.

• The Print tool prints the chart, statistics or percentiles currently shown in

the Uncertain Variable dialog on the default printer. The arrow next to this
tool displays Print Preview, Printer Settings, and Page Settings choices.

• The Copy tool copies the chart currently shown in the Uncertain Variable

dialog to the Windows Clipboard. Use Edit Paste in almost any Windows

application to paste the chart image into another document.

• The Fitting tool displays the Distribution Fitting dialog, used to automati-

cally fit a distribution type and parameters to user-supplied data. For more

information, see “Distribution Fitting” at the end of this section.

• If the active cell is both an uncertain variable and an uncertain function, a

blue Show Output tool appears on the title bar. Click this tool to display
the Uncertain Function dialog for this cell.

• The Chart View Control toolbar can be used to convert the chart to a 3D

chart, rotate the chart up, down, left or right, or reset the chart back to its

default settings.

Tabs and Panes

Tabs: The Uncertain Variable dialog in all versions of Analytic Solver has
three tabs: PDF (Probability Density Function), CDF (Cumulative Distribution

Function), and Reverse CDF. Each tab displays different information about the

distribution.

Panes: In Analytic Solver Desktop, the border at the right can be clicked to

show additional information. The following sections explain the role of each

pane.

The Uncertain Variable dialog with the right pane closed is pictured

immediately below. The dialog with the right pane open is the subsequent

picture. See above for the Uncertain Variable dialogs in Analytic Solver Cloud.

Frontline Solvers 2025 Q1 Reference Guide Page 68

Analytic Solver Desktop - Uncertain Variable dialog with right pane closed

Analytic Solver Desktop - Uncertain Variable dialog with right pane open:

Frontline Solvers 2025 Q1 Reference Guide Page 69

The drop down menu in the right pane showing additional views:

Note: Neither the Axis Options nor Markers menu options are currently

supported in Analytic Solver Cloud.

Editable Confidence Intervals

In Analytic Solver Desktop, the confidence intervals appearing at the top of the

chart are editable. In all versions of Analytic Solver, by default, red vertical

lines will appear, for most distributions, at the 5% and 95% cutoff values,

effectively displaying the 90th confidence interval.

In all versions of Analytic Solver, percentile or cutoff values can be altered by

moving the red vertical lines to the left or right. In Analytic Solver Desktop,

percentile or cutoff values may also be altered by typing in the desired value or
percentile.

Regardless of how a cutoff value is changed, the remaining cutoff value will

automatically change accordingly. Likewise, when a percentile value is

changed, the remaining percentiles will automatically update.

Parameters View

The parameters specific to the currently selected distribution type are displayed

when the Parameters view is selected in the right pane. The Parameters section

of the pane displays both “English” and “mathematical” names for each

parameter. In the Value column (the column where the values for the

distribution are entered such as minimum value, likely value and maximum

value), you can enter or select a value for the parameter, by either:

• Typing a numeric value or a cell address into the field. The chart is

redrawn as soon as you finish and move away from the field.

• Clicking the cell reference button at the right edge of the Value field,
then point and click to select a worksheet cell with the mouse. You can

select a cell on the current worksheet or on another worksheet. This

option is not supported in Analytic Solver Cloud.

Some parameter values may be invalid for the current distribution type (for

example, a negative number for the Standard Deviation, or a negative Mean for

a LogNormal distribution), or may be inconsistent with other parameter values

(for example, a lower bound that’s greater than an upper bound for the

Triangular distribution). The box will show in the distribution area of the dialog

to warn you:

Frontline Solvers 2025 Q1 Reference Guide Page 70

You can proceed to change the upper bound of a Triangular distribution so it is

greater than a newly entered lower bound. If the parameters are still invalid

when you try and save the distribution or close the dialog, Analytic Solver will

warn you:

In Analytic Solver Desktop, you can still accept the invalid parameters and

continue – but the uncertain variable’s value will display as #VALUE! in this

case. Analytic Solver Cloud does not allow you to save a distribution with

invalid parameters.

Note that Alternate Forms of Psi Distribution Functions are not supported in the

Analytic Solver Cloud App.

Analytic Moments View

The Analytic Moments view displays numeric values for several summary

statistics that describe the current distribution. These are ‘analytic’ statistics,

computed entirely from the distribution type and parameters (most of the

formulas are shown in the chapter “PSI Function Reference”); they do not

require a Monte Carlo simulation or sampling of values from the distribution.

Frontline Solvers 2025 Q1 Reference Guide Page 71

Compound Distributions

Starting with V2016-R2, Analytic Solver includes the ability to sum multiple
independent random variables using compound distributions. A compound

distribution generates values for the sum of N independent identically

distributed uncertain variables. In other words, a compound distribution models

the probability that two independent events occur together. A distribution is

made compound through the use of the PsiCompound() property.

There are many common applications for compound distributions in industries

across the board. For example, in the insurance industry, compound

distributions may be used to estimate the amount of claim payouts to customers

or a portfolio of policies over a period of time by modeling the number of

claims paid, along with the size of each claim.

A compound distribution is made up of a "severity" distribution and a

"frequency" distribution. Assume the following compound distribution,
=PsiBeta(3, 2, PsiCompound(A2)), where A2 = PsiPoisson(100). PsiBeta(3,2)

is referred to as the "severity" distribution. The severity distribution is the

distribution to be added N times. PsiPoisson(100) is referred to as the

"frequency" distribution. The frequency distribution determines the size N of

the sum (i.e, how many PsiBeta to sum). N can be a constant but can also be

computed at each trial by drawing from a discrete distribution.

If an uncertain variable uses the PsiCompound() property to create a compound

distribution, you will see added fields on both the Parameter and Analytic

Moments menus.

On the Parameter menu, the Compound field now appears under Parameters. If

the distribution is not a compound distribution, this field will be blank.
PsiCompound takes three arguments: one required argument (number_cell) and

two optional arguments (deduction and limit). All arguments passed to

PsiCompound() will appear in this field.

The number_cell argument passes the number of random trial values to be

summed. Number_cell can be an integer, a cell containing an integer, a formula

evaluating to an integer, or a cell containing a discrete distribution. Currently,

all distributions except Psi multivariate distributions (PsiMVLogNormal,

Frontline Solvers 2025 Q1 Reference Guide Page 72

PsiMVNormal, PsiMVResample, and PsiMVShuffle), PsiSIP, PsiTSSip and

PsiSlurp may be compounded. The value passed to the deduction argument is

subtracted from every term of the compound sum which results in a shift of the

compound distribution by -N * deduction. If a trial value is larger than a

specified limit, then the trial value is reset to the limit.

Note: If a discrete distribution is passed to the number_cell argument, the

frequency distribution must be formulated in such a way that the trial values

generated by the distribution must be greater than 1. If not, trial values < 1 will

be set equal to 1.

On the Analytic Moments menu, four additional statistics will appear under

Compund Analytic Moments: Mean, Variance, Standard Deviation and

Skewness. For a complete example of a compound distribution, see the chapter

Examples: Simulation and Risk Analysis in the Analytic Solver User Guide.

Percentiles View

The Percentiles view, shown on the next page, displays numeric percentile

values (from 1% to 99%) for the current distribution. Like the values on the

Statistics tab, these percentiles are computed entirely from the distribution type

and parameters; they do not require a Monte Carlo simulation or sampling of

values from the distribution.

Frontline Solvers 2025 Q1 Reference Guide Page 73

The values displayed here represent 99 equally spaced points on the chart of the

Cumulative Distribution Function: In the Percentile column, the numbers rise

smoothly on the vertical axis, from 0 to 1.0, and in the Value column, the

corresponding values from the horizontal axis are shown. For example, the 75th

Percentile value is a number such that three-quarters of the values drawn from

the distribution are less than or equal to this value.

Chart Settings Views

The right pane of the Uncertain Variable dialog in Analytic Solver Desktop

contains controls that allow you to customize the appearance of the charts that

appear in the center of the dialog. When you change option selections or type

text in these controls, the chart area is instantly updated.

The controls are divided into three groups: Chart Type, Axis Options and
Markers. Using the Apply To options at the bottom of each view, you can

apply the new chart settings to this chart only, all uncertain variable charts on

this worksheet, or all uncertain variable charts in the workbook.

You can control the chart type, color, and 3D effects, the horizontal scale and

number format, and other elements such as gridlines. The chart settings in the

Uncertain Variable dialog are also available in the Uncertain Function dialog,

and a few additional settings are available there; they will be illustrated in more

detail in the section below “Chart Formatting, Copy/Paste and Printing.”

Note: Only the Chart Type menu is supported in Analytic Solver Cloud. When

using these applications, you can control the chart type and color.

PDF Tab

When the Uncertain Variable dialog is opened, the PDF (Probability Density

Function) tab is selected by default.

Frontline Solvers 2025 Q1 Reference Guide Page 74

• For continuous distributions, this tab displays a chart of probability

density, as shown earlier for the Normal distribution.

• For discrete distributions, this tab displays a chart of probability

mass, as shown below for the Binomial distribution.

 Analytic Solver Desktop

Analytic Solver Cloud

The value returned by the distribution function appears on the horizontal axis,

and the probability of occurrence of that value appears on the vertical axis.

CDF / Reverse CDF Tabs

The CDF (Cumulative Distribution Function) tab displays a chart of the

cumulative form of the distribution function, as shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 75

Analytic Solver Desktop

Analytic Solver Cloud

The value returned by the distribution function appears on the horizontal axis,

and the vertical axis shows the cumulative probability that a sample from this
distribution is less than or equal (on the CDF tab), or greater than or equal (on

the Reverse CDF tab) to the horizontal axis value.

Navigating Among Variable Cells

An easy way to navigate through your variables is to use the Task Pane at the

right of the workbook. Your entire model can be easily viewed and you can add,

delete, or even change variables by clicking on the green “+” sign below the

Model tab label to add, double-clicking on an existing variable to change it in a

dialog box which will pop-open, and by clicking once on a variable and then

clicking on red “X” below the Model tab label to delete it.

Frontline Solvers 2025 Q1 Reference Guide Page 76

 Analytic Solver Desktop Analytic Solver Cloud

Overlay Charts of Variables

You can also use the Variables tool to select several uncertain variable cells, and

display Overlay charts of the PDF, CDF, or Reverse CDF of all of the selected

variable cells. Simply open the outline by clicking the Uncertain Variables tool

on the top of the Uncertain Variable dialog, and check the boxes next to the

uncertain variables that you want to include.

Note: This functionality is not supported in Analytic Solver Cloud.

Below is an example of the PDF tab of the Uncertain Variable dialog with three
variables selected – a Normal distribution, Triangular distribution, and Uniform

distribution. You can improve the appearance of an Overlay chart by setting the

Transparency in the right-hand Chart Options pane, and by rotating a 3D version

of the chart using the Chart View Control toolbar.

Frontline Solvers 2025 Q1 Reference Guide Page 77

When you do this, the first uncertain variable cell you choose is the “primary”

variable. (In this case the primary variable is the uncertain variable in cell B6.)

The Statistics and Percentiles tabs will display information for this variable, and

distribution fitting will work with this variable. You won’t be able to “uncheck
the box” for this variable unless you uncheck all the others, or alternatively click

the cell address of a different variable, which makes that cell the “primary”

uncertain variable.

Using the Uncertain Function Dialog
The Uncertain Function dialog gives you easy access to the full range of

outcomes, as well as summary statistics, percentiles, and sensitivity analysis, for

an uncertain function. It appears when you take any of three actions:

• When you double-click a cell that contains a PsiOutput() function

call, or is referenced by a PSI Statistic function call in another cell

(This functionality is not supported in Analytic Solver Cloud.)

• When you double-click a cell address listed under “Functions” in the

Model navigation pane

• For cells that are uncertain variables and uncertain functions, when

you click the blue Function icon in the Uncertain Variable title bar.

(Not supported in Analytic Solver Cloud.)

You can move the Uncertain Function dialog by clicking and dragging its title

bar, and in Analytic Solver Desktop, resize it by clicking and dragging any of its

four edges. In Analytic Solver Desktop, once you do this for a given uncertain

variable cell, the position and size of the dialog are remembered – if you close

and reopen the dialog, it will appear just as before.

Unlike the Uncertain Variable dialog, where the chart is drawn, and statistics

and percentiles are computed analytically based on the distribution type and

parameters, the Uncertain Function dialog always reflects the results of the most

recent Monte Carlo simulation, based on trial values drawn in that simulation.

The charts show the frequencies with which uncertain function sample values
fall into certain ranges, called “bins;” the frequencies provide estimates of the

probabilities of occurrence of these values for the function. Similarly, the

statistics and percentiles are estimates of the true values for the function.

Frontline Solvers 2025 Q1 Reference Guide Page 78

Title Toolbar

The toolbar alongside the title of the Uncertain Function dialog in Analytic

Solver Desktop provides quick tools to work with uncertain functions. ToolTips

appear for each one if you hover the mouse over the icon. The role of each tool

is explained below.

Note: This toolbar does not currently appear in Analytic Solver Cloud.

• The Functions tool (leftmost) displays a dropdown outline of all the

uncertain function cell addresses in your model. If you click one of

these cell addresses, the selection will move to that cell, and the

Uncertain Function dialog will update to display and edit the uncertain

function in that cell.

• The Save and Close tool saves all changes made to the chart and then

closes the uncertain function dialog.

• The Print tool prints the chart, statistics or percentiles currently
shown in the Uncertain Function dialog on the default printer. The

arrow next to this tool displays Print Preview, Printer Settings, and

Page Settings choices.

• The Copy tool copies the chart currently shown in the Uncertain

Function dialog to the Windows Clipboard. Use Edit Paste in almost

any Windows application to paste the chart image into another

document.

• The Fitting tool displays the Distribution Fitting dialog, used to

automatically fit a distribution type and parameters to the simulation
result sample. For more information, see “Distribution Fitting” at the

end of this section.

• The PowerBI icon uploads the uncertain function distribution values

and statistics into Microsoft's Power BI. This applicaton converts data

into readable charts to allow you to visualize your data.

• The Tableau icon uploads the uncertain function distribution values

and statistics into Tableau, a popular interactive software package that

allows you to visually explore and analyze your data.

• If the active cell is both an uncertain function and an uncertain

variable, the Power BI icon is replaced with the Show Output tool.

 Click this tool to display the Uncertain Variable dialog for this

cell.

Multiple Simulations

Risk Solver can perform multiple simulations on command, or – when

Interactive Simulation is activated in Analytic Solver Desktop – each time you

change a number on the spreadsheet. To do this, you simply set the number of

Simulation to Run option on the Platform tab of the Solver Task Pane to a value

Frontline Solvers 2025 Q1 Reference Guide Page 79

greater than 1. (If using Analytic Solver Desktop, you can also set this option on

the Options dialog by clicking Options on the Ribbon. This option appears on

the Simulation tab which opens by default.

 Analytic Solver Desktop Analytic Solver Cloud

When you do this, a dropdown list of simulations appears in the Uncertain

Function dialog title bar. Results from all simulations are available all the time

– just select the simulation you want from this list, and the Uncertain Function

dialog will instantly update to show you the results from that simulation.

Tabs and Panes

Tabs. The Uncertain Function dialog has five tabs: Frequency, Cumulative

Frequency, Reverse Cumulative Frequency, Sensitivity, and Scatter Plots. Each

tab displays different information about the outcomes of the most recent

simulation for this uncertain function.

Panes: In Analytic Solver Desktop, the border at the right can be clicked to

show additional information. In Analytic Solver Cloud, the pane is

automatically open by default. The following sections explain the role of each

pane.

The Uncertain Function dialog in Analytic Solver Desktop, with the right pane

closed, is pictured immediately below. The dialog with the right pane open is
the subsequent picture. The last screenshot shows the Uncertain Function dialog

in Analytic Solver Cloud.

Analytic Solver Desktop Uncertain Function dialog with right pane closed

Frontline Solvers 2025 Q1 Reference Guide Page 80

Analytic Solver Desktop Uncertain Function dialog with right pane open

Analytic Solver Cloud

Frequency Tab

The Frequency tab appears in the dialog by default; an example is shown above.

The values sampled for the uncertain function on the Monte Carlo trials appear

on the horizontal axis, and the vertical axis shows the frequency of occurrence

of values falling in each ‘bin’ reflecting the width of each vertical bar. This

example chart reflects 1,000 Monte Carlo trials; the right scale shows the actual

frequencies of computed values for this set of trials, and the right scale shows

the inferred relative probabilities of each outcome.

Editable Confidence Intervals and Legend

Confidence intervals in Analytic Solver Desktop, appearing at the top of the

Frequency, Cumulative Frequency and Reverse Cumulative Frequency charts

are now editable.

By default, red vertical lines will appear, in all version of Analytic Solver, at the

5% and 95% cutoff values, effectively displaying the 90th confidence interval.

The middle percentage is the percentage of all the trial values that lie within the

Frontline Solvers 2025 Q1 Reference Guide Page 81

‘included’ area. The two percentages on each end are the percentage of all trial

values that lie outside of the ‘included’ area.

In Analytic Solver Desktop, percentile or cutoff values can be altered in two

ways, by moving the red vertical lines to the left or right or by clicking the

cutoff or percentile value and typing in the desired value or percentile. A
change made on one chart will also be reflected in the charts on the remaining

two tabs.

In Analytic Solver Cloud, percentile or cutoff values can be altered by moving

the red vertical lines to the left or right. A change made on one chart will also

be reflected in the charts on the remaining two tabs.

The uncertain function legend, introduced in Analytic Solver V2015, contains

the Mean, Standard Deviation, 5th percentile and 95th percentile values for the

uncertain function. All are updated automatically when a change is made to the

percentile or cutoff values.

Cumul / Rev Cumul Frequency Tabs

The Cumul. (Cumulative) Frequency tab shows the values sampled for the

uncertain function on each Monte Carlo trial on the horizontal axis, and the

cumulative frequency of trial values less than or equal to that value on the

vertical axis. An example of the Cum. Frequency tab is shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 82

The Rev. Cumul. (Reverse Cumulative) Frequency tab is similar: It shows the

values sampled for the uncertain function on each Monte Carlo trial on the

horizontal axis, and the cumulative frequency of trial values greater than or

equal to that value on the vertical axis.

The 90th percentile also appears at the top of the Cumulative and Reverse

Cumulative Frequency charts. In Analytic Solver Desktop, percentile or cutoff

values can be altered in two ways, by moving the red vertical lines to the left or

right or by clicking the cutoff or percentile value and typing in the desired value

or percentile. In Analytic Solver Cloud, percentile or cutoff values can be

altered by moving the red vertical lines to the left or right. Regardless of how

the percentages are altered, a change made on one chart will also be reflected in

the charts on the remaining two tabs.

Frontline Solvers 2025 Q1 Reference Guide Page 83

Sensitivity Tab

The Sensitivity tab displays a “Tornado chart” depicting the sensitivity of this

uncertain function to the uncertain variables having the most impact – positive

or negative – on the value of this function, across the trials of the simulation.

An example chart is shown below.

Analytic Solver Desktop

Analytic Solver Cloud

You can select either “Moment Correlation”, “Rank Correlation” or, if using

Analytic Solver Desktop, “Conditional Mean” in the Analysis Method space at

the bottom of the chart. (Conditional Mean is not supported in Analytic Solver

Cloud.) Depending on your selection, Analytic Solver computes either the

Pearson product moment correlation coefficients (Moment Correlation),

Spearman rank order correlation coefficients (Rank Correlation) or the

Frontline Solvers 2025 Q1 Reference Guide Page 84

conditional mean between this uncertain function and all of the uncertain

variables in the model. It then displays the variables on the chart, from top to

bottom, in decreasing order of the absolute value of this coefficient; this gives

the chart its “tornado” appearance. For an explanation of Pearson and Spearman

correlation coefficients, consult the section “Dependence and Correlation” in the
chapter “Mastering Simulation and Risk Analysis Concepts” in the Analytic

Solver User Guide.

When Conditional Mean is selected (supported only in Analytic Solver

Desktop), the CI edit box is enabled with a default value of 90%. The mean is

calculated for all trial values for the 5th and 95th percentiles. The numbers on the

left of the chart ($23,089 and $33,081) are the mean values for the 5th percentile

for each uncertain variable located in cells E17 and I22, respectively. The

numbers on the right of the chart ($214,682 and $139,465) are the mean values

for the 95th percentile for each uncertain variable. The red line in the center of

the chart designates the mean value of the Uncertain Function across all the

trials. For a given Confidence Interval setting such as the default of 90%, each
bar shows the range of the mean value of the Uncertain Function, conditional on

the Uncertain Variable next to that bar having values within the interval (i.e. it’s

5th and 95th percentiles).

Scatter Plots Tab

The Scatter Plots tab, shown on the next page, gives us a different view of the

relationship of the uncertain function to our uncertain variables.

 Notice that the scatter plot for the uncertain variable in cell B6 has three

downward-sloping lines. If each line corresponded to a different market

scenario (Hot, OK or Slow), then we could infer that as the uncertain variable in

cell B6 rises, the value for the uncertain function drops – dropping fastest in the

Hot Market scenario (far left line).

Frontline Solvers 2025 Q1 Reference Guide Page 85

In Analytic Solver Desktop, you can easily add or remove variables from this

tab by clicking the Multiple Variables drop down menu. Select the checkbox

next to the uncertain variable or uncertain function to add to the dialog and

uncheck to remove. This menu does not appear in Analytic Solver Cloud.

Statistics View

The Statistics tab displays numeric values for several summary statistics,

computed from the trials of the most recent Monte Carlo simulation. Unlike the

Statistics tab values in the Uncertain Variables dialog, which are computed

analytically from the distribution type and parameters, the values on this tab are

estimates of the true statistics, computed from the sample of possible outcomes

drawn in the most recent simulation. An example is shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 86

All statistics appearing on the Statistics pane are described in the Psi Function

Reference chapter under the corresponding Psi function. See below for a short

description of each.

Statistics

• Mean, the average of all the values. For more information, see PsiMean.

• Standard Deviation, the square root of variance. For more information,

see PsiStdDev.

• Variance, describes the spread of the distribution of values. For more
information, see PsiVariance.

• Skewness, which describes the asymmetry of the distribution of values. For

more information, see PsiSkewness.

• Kurtosis, which describes the peakedness of the distribution of values. For

more information, see PsiKurtosis.

• Mode, the most frequently occurring single value. For more information,

see PsiMode.

• Minimum, the minimum value attained. For more information, see PsiMin.

• Maximum, the maximum value attained. For more information, see
PsiMax.

• Range, the difference between the maximum and minimum values. For

more information, see PsiRange.

Frontline Solvers 2025 Q1 Reference Guide Page 87

Clustering, not supported in Analytic Solver Cloud, performs k-Means

clustering on the simulation trial data. For more information on this feature, see

the section on Clustering, below.

• Show Clusters, determines if clustering information is shown. Select either

"No Clustering", "Cluster Outputs" (to use only the trial data from the
uncertain function as the input data for k-Means clustering algorithm) or

"Cluster Inputs and Outputs" (to use the trial data for both the uncertain

variables and uncertain function as the input data for k-Means clustering

algorithm).

• Number of Clusters, the value of k, i.e. the number of clusters to form.

• Cluster to Show, the cluster to overlay on the output chart.

Advanced Statistics

• Mean Abs. Deviation, returns the average of the absolute deviations. For

more information, see PsiAbsDev.

• SemiVariance, measure of the dispersion of values. For more information,

see PsiSemiVar.

• SemiDeviation, one-sided measure of dispersion of values. For more

information, see PsiSemiDev.

• Value at Risk 95%, the maximum loss that can occur at a given confidence

level. For more information see PsiBVaR.

• Cond. Value at Risk, is defined as the expected value of a loss given that a

loss at the specified percentile occurs. For more information, see PsiCVaR.

• Mean Confidence, returns the confidence “half-interval” for the estimated

mean value (returned by the PsiMean() function. For more information see

PsiMeanCI.

• Std. Dev. Confidence 95%, returns the confidence ‘half-interval’ for the

estimated standard deviation of the simulation trials (returned by the

PsiStdDev() function). For more information, see PsiStdDevCI.

• Coefficient of Variation, is defined as the ratio of the standard deviation to

the mean. For more information, see PsiCoeffVar.

• Standard Error, defined as the standard deviation of the sample mean. For

more information, see PsiStdErr.

• Expected Loss, returns the average of all negative data multiplied by the

percentrank of 0 among all data. For more information, see PsiExpLoss.

• Expected Loss Ratio, returns the expected loss ratio. For more

information, see PsiExpLossRatio.

• Expected Gain returns the average of all positive data multiplied by 1 -

percentrank of 0 among all data. For more information, see PsiExpGain.

• Expected Gain Ratio, returns the expected gain ratio. For more

information, see PsiExpGainRatio.

• Expected Value Margin, returns the expected value margin. For more
information, see PsiExpValMargin.

Clustering

When Show Clusters is set to "Cluster Inputs" or "Cluster Inputs and Outputs" in

Analytic Solver Desktop, k-Means Clustering is performed on the simulation

Frontline Solvers 2025 Q1 Reference Guide Page 88

trial data. The default options for this feature are: Iterations: 10, Search: Fixed

K, Fixed Random Seed: 0 (for consistent results).

Note: Trials for all uncertain variables and functions are appended as columns

to the input data so the input data for the k-Means Clustering algorithm is a

matrix with dimensions of #Rows = #Trials, # Columns = #Uncertain Functions
(for Cluster Inputs) and #Uncertain Functions + Uncertain Variables (for Cluster

Inputs and Outputs). Using Analytic Solver Data Science, users can take their

analysis much further by applying k-Means Clustering to only the output trial(s)

desired. Output trial information may be obtained by using the PsiData

function. See PsiData in the Psi Function Reference chapter for more

information.

Options

Number of Clusters: This option sets the value of k for the k-Means Clustering

algorithm.

Cluster To Show: This option controls the cluster (i.e. trials assigned to each

cluster) to display. After the trials are filtered by cluster, the resulting trials are

binned and displayed on the bar chart. Use the up and down arrows to

increment from 1 thru K clusters.

Show Clusters: This option determines the input data for the k-Means

algorithm.

• Cluster Outputs: Use trials for all uncertain functions as the input data

for the k-Means Clustering algorithm.

• Cluster Inputs and Outputs: Use trials for both all uncertain variables

and all uncertain functions as the input data for the k-Means Clustering

algorithm.

Note: This functionality is not supported in Analytic Solver Cloud.

Percentiles View

Selecting Percentiles from either the Analytic Solver Desktop or Cloud menu
displays numeric percentile values (from 1% to 99%) computed from the trials

Frontline Solvers 2025 Q1 Reference Guide Page 89

of the most recent Monte Carlo simulation. Unlike the Percentiles tab values in

the Uncertain Variables dialog, which are computed analytically from the

distribution type and parameters, the values on this tab are estimates of the true

percentiles, computed from the sample of outcomes drawn in the most recent

simulation. An example is shown below.

The values displayed here represent 99 equally spaced points on the Cumulative

Frequency chart: In the Percentile column, the numbers rise smoothly on the

vertical axis, from 0 to 1.0, and in the Value column, the corresponding values

from the horizontal axis are shown. For example, the 75th Percentile value is a

number such that three-quarters of the values occurring in the last simulation are

less than or equal to this value.

Six Sigma View

Selecting Six Sigma from the menu in Analytic Solver Desktop or Cloud

displays Six Sigma measures computed from the trials of the most recent Monte
Carlo simulation. In this display, the red vertical lines on the chart, which can

be dragged left and right are the Lower Specification Limit (LSL) and the Upper

Specification Limit (USL) which are initially set equal to the 5th and 95th

percentile values, respectively. An example is shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 90

Chart Settings Views

The Chart Type pane in Analytic Solver Desktop or Cloud contains controls that
allow you to customize the appearance of the charts that appear in the center of

the dialog. When you change option selections or type text in these controls

(Analytic Solver Desktop only), the chart area is instantly updated.

The controls are divided into three groups in Analytic Solver Desktop: Chart

Type, Axis Options and Markers. Using the Apply To options at the bottom

of each view, you can apply the new chart settings to this chart only, all

uncertain variable charts on this worksheet, or all uncertain variable charts in the

workbook.

When using Analytic Solver Desktop, you can control the chart type, color, and

3D effects, the horizontal scale and number format, and other elements such as
gridlines. The chart settings in the Uncertain Function dialog are also available

in the Uncertain Variable dialog, and a few additional settings are available

there; they will be illustrated in more detail in the section below “Chart

Formatting, Copy/Paste and Printing.”

Note: At present, you can only change the color of the shaded area in an

uncertain function chart in Analytic Solver Cloud.

Overlay Charts of Functions

You can also use the Functions tool to select several uncertain variable cells,

and display Overlay charts of the PDF, CDF, or Reverse CDF of all of the

selected variable cells when using Analytic Solver Desktop. (This functionality

is not supported in Analytic Solver Cloud.) Simply open the outline by clicking
the Uncertain Functions tool on the top of the Uncertain Function dialog, and

Frontline Solvers 2025 Q1 Reference Guide Page 91

check the boxes next to the uncertain functions (or uncertain variables) that you

want to include.

Below is an example of the PDF tab of the Uncertain Function dialog with three

uncertain functions selected. You can improve the appearance of an Overlay

chart by setting the Transparency in the right-hand Chart Options pane, and by

rotating a 3D version of the chart using the Chart View Control toolbar.

When you do this, the first uncertain function cell you choose is the “primary”

function. (In this case the primary function is the uncertain function in cell J11.)

The Statistics and Percentiles tabs will display information for this function, and

distribution fitting will work with this function. You won’t be able to “uncheck

the box” for this function unless you uncheck all the others, or alternatively click

the cell address of a different function, which makes that cell the “primary”

uncertain function.

Distribution Fitting

The results of a Monte Carlo simulation are a sample of possible values for an
uncertain function. Risk Solver can attempt to fit an analytic distribution and

parameters to this sample of values. Since the uncertain function may depend

on several uncertain variables, and this dependence can take arbitrary forms

from simple arithmetic to complex functions and table lookups, you may or may

not be able to fit an analytic distribution to an uncertain function. If you can,

this may give you insight into the behavior of the function you are modeling.

To fit a distribution to the sample values, click the Fit tool in the Uncertain

Frontline Solvers 2025 Q1 Reference Guide Page 92

Function dialog title bar, as explained in the section below.

Running a Simulation
To run a simulation,

• Click the green arrow on either the Model, Platform, or Output tabs on

the Solver task pane

• In Analytic Solver Desktop, click the arrow beneath Simulate and

select Run Once to run a single simulation or select Interactive

Simulation. If Interactive Simulation is selected, a simulation will be

performed each time the worksheet is changed.

• In Analytic Solver Cloud, click the Simulate icon.

If only one output function is present in the model, the uncertain function

dialog for the output appears. See the example output function dialog, below, that appears

for the ComputingPiModel(Sim).xlsx example model.

If two or more output functions are present, the following Simulation Results

dialog appears. See the example Simulation Results dialog, below, that appears for the Business

Forecast example.

Double click the graphs to open the uncertain function dialogs both

distributions.

Distribution Fitting
As described in the sections “Uncertain Variables and Probability Distributions”

and “Using the Fit Feature” in the Analytic Solver User Guide Chapter

“Mastering Simulation and Risk Analysis Concepts,” if you have or can collect
data on the past performance of an uncertain variable – and if you believe that

‘past performance’ will be representative of future performance – you can ask

Analytic Solver to find the analytic distribution and parameters that best fits this

Frontline Solvers 2025 Q1 Reference Guide Page 93

data. Analytic Solver can fit historical data to both classical and metalog

distributions.

A meta-log distribution is an alternative distribution to a fitted distribution. The

metalog distributions are a collection of continuous univariate probability

distributions which can be used when cumulative distribution function data is
available. For more information on this distributions, see the descriptions for

PsiMetalog() in the Continuous Analytic Distribution subsection within the “Psi

Function Reference” chapter that appears later in this guide.

Note: Only independent data should be fit to a distribution. If data points can

be obtained by applying a formula or rule to a previous data point, such data is

considered dependent data and should not be fit to a distribution.

Follow the example below to fit a series of data using the Fit tool in Analytic

Solver.

1. Open the College Fund Growth 1 example model, click Help – Example

Models on the Analytic Solver ribbon, then click Monte Carlo Simulation

Examples – College Fund Growth 1.

2. Select cells O19:O12. These are the values to be fit to a distribution.

3. Click Fit on the Tools menu on the Analytic Solver ribbon to display the Fit

Options dialog.

4. Make any desired changes to the Fit Options dialog.

Frontline Solvers 2025 Q1 Reference Guide Page 94

For this example:

A. Leave Both selected for Distribution Type to fit the distribution to both
the Classical and Metalog distributions. For more information on

Metalog distributions, see the topic, Fitting a Meta-Log Distribution

to Simulation Results, that appears in the Analytic Solver User Guide.

B. For Sample Data Type, select Continuous if the uncertain variable’s

values are highly divisible – such as most prices, volumes, interest

rates, exchange rates, weights, and distances – or Discrete if the under-

lying physical process involves discrete, countable entities. Since the

data in this example are annual rates of return, keep Continuous

selected.

C. The checkbox Allow Shifted Distributions allows Analytic Solver to

shift the center of analytic distribution (equivalent to using the

PsiShift() property function) to better fit the sample data; sometimes
this is not desirable, so this option will remain unchecked.

D. When fitting a sample to a distribution, it is important that the trial

values are not in any way correlated with each other. In other words it

is important that each trial is independent. If the checkbox Run

Sample Independence Test is checked, the Psi Interpreter will run an

independence test and will report an error if the trial values are found to

be dependent. Use the default setting (checked) for this example.

E. For Continuous data, you can choose to rank the fitted distributions by

Anderson-Darling, Kolmogorov-Smirnoff, AIC, AICc, BIC or Chi-

Square statistics. For Discrete data, only AIC, AICc, BIC and Chi
Square statistics are meaningful (and may be selected).

An in-depth description of each goodness of fit test statistic is beyond

the scope of this guide. However, a short description of each follows.

For each specified distribution a hypothesis test is used to determine

Frontline Solvers 2025 Q1 Reference Guide Page 95

how well the distribution fits your data. The Fit Statistic used during

the fitting process is printed at the top right of the Fit Dialog (shown

below).

H0: The data is derived from the specified distribution. (Null)

HA: The data is not derived from the specified distribution. (Alternate)

• Kolmogorov-Smirnoff – For use with continuous distributions.

This test computes the difference (D) between the continuous

distribution function (CDF) and the empirical cumulative

distribution function (ECDF). The null hypothesis is rejected if, at

the 90% significance level, D is larger than the critical value

statistic.

• Anderson-Darling – Ranks the fitted distribution using the

Anderson Darling statistic, A2. The null hypothesis is rejected

using a 90% significance level, if A2 is larger than the critical

value statistic. This test awards more weight to the distribution
tails then the Kolmogorov-Smirnoff test.

• AIC – The AIC test is a Chi Squared test corrected for the number

of distribution parameters and sample size.

AIC = Chi-Square Statistic + 2 * k + 2 * k * (k + 1) / (n – k – 1)

where k is the number of distribution parameters and n is the

sample size.

• AICc –When the sample size is small, there is a significant chance

that the AIC test will select a model with a large number of

parameters. In other words, AIC will overfit the data. AICc was
developed to reduce the possibility of overfitting by applying a

penalty to the number of parameters. . Assuming that the model is

univariate, is linear in the parameters and has normally-distributed

residuals, the formula for AICc is:

AICc = AIC +
2𝑘2+2𝑘

𝑛−𝑘−1

where n = sample size, k = # of parameters.

As the sample size approaches infinity, the penalty on the number

of parameters converges to 0 resulting in AICc converging to AIC.

• BIC – The Bayesian information criterion (BIC) is defined as:

BIC = k ln(n) = 2 ln (�̂�)

where

�̂� = the maximized value of the likelikhood function of the model

M. �̂� = 𝑝(𝑥|𝜃,𝑀) where 𝜃 are the parameter values that

maximize the likelihood function and x is the observed data.

n = Sample size

k = Number of parameters

• Chi Square – Uses the chi-square statistic and distribution to rank

either continuous or discrete distributions. Sample data is first

divided into intervals using either equal probability, then the

number of points that fall into each interval are compared with the

expected number of points in each interval. The null hypotheses is

Frontline Solvers 2025 Q1 Reference Guide Page 96

rejected using a 90% significance level, if the the chi-squared test

statistic is greater than the critical value statistic.

Note: The Chi Square test is used indirectly in continuous fitting

as a support in the AIC test. The AIC test must succeed in both

discrete and continuous fitting as this is a necessary condition.
When fitting a discrete function, the Chi Square test must also

succeed. When fitting a continuous function, at least one of the

tests, Chi Squared, Kolmogorov-Smirnoff, or Anderson-Darling,

must succeed as well.

For this example, leave the default Anderson-Darling selected.

F. Leave Probabilities blank. This is an Excel range containing historical

cumulative probabilities. If omitted, each data point is assumed to be

equally likely.

G. Leave Max Terms at the default of 16. This is the number of terms in

the Metalog function. The minimum number of terms is 2. Metalogs
of all terms, up to Max Terms, will be calculated and displayed in the

results.

H. The lower bound must be a value lower than any data point and the

upper bound must be a value greater than any data point. Enter -.50 for

Lower and .60 for Upper. There are no data points less than -45% and

55%.

I. Click Fit to fit the historical data to a distribution. (Click Cancel to

close the dialog without performing the distribution fitting.)

Analytic Solver computes and displays a ranked list of candidate fitted

distributions, as shown below. Initially, the distribution with the best fit statistic
(selected in the above dialog) is shown in a chart that overlays the sample data.

Use the #Bins slider to add or subtract the number of bins in the histogram.

Tip: Once you have accepted the distribution you can change the fit options by

clicking the Fit Options icon on the title bar of the Fit Results dialog.

You can select one or multiple distributions on the left side of the dialog to

display their PDFs overlaid with the sample data in the center chart area, and

show its fitted parameters, analytic moments, and fit statistics in the right pane.

Frontline Solvers 2025 Q1 Reference Guide Page 97

You can display a P-P (Probability-Probability) chart, a Q-Q (Quantile-Quan-

tile) chart, or a CDF Differences chart to get a better idea of how well the

selected distribution(s) fit the sample data.

• P – P Plot –The P-P tab displays the Probability-Probability chart. This

graph is used to determine how well a specific distribution fits the observed

data. This chart will be approximately linear (or lie on the y = x line) if the

specified distribution is the correct choice.

• Click the Q-Q tab to see the Quantile – Quantile chart. Again, if the two

distributions being compared are a good fit, the plot will lie approximately

on the y = x line.

• The Cumulative Distribution Function Differences chart quantifies the

difference between the empirical distribution function and the cumulative

distribution function of the distribution.

Frontline Solvers 2025 Q1 Reference Guide Page 98

When you dismiss the Distribution Fitting dialog by clicking the X in its upper

right corner, Analytic Solver asks whether you want to accept the currently

selected fitted distribution:

If you click "Yes", Analytic Solver will place a blue balloon on your cursor

asking you to select a cell in which to place the fitted distribution. Once you
click a blank cell, a PSI Distribution call with this distribution type and

parameters is written to the current cell. For this example, click cell O17.

Analytic Solver will replace the distribution currently in the Uncertain Variable

dialog with the selected distribution type and parameters.

If you click the Fit button on the Uncertain Function dialog, click "X" in the

upper right-hand corner to close the dialog and "Yes" to accept the fitted

Frontline Solvers 2025 Q1 Reference Guide Page 99

distribution, Analytic Solver will overlay the fitted distribution on the original

uncertain function chart.

Using PsiData() to Fit a Distribution

You can use the PsiData() function to list the trial values for an uncertain

function to either view each value or possibly fit a distribution to the values. In

the Business Forecast with Uncertainty Example below, the PsiData() function

has been used in cells D13:D22 to display the first ten simulation trials for the

Net Profit uncertain function in cell D10.

Click the green arrow on the Solver task pane to run a simulation. After the

simulation completes, cells D13:D22 will display the Net Profit (cell D10) for

the first 10 simulation trials.

You can confirm by incrementing through the Trial to Display spinner on the

Tools tab on the Solver task pane. If Trial to Display is equal to 1, then the first

simulation trial values will be inserted into the worksheet. If Trial to Display is

Frontline Solvers 2025 Q1 Reference Guide Page 100

equal to 2, then the second simulation trial values will be inserted into the

worksheet, and so on. Notice in the screenshot below, that Trial to Display is set

to 2 and the value in Net Profit is equal to the value in cell D14 (Net Profit for

the 2nd simulation trial).

To fit these trial values to a distribution, select the trial values in cells D13:D22,

then click Tools-Fit to open the Fit Options dialog. Refer to the Fitting example

above to complete the remaining steps.

Charts and Graphs for Presentations
Often, you may be called to present your results to others. With Analytic
Solver, one great way to do this is in Excel itself, live! But at times you may

need to print a chart, or copy it into a Word document or PowerPoint

presentation. This is very easy to do in Analytic Solver Desktop, with the

toolbar buttons in the title bar of the Uncertain Variable or Uncertain Function

dialog:

Click the Clipboard icon to copy the currently displayed chart to the Windows

Clipboard. You can then choose Edit Paste in Word, Excel, PowerPoint and

many other applications to paste the chart image into your document. (Choosing

Edit Paste in Excel inserts a static, non-updating chart image in the worksheet.)

Click the Print icon to immediately print the currently displayed chart on your

default printer, or click the down arrow next to this icon to display the menu
choices shown above: Print Preview, Printer Settings and Page Settings. You

can choose a printer and set printer options, set page margins, and preview your

output using these menu choices.

Both versions of Analytic Solver make it easy to control the format of your

charts. Below, we’ve re-opened the right hand panel and clicked on the drop

down menu to choose Chart Type.

Frontline Solvers 2025 Q1 Reference Guide Page 101

You can control the chart type, color, dimensionality and transparency, bin

density, titles and legends, axis labels and number formats, horizontal axis

scaling, and more. As you change chart options in the right pane, the chart is

immediately updated so you can see the results (unlike some other simulation

products for Excel). When you’re satisfied with the chart format, you can save

and apply it to just this chart, to all charts on this worksheet, or to all charts in

the workbook when you click the Apply button at the bottom of the right pane.

Exporting Data to Microsoft's Power BI
Microsoft's Power BI is a cloud-based service that works with Excel, or on its

own, to help you visualize your data using charts and reports. Analytic Solver

includes the ability to export an automatically-selected set of data from your

simulation or optimization model, directly into a dataset in Power BI. For

simulation modles this includes includes all trial values, output function

statistics, percentiles; for optimization models in includes all final variable,

constraint, and objective values, variable and constraint dual values.

When using Analytic Solver Desktop, after a simulation or optimization is run,

click the icon on either the Uncertain Function output dialog or the

Output tab on the Solver Task pane to upload the simulation/optimization model
results to the Power BI dashboard. If this is the first time that the icon has been

clicked within the current Excel instance, you will be asked to log in to Power

BI.

Note: This functionality is not supported in Analytic Solver Cloud. To export

results to Power Bi when using either of these apps, click Deploy Model –

Power BI on the ribbon. For information exporting results to Power BI when

using Analytic Solver Cloud or Analytic Solver.com, see the Creating Power BI

Custom Visuals chapter within Analytic Solver User Guide.

Power BI Icon as shown on the Output tab on the Desktop Solver

Task Pane.

Frontline Solvers 2025 Q1 Reference Guide Page 102

Once logged in, you will be asked to either update an existing dataset or create a

new dataset.

In the screenshot above, we see an existing datset "Product Mix 1" that we could

have updated by selecting and clicking OK. Rather, we chose to create a new
dataset, BusinessForecast. Once the upload is complete, the following message

will appear.

Power BI Icon as shown on the Desktop Solver Uncertain Function

dialog

Frontline Solvers 2025 Q1 Reference Guide Page 103

This message signifies that our data has been updated to Power BI successfully.

In your web browser, login to Power BI (http://powerbi.microsoft.com/). The

newly created dataset, along with the existing "ProductMix1" dataset, are listed

under Datasets.

Select the BusinessForecast dataset, then determine the components to be

included in the graph. In this example, we have created a bar chart by clicking

 (to the right of the graph) and selecting the Maximum, Mean, Minimum,

and Mode Output Statistics.

Use the icon to pin this graph to the Dashboard.

http://powerbi.microsoft.com/

Frontline Solvers 2025 Q1 Reference Guide Page 104

Now, each time the model is solved, the results may be uploaded to your Power

BI dashboard. Click back to Excel and change the Price of the Slow Market
from $11 to $15, then run a 2nd simulation either by clicking the green arrow on

the Model tab in the Solver Task Pane or by clicking the Simulate icon on the

Analytic Solver ribbon. Once Solver stops, click the icon on the

Uncertain Function dialog to upload the most recent results. Note: We are not

asked to log in to the Power BI site a second time since we are using the same

instance of Excel. However, we are asked if we would like to select an existing

dataset to update. Select BusinessForecast and then click OK. Click back to

Power BI in your browser and refresh, the chart will update automatically with
the new final variable values, as shown below.

Exporting Data to Tableau
Tableau is a popular interactive software package that allows you to visually

explore and analyze your data. Tableau can import data from a wide range of
sources, including Excel workbooks, and it is often used in conjunction with

Excel. Because Tableau is designed to import data in table form, it hasn’t been

easy to import the results of an optimization or simulation model (such as final

values of the uncertain variables, uncertain functions, percentiles and statistic

values in a simulation model and final values for the variables, constraints, and

Frontline Solvers 2025 Q1 Reference Guide Page 105

objective function in an optimization model) into Tableau, unless those model

elements occur in table form by themselves in your spreadsheet (which usually

isn’t the case).

Analytic Solver Desktop simplifies this process considerably. With a single

click, you can convert the results of your optimization or simulation model into
a set of Tableau Data Extract files (*.tde). You can open these files directly in

Tableau, and visualize them with a few clicks.

Once Solver has stopped with a final result message, click the icon on the

Task Pane Output tab or uncertain function dialog to save the values for the

uncertain functions, uncertain variables, percentiles and statistics in a simulation
model or variables, constraints, and objective function in an optimization model

to *.tde files. You will be prompted to select a folder where the Tableau files

will be saved along with the type of Tableau export desired: Tableau Data

Extract or Tableau Web Connector.

Note: If exporting to an existing .tde file, data will be appended rather than

overwritten. As a result, when exporting to an existing .tde file, all data must be

of the same structure as when the .tde file was first created.

Tableau Data Extract

If Tableau Data Extract is selected, static data is exported to files saved on your

hard drive.

If running an optimization,0 three files will be saved in the folder you

selected: Constraints.tde, Objective.tde and Variables.tde. (Although .tde files

are designed to hold multiple tables, currently Tableau’s software allows only

one table per file.) When you import this data into Tableau, Variables.tde will

have one row for each decision variable, Constraints.tde will have one row for
each constraint and Objective.tde will have just one row for the objective.

Frontline Solvers 2025 Q1 Reference Guide Page 106

• Each row of Variables.tde will contain the Excel cell address, the

values of the variables at the time of extraction, the lower and upper

bound of each variable, the optimization index and sensitivity

information such as the reduced cost and allowable increase/decrease.

• Each row of Constraints.tde will contain the Excel cell address where
the constraint is located, the value of each constraint at time of

extraction, the constraint lower and upper bounds, and information that

would appear on a sensitivity report such as the shadow price, slack

value, a 1 or 0 to indicate if the constraint was binding (1) or not (0),

and the allowable increase/decrease.

• Objective.tde will contain the Excel cell address where the objective is

located, the value of the objective function at the time of extraction,

and the optimization index.

If running a simulation, four files will be saved in the folder you

selected: InputTrials.tde, OutputStatistics.tde, OutputTrials.tde, and
Percentiles.tde. (Although .tde files are designed to hold multiple tables,

currently Tableau’s software allows only one table per file.) When you import

this data into Tableau, InputTrials.tde and Output Trials.tde will have one row

for each trial, Percentiles.tde will have one row for percentile and

OutputStatistics.tde will have one row for each output function.

• Each row of InputTrials.tde will contain the trial value for each

uncertain variable and the simulation index. The number of rows will

equal the number of trials.

• Each row of OutputTrials.tde will contain the trial value for each

uncertain function and the simulation index. The number of rows will
equal the number of trials.

• Each row of Percentiles.tde will contain the percentile value for each

uncertain function and the simulation index. The number of rows will

equal 99, ranging from the 1st to 99th percentiles.

• Each row of OutputStatistics.tde will contain the Excel cell address,

where the uncertain function is located along with 9 statistical functions

(mean, standard deviation, variance, kurtosis, skewness, mode,

minimum, maximum, and range) and the simulation index.

To open the files in Tableau, either double-click each file (if using Desktop

Tableau), or click Other Files under Connect and open the desired file(s).

Note: If exporting to an existing .tde file, data will be appended rather than

overwritten. As a result, when exporting to an existing .tde file, all data must be

of the same structure as when the .tde file was first created.

Tableau Web Connector

The Tableau Web Connector offers much more flexibility over Tableau Data

Extract by allowing you to refresh your data dynamically inside of Tableau.

Frontline Solvers 2025 Q1 Reference Guide Page 107

If Tableau Web Connector is selected, you will be prompted to select a folder

where the files will be saved.

If running an optimization, once the folder is selected and Select Folder is

clicked, OptimizationResults.html will be created and saved to that directory,

then the following message will appear. This file will hold all contents

described above for Constraints.tde, Objective.tde and Variables.tde.

If running a simulation, SimulationResults.html will be saved to the selected

directory, then the following message will appear. This file will hold all

contents described above for InputTrials.tde, OutputStatistics.tde,

OutputTrials.tde, and Percentiles.tde.

Note: If exporting to an existing .tde file, data will be appended rather than

overwritten. As a result, when exporting to an existing .tde file, all data must be

of the same structure as when the .tde file was first created.

Frontline Solvers 2025 Q1 Reference Guide Page 108

To open the files in Tableau, open a new workbook in Tableau, and click

Connect to Data.

On the Connect menu, select More Servers – Web Data Connector on the

Connect menu.

Frontline Solvers 2025 Q1 Reference Guide Page 109

On the Web Data Connector dialog, enter the location displayed on the dialog

shown above, i.e. http://localhost:8080/, and press Enter.

When the following dialog appears, click Constraints.html.

Note: The error highlighted in red is a simple warning that the URL is not

pointing to a Tableau Web Data Connector file. If you had entered a file name,

such as http://localhost:8080/Constraints.html or

http://localhost:8080/InputTrials.html, the results would have immediately been

uploaded to Tableau.

To add more data, click Data – New Data Source on the Tableau ribbon, then
repeat the actions described above.

http://localhost:8080/
http://localhost:8080/Constraints.html

Frontline Solvers 2025 Q1 Reference Guide Page 110

If your Solver results have changed, refresh the results within the Tableau Web

Connector HTML files using the following steps:

1. In ASP, re-run your optimization or simulation model

Click the Tableau icon on the Output tab in the Solver Task Pane.

2. Select Tableau Web Connector and the folder where the files should

be saved.

3. Click OK.

4. In Tableau, click Data – Refresh All Extracts to update your data.

For more information on using Tableau, please refer to the Tableau

documentation found at http://www.tableau.com/.

Using the Decisions Menu
When you click the Decisions icon on the Ribbon when using any version of

Analytic Solver, a dropdown menu appears.

From here you can either create a plot of the variables or add Normal or

Recourse variables to your optimization or stochastic optimization model.

Decision Variable Plot

A decision variable plot charts various decision variable characteristics, such as

the lower bound, upper bound, midpoints, current values, etc.

The chart below shows the variable plot from the ProductMix(Opt).xlsx. To

create, click Help – Examples – Optimization and open ProductMix(Opt).xlsx.
Select cell G24 (the objective, Total_profit) and then click Decisions – Plot on

the ribbon. Note that the computation of this cell is dependent on the variables.

When creating this plot, Analytic Solver divided the difference of each variables'

upper and lower bound (default selections on the Chart Options tab) and divided

that difference by 50 (the Number of Data Points). For example, the upper

http://www.tableau.com/

Frontline Solvers 2025 Q1 Reference Guide Page 111

bound on each variable is 300 and the lower bound on each variable is 0

resulting in a range of 300. After dividing by the number of data points, we can

calculate that each data point will be a multiple of 6 as shown in the table below.

Note: If a variable does not have an upper bound, then a value of positive

infinity (1E+50) will be used and if a variable does not have a lower bound, then
a value of negative infinity (-1e+50) will be used.

Variable Values Value of Cell G24

0 $0

6 $960

12 $1,920

…

300 $48,000

When these points are plotted, the result is the graph below. The Y axis plots

the value of cell G24 while the x axis plots the data points 1 thru 50.

If you change Point B's selection to "Variables at midpoints", the graph will

update to:

Frontline Solvers 2025 Q1 Reference Guide Page 112

Notice that the Y axis now shows 0 thru $25,000 to reflect the change in value

of cell G24. To calculate the data points: take the midpoint of each variable and

divide through by the Number of Data Points or (300-0)/2 = 150/50 = 3.

Variable Values Value of Cell G24

0 $0

3 $480

9 $1,440

…

150 $24,000

If you were to leave Point B's selection at "Variables at Upper Bounds" and

instead change Point A's selection to "Variables at Midpoints", then the first,

second, and third data points would be: 150, 153, 159, …. 300.

If you change the variable values to C14 = 25, D14 = 50, and E14 = 75, and then

select "Variables at current values" for Point B, the graph will update

immediately to:

Analytic Solver calculated each data point by subtracting Point A (Lower
Bounds) from Point B (Current Values) and dividing by the Number of Data

Points (50).

Value of C14 Value of D14 Value of E14 Value of G24

0 0 0 $0

0.5 1 1.5 $140

1 2 3 $243

1.5 3 4.5 $420

2 4 6.0 $523

… … …

25 50 75 $7,000

If Randomly Chosen values is selected for Point A or Point B, a random value

will be selected between the variables upper and lower bounds.

Normal

Click Decisions – Normal to add a normal decision variable to your optimization

or stochastic optimization model.

Frontline Solvers 2025 Q1 Reference Guide Page 113

Recourse

Click Decisions – Recourse to add a recourse decision variable to your

stochastic optimization model.

Using the Optimize Menu
When you click the Optimize icon on the Analytic Solver ribbon (in all

versions), a dropdown menu appears.

From here you can either solve the complete problem or the relaxation of a
mixed – integer problem, solve only for recourse variables or simply analyze

either the original or the transformed models.

Solve Complete Problem

Select this menu item if Solver is to solve the optimization model as it appears

in the Task Pane Model tab. If Interpreter is set to Psi Interpreter or Always (the

default setting) on the Task Pane Platform tab, the steps described under
“Analyze Original Problem” will be performed first. If your model is diagnosed

as non-smooth, and Non-Smooth Model Transformation is set to Automatic (the

default setting) or Always on the Task Pane Platform tab, the steps described

under “Analyze Transformed Model” will be performed next. If the transformed

model is linear, it will be used to solve the problem, otherwise the original

Frontline Solvers 2025 Q1 Reference Guide Page 114

model will be used. Next, if Automatically Select Solver Engine is checked on

the Task Pane Engine tab, the best available Solver Engine will be used,

otherwise your choice in the Engine tab dropdown list will be used to solve the

problem. When the solution process is complete, the worksheet will show the

best solution found, and reports can be selected from the Reports – Optimization
dropdown list.

For more information on the above options, see the topics “Optimization

Interpreter,” “Nonsmooth Model Transformation,” and “Automatically Select

Solver Engine” in the chapter “Platform Option Reference.” For information on

optimization reports, see the “Solver Reports” chapter.

Analyze Original Problem

Select this menu item to run the Interpreter to diagnose your model as a linear

programming, quadratic or conic, smooth nonlinear, or non-smooth optimization

model, and determine the convexity of your model. When this option is

selected, the interpreter will pinpoint formulas that are causing your model to be

nonlinear or non-smooth (see the Structure Report in the “Solver Reports”

chapter) or are causing your model to be poorly scaled (see the Structure Report

in the “Solver Reports” chapter). Problem statistics are displayed on the Model

tab within the Solver Task Pane. For additional details, refer to the "Solver

Diagnosis Results" section above.

Analyze Transformed Model

Select this menu item to run the Interpreter to diagnose the transformed model

as a linear programming, quadratic or conic, smooth nonlinear, or non-smooth

optimization model and determine the convexity of your model. If your model

contains non-smooth functions with arguments that depend on the decision

variables, the Analytic Solver products will automatically transform your

model, replacing IF, MIN, MAX, ABS, AND, OR, and NOT functions and <=

and >= operators with additional variables and linear constraints that achieve the

same effect, for optimization purposes, as these functions. A Linearization
Report will be available under Reports – Optimization containing a list of these

additional variables and constraints. Problem statistics are displayed on the

Model tab within the Solver Task Pane. For additional details, refer to the

"Solver Diagnosis Results" section above.

Solve without Integer Constraints

Select this menu item to solve the “relaxation” of the mixed integer problem (or
MIP) temporarily ignoring the integer constraints. It’s meaningful to Solve with

Integer Constraints only if you have integer constraints in your model.

Solve for Recourse Variables

Select this menu item to solve only for the Recourse variables in your Stochastic

Optimization model. Normal decision variables will remain unchanged. It’s

meaningful to Solve for Recourse variables only if you have recourse decision
variables in an optimization model with uncertainty. Note: Solve for Recourse

Variables is available in all Analytic Solver products up to your licensed

problem limits.

Run on a Solver Server

Solve your optimization or simulation model by calling Frontline’s RASON

Server, a Frontline container or Solver SDK, with results appearing in your

Frontline Solvers 2025 Q1 Reference Guide Page 115

spreadsheet, just as if you had solved the model locally. See the section, “Using

Solver Server to Solve Models”, in the installation and Add-Ins chapter in the

Analytic Solver User Guide for more information.

Chart Formatting, Copy/Paste and Printing
The right pane of the Uncertain Variable dialog in Analytic Solver contains
controls that allow you to customize the appearance of the charts that appear in

the center of the dialog. When you change option selections or type text in these

controls, the chart area is instantly updated.

The controls are divided into three groups: Chart Type, Axis Options and

Markers. Using the Apply To options at the bottom of each view, you can

apply the new chart settings to this chart only, all uncertain variable charts on

this worksheet, or all uncertain variable charts in the workbook.

You can control the chart type, color, and 3D effects, the horizontal scale and

number format, and the chart title, legend and gridlines. You can also ‘fix’ the

vertical scale of Frequency charts, so that the scale doesn’t change from one

simulation to the next. When you change options or type text in these controls,
the chart area is updated immediately, so you see the results of your changes.

To display a list of chart group of chart settings, simply click on the drop down

menu at the top of the right pane:

To save and apply the new chart settings to this chart only, all uncertain function

charts on this worksheet, or all uncertain function charts in the workbook, just

select the option you want and click the Apply button. You can click the Revert
button to return the chart to Risk Solver’s default settings.

Chart Type

The Chart Type settings determine the basic chart type (supported only in the

desktop version), color and gridlines, the number and form of bins for frequency

charts (uncertain functions only), and 3D and transparency effects.

Frontline Solvers 2025 Q1 Reference Guide Page 116

Chart Type

Type: (Supported only in Analytic Solver Desktop.) You may select any of eight variants

of Line, Bar, and Area charts. Examples of these chart types are shown on the
next page.

• Bar – No Gaps

• Bar – With Gaps

• Line – Step

• Line – Midpoint

• Line – Smooth

• Area – Step

• Area – Midpoint

• Area – Smooth

Each of these chart variants may be drawn in either two or three dimensions.

For 3D, check the box “3D Chart” as described in the next section.

For uncertain functions, a Bar – No Gaps chart is drawn by default. For

uncertain variables, an Area – Midpoint chart is drawn for continuous

distributions, and a Bar – No Gaps charts is drawn for discrete distributions.

Frontline Solvers 2025 Q1 Reference Guide Page 117

Bar – No Gaps

Bar – With Gaps

Line – Step

Area – Step

Line – Midpoint

Area – Midpoint

Frontline Solvers 2025 Q1 Reference Guide Page 118

Line – Smooth

Area – Smooth

Color: To change the chart color, click the dropdown arrow, then click the

color you want in the “color picker,” as shown below.

Gridlines: You can select None, Horizontal, Vertical, or Both.

Bins

Auto: When this box is checked (the default), Analytic Solver automatically

chooses the number of bins (columns for a bar chart), based on the data and the

number of trials. When the box is unchecked, you choose the number of bins,

using the Bins edit box.

Bins: You can enter the exact number of bins you want in the edit box. By

clicking the spinner control, you can increase or decrease the number of bins.

Effects – Not supported in Analytic Solver Cloud

3D: If this box is checked, a three-dimensional perspective chart is drawn. If it

is unchecked, a two-dimensional chart is drawn.

Transparency: By clicking the spinner control, you can increase or decrease

the degree of transparency in the colors used to draw the chart.

Frontline Solvers 2025 Q1 Reference Guide Page 119

Below is an example of the Uncertain Function dialog, showing how the chart

appears when some of these options are changed.

Chart Options

The Chart Options settings determine the chart title, subtitle, and legend position

and contents.

Chart Display

Users have the ability to choose to have the simulation results dialog

automatically open after a simulation is run. Simply click on “Show chart after

each simulation”.

Chart Title

Auto: If this box is checked, an automatic title (“Simulation Results”) is drawn
at the top of chart only. If it is unchecked, the top and bottom titles are drawn

based on your entries in the next two edit boxes.

Frontline Solvers 2025 Q1 Reference Guide Page 120

Top: (Header in Analytic Solver Cloud) Type the text you want to appear at the

top of the chart here. The text appears on the chart as you type, so you can

check the appearance as you go.

Bottom: (Footer in Analytic Solver Cloud) Type the text you want to appear at

the bottom of the chart here. The text appears on the chart as you type, so you
can check the appearance as you go.

Legend

Position: Choose the position of the chart legend from this dropdown list:

None, Top, Bottom, Left, Right, TopRight, TopLeft, BottomRight, BottomLeft.

Auto: If this box is checked, an automatic legend (the workbook name, sheet
name, and cell address of the uncertain function) is drawn. If it is unchecked,

the legend is drawn based on your entry in the next edit box.

Text: Type the text you want to appear for the legend. The text appears on the

chart as you type (if a Position other than None is selected), so you can check

the appearance as you go.

On the next page is an example of the Uncertain Function dialog showing how

the chart appears when some of these options are changed.

Axis Options

The Axis Options settings determine the chart scale for uncertain function

values, text labels for the vertical axis, and number format for ‘tick values’ on

the horizontal axis.

Frontline Solvers 2025 Q1 Reference Guide Page 121

Vertical Axis Label

Auto: If this box is checked, automatic labels (“Relative Probability” on the

left, “Frequency” on the right) are drawn for the vertical axis. If it is unchecked,

the axis labels are drawn based on your entries in the next two edit boxes.

Left: Type the text you want to appear on the left vertical axis here. The text

appears on the chart as you type, so you can check the appearance as you go.

Right: Type the text you want to appear on the right vertical axis here. The text

appears on the chart as you type, so you can check the appearance as you go.

Fix to Current Values

This check box, which appears only for uncertain functions, affects the vertical

axis scale. Normally, Analytic Solver chooses the scale (lowest and highest

values) on the vertical axis based on the frequencies of outcomes in the most

recent simulation. When Interactive Simulation is on, these values can change

each time you press F9 or change a number on the spreadsheet. This approach

allows Risk Solver to make maximum use of “chart real estate,” adjusting the

vertical axis so that the tallest bars or highest lines almost fill the chart area.

At times, however, you may want to see how the frequency distribution changes

shape as you change numbers on the spreadsheet, without any change to the

scale. If you check the box Fix to current values, the vertical axis is fixed to its

current lowest and highest values, until you uncheck the box later. As you
perform more simulations and the frequencies of outcomes change, you may see

charts drawn where the tallest bars or highest lines don’t fill the chart area, or

charts where they overflow the chart area. In the latter case, a vertical scroll bar

will appear automatically, so that you can adjust the view to see the tallest bars

or highest lines if you wish.

Horizontal Scale

Type: Choose the type of scale for function values from this dropdown list:

• Auto: The scale will be determined automatically, based on the values of

the uncertain function in the simulation.

Frontline Solvers 2025 Q1 Reference Guide Page 122

• Fixed: The scale extends from the minimum to the maximum value for the

uncertain function that you enter in the following two edit boxes.

• Std. Deviation: The scale extends below and above the mean value by a

number of standard deviations, that you enter in the first following edit box.

• Percentile: The scale ends from a low percentile to a high percentile that

you enter in the following two edit boxes.

Min: Enter the low value for the uncertain function or percentile, or the number

of standard deviations here.

Max: Enter the high value for the uncertain function or percentile here.

Number Format

Format: Choose the type of number format from this dropdown list: General,

Number, Currency, Scientific, Percentage, or Cell Format. The last choice,

which is the default, uses the format of the uncertain function cell for the

horizontal axis tick values.

Decimal Places: For Number and Currency formats, click the spinner (or type a

value) for the number of decimal places you want to appear.

Thousands Separator: For Number and Currency formats, separators (commas

when in U.S. English locale) appear every three digits if this box is checked.

On the next page is an example of the Uncertain Function dialog showing how
the chart appears when some of these options are changed. Notice that the

horizontal axis is Fixed to the range -100 to 200 (the numbers are in thousands

so you only need to enter -100, 200 – so that some extreme occurrences may not

be included on the chart. Also, the vertical axis was Fixed to current values on

an earlier simulation, to a range from 0.0 to 0.12 – and on the current simulation,

the two tallest bars exceeded this range, so a vertical scroll bar appears.

Chart Markers

You can create a variety of chart Markers to mark and annotate points of interest

on charts of both uncertain variables and uncertain functions. When you create

a Marker, you can apply it to the current chart, all charts in the current

worksheet, or all charts in the workbook. It is often useful to create a few

‘standard’ Markers that apply to all charts, as well as custom Markers for

Frontline Solvers 2025 Q1 Reference Guide Page 123

specific charts. If you have a worksheet or workbook level Marker that you

don’t want to appear on a specific chart, you can make it invisible on that chart.

To create and edit chart Markers, click the Markers tab in the right pane of the

Uncertain Variable or Uncertain Function dialog. You can also create workbook

level Markers via the Risk Solver Options dialog, as illustrated later.

To create a new Marker, click the ++ button at the top left of the option area in

the right panel. To delete an existing Marker, select it in the dropdown list, and

click the x button at the top left.

As shown on the next page, initially a Marker of Type Value is created, with a

Name of Marker 1, a Description (which can appear on the chart) of “Marker
1”, the Color Black, and a Value on the horizontal axis equal to the median of

the currently displayed data. The Visible and Show Description boxes are

checked, so both the Marker itself and the description will appear on the chart.

All of these properties can be changed, by adjusting the options in the dialog

right pane; the chart display is immediately updated as you make changes.

Type: This is a dropdown list that determines the type of the Marker. You can

create a ‘custom Marker’ that appears at the position or value on the horizontal

Frontline Solvers 2025 Q1 Reference Guide Page 124

axis that you specify, or you can create a ‘standard Marker’ that appears at a

position determined by a statistic computed from the data displayed on the chart:

• When you select Percentile, you enter a specific percentile value (1-99) in

the Value field; the Marker appears at this position on the horizontal axis.

• When you select StdDev, you enter a number of standard deviations (e.g. 1,
1.5 or 2) in the Value field; the Marker appears this number of standard

deviations above the mean value.

• When you select Mean, Mode or Median, the Value field is greyed out.

The Marker appears at the position on the horizontal axis for this statistic.

• When you select StdDev+-1, StdDev+-2, or StdDev+-3, the Marker

appears twice on the chart: At 1, 2 or 3 standard deviations below the mean,

and at 1, 2 or 3 standard deviations above the mean.

Value: You enter a number here for Marker Types Value, Percentile, and

StdDev. The number you enter, interpreted as described above, determines the
Marker position on the horizontal axis.

Name: The Marker Name appears in the dropdown list next to the Add and

Delete buttons; it is used to select the Marker when the same Marker is used in

multiple charts. You can accept the default names “Marker 1”, “Marker 2”, etc.

or type your own names into the Name edit box.

Color: To change the chart color, click the dropdown arrow, then click the

color you want in the “color picker,” as shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 125

Visible: If this box is checked, the Marker appears on the chart; if it is

unchecked, the Marker doesn’t appear. Using this option, you can control

whether a worksheet- or workbook-level Marker appears on a specific chart.

Show Description: If the Marker is Visible and this box is checked, the text in

the Description edit box appears as a label attached to the Marker on the chart.

Description: The text you type in this edit box appears as a label attached to the

Marker, if the Show Description box is checked.

Copying and Pasting Charts

In Analytic Solver Desktop, you can easily copy a chart from the Uncertain

Variable or Uncertain Function dialog to the Windows Clipboard, and paste it

into almost any Windows application that accepts graphic images. To do this,

just click the Clipboard icon in the title bar of the dialog.

On the next page is an example of an Analytic Solver chart pasted into a

PowerPoint slide. Analytic Solver can render the copied chart in Windows

Bitmap, Device Independent Bitmap, and Windows Enhanced Metafile formats.

Note: This functionality is not currently supported in Analytic Solver Cloud.

Printing Charts

You can easily print an Analytic Solver Desktop chart: Just click the Print icon

on the Uncertain Variable or Uncertain Function dialog title bar to immediately

print the currently displayed chart on your default printer, or click the down

arrow next to this icon to display the menu choices shown below: Print

Preview, Printer Settings and Page Settings. You can choose a printer and set

printer options, set page margins, and preview your output using these menu

choices.

Frontline Solvers 2025 Q1 Reference Guide Page 126

An example of the Print Preview dialog in Risk Solver is shown on the next

page. You can magnify and examine the print image or send it to the currently

selected printer from this dialog.

Note: This functionality is not currently supported in Analytic Solver Cloud.

Load or Start Solver App in Excel for the Web
You can use the Solver App in Excel for the Web, if your workbook is stored

online in Office 365, OneDrive or OneDrive for Business. You can also use the

Excel Web App in SharePoint 2016 or 2013.

1. In Excel for the Web, open the workbook where you want to use

Solver. Click the Insert tab, then click the Office Add-ins button.

Frontline Solvers 2025 Q1 Reference Guide Page 127

2. In the Office Add-ins dialog, click on the Store tab, and search for

Solver. Click on the Solver App. When prompted, click the Trust

It button, to allow Solver to read and optimize your model.

3. The Solver Parameters dialog should appear, as a pane embedded

in the worksheet. If a Solver model has been created on this
worksheet, its selections (objective, variables, constraints and

Solver options) should automatically appear in the dialog.

4. You can modify the Solver model selections, or create a new

Solver model from scratch, by using the dialog options, very much

like the basic Excel Solver. Click the Solve button to find the

optimal solution.

Load or Start the Solver App in Excel 2013/2016

You can use the Solver App in desktop Excel 2013 or 2016, if your workbook is

stored online in Office 365, SharePoint 2013/2016, OneDrive or OneDrive for

Business.

1. In Excel 2013 or 2016, open the workbook where you want to use

Solver. Click the Insert tab, then click the Office Add-ins button.

Note: Your workbook must use the .xlsx or .xlsm extension,

otherwise the My Apps icon on the Ribbon will be disabled.

2. If Solver appears in the Recently Used Apps dropdown list, select

it there, and skip to step 4.

3. Select See All... from the dropdown menu. In the Office Add-ins

dialog, find and select Solver under My Apps or My Organization.

If this is your first time using the Solver App, click find more apps

at the Office Store, and look in the Data Visualization + BI
category. Click to see the Solver App listing in the Office Store.

4. The Solver Parameters dialog should appear. Click File Save As,

and save to your online document library.

5. If you later open this workbook in Excel for the Web or the Excel

Web App in a browser, the Solver Parameters dialog should

appear.

NOTE: Although the Solver App can be used in both Excel 2013 or 2016 and

Excel for the Web, because your model is solved "in the cloud," the Solver App

works only with Excel workbooks that are stored online. If you want to solve

a workbook model that is stored on your local PC, use the Solver add-in
included with Excel, or desktop Analytic Solver.

Using the Options Dialog
The Options dialog (supported in Analytic Solver Desktop only) lets you

examine and change Analytic Solver options that apply to your entire model. It

appears when you click the Options button on the Analytic Solver Desktop

Ribbon. These settings are stored in the workbook with your model – if you

save the workbook and open it later, on the same or a different PC, the settings

will have the last values you specified in this dialog. The Options dialog has

tabs labeled Simulation, Optimization, General, Tree, Bounds, Charts,

Markers, and Problem.

http://office.microsoft.com/en-us/store/solver-WA104100404.aspx

Frontline Solvers 2025 Q1 Reference Guide Page 128

Note: If using Analytic Solver Cloud, see the chapter, "Platform Solver

Reference" that appears later on in this guide.

Simulation Tab

You can set these options in either the Analytic Solver Options dialog or, in

some cases, in the Task Pane, either on the Platform tab or the Engine tab when

Risk Solver Engine is selected in the Engine Selection drop-down menu –

changing them in one will also update them in the other.

Frontline Solvers 2025 Q1 Reference Guide Page 129

Trials, Simulations, and Random Seed

Trials per Simulation

This is perhaps the most frequently used option, since it determines the number

of Monte Carlo trials per simulation. You can type the number of trials you

want into the edit box, or click the spinner next to increase or decrease the

number of trials (by 100 trials at a time). Starting in V2015, you can enter the

number of trials on the Analytic Solver ribbon directly above the spinner

control. (See figure below.)

Simulations to Run

Risk Solver can perform multiple simulations whenever you change a number

on the spreadsheet, or whenever you trigger the simulation process in your

custom application. To set the number of simulations, click the spinner next to

the Simulations to Run edit box, or type the number you want into the edit box.

For multiple simulations to be useful, some parameter of the model – normally

something you can control – must have a different value in each individual

simulation. You can do this with the function PsiSimParam(). For more
information, see the section “Multiple Parameterized Simulations” in the

Analytic Solver User Guide chapter “Getting Results: Simulation.”

Frontline Solvers 2025 Q1 Reference Guide Page 130

Only Run or Run Specific Simulation

Use this option to run a specific simulation when multiple simulations are being

run, for example simulation 10 out of 20 total simulations. PsiSimParam

parameters will be set for this index.

Random Seed

Setting the random number seed to a nonzero value (any number of your choice

is OK) ensures that the same sequence of random numbers is used for each

simulation. When the seed is zero, the random number generator is initialized

from the system clock, so the sequence of random numbers will be different in

each simulation. If you need the results from one simulation to another to be

strictly comparable, you should set the seed. To do this, click the spinner next to

the Random Seed edit box, or type the number you want into the box.

You can specify a random seed for each uncertain variable if you wish, by

including the PsiSeed() property function as an argument in the PSI Distribution
function call for that variable. The seed value you set in the Options dialog

affects only uncertain variables that do not have PsiSeed() property functions.

Value to Display

Whenever your spreadsheet is calculated by the Excel Interpreter or the Psi

Interpreter and displayed, each PSI Distribution function returns a value. If no

simulation has been performed, the function returns a random sample from its

distribution. If a simulation has been performed, all of the trial values from that

simulation are available at once. You can specify what value you want to see

with the options in this group.

Type of Value

In the left hand dropdown list, you have a range of choices. When you select

Sample Mean, the Trial Index field is ignored, and each PSI Distribution

function returns the mean of the trial values in the last simulation.

Trial Index

When Value on Trial is selected in the left hand dropdown list, you can specify

which trial you want – from 1 to the value of the Trials per Simulation field.

You can type a number into the edit box, or use the spinner control to increase

or decrease the trial index. Starting in V2015, you can specify the number of

Frontline Solvers 2025 Q1 Reference Guide Page 131

trials by entering an integer value into the Trials field located directly above the

spinner control. (See figure above.)

Random Number Generation and Sampling

On each Monte Carlo trial, sample values are drawn from the probability

distributions represented by the PSI Distribution functions in your model.
Sample values are computed by first drawing a “random number” between 0 and

1, then transforming this uniform random sample value into a sample value that:

• Constrains the samples drawn to obtain better coverage of the sample space,

where each PSI Distribution function is a ‘dimension’ of that space

• Ensures that the frequency distribution of samples drawn properly reflects

the shape and parameters of the PSI Distribution function

• Ensures that the samples drawn for multiple PSI Distribution functions

properly reflect the correlation of distributions with each other

Sampling Method

You can use this option group to select Monte Carlo, Latin Hypercube, or

Sobol RQMC sampling. In standard Monte Carlo sampling, numbers generated

by the chosen random number generator are used directly to obtain sample

values for the uncertain variables (PSI Distribution functions) in the model.

With this method, the variance or estimation error in computed samples for

uncertain functions is inversely proportional to the square root of the number of

trials; hence to cut the error in half, four times as many trials are required.

Analytic Solver provides two other sampling methods than can significantly

improve the ‘coverage’ of the sample space, and thus reduce the variance in

computed samples for output functions. This means that you can achieve a

given level of accuracy (low variance or error) with fewer trials.

Latin Hypercube Sampling. Latin Hypercube sampling begins with a

stratified sample in each dimension (one for each uncertain variable), which

constrains the random numbers drawn to lie in a set of subintervals from 0 to 1.

Then these one-dimensional samples are combined and randomly permuted so

that they ‘cover’ a unit hypercube in a stratified manner. This often reduces the

variance of uncertain functions.

Sobol numbers (Randomized QMC). Sobol numbers are an example of so-

called “Quasi Monte Carlo” or “low-discrepancy numbers,” which are

generated with a goal of coverage of the sample space rather than “randomness”

and statistical independence. Analytic Solver adds a “random shift” to Sobol

numbers, which improves their statistical independence. Sobol numbers are

frequently used in quantitative finance applications, where they are often

effective at reducing variance.

Random Number Streams

You can use this option group to select a Single Stream for all Uncertain

Variables, or an Independent Stream for each Uncertain Variable. Most

Monte Carlo simulation tools generate a single sequence of random numbers,

taking values consecutively from this sequence to obtain samples for each of the

distributions in a model. This introduces a subtle dependence between the

samples for all distributions in one trial. In many applications, the effect is too

small to make a difference – but in some cases, found in financial engineering

and other demanding applications, better results are obtained if independent

Frontline Solvers 2025 Q1 Reference Guide Page 132

random number sequences (streams) are used for each distribution in the model.

Analytic Solver offers this capability for Monte Carlo sampling and Latin

Hypercube sampling; it does not apply to Sobol numbers.

If you use a PsiSeed() property function as an argument to a PSI Distribution

function call, the uncertain variable defined by that distribution always has an
independent stream of random numbers, regardless of the setting of this option.

Random Number Generator

You can use this option group to select a random number generation algorithm.

Analytic Solver includes an advanced set of random number generation

capabilities – well beyond those found in other Monte Carlo products for

Microsoft Excel. In common applications, any good random number generator
is sufficient – but for challenging applications (for example in financial

engineering) that involve many uncertain variables and many thousands of trials,

the advanced features of Analytic Solver can make a real difference.

Computer-generated numbers are never truly “random,” since they are always

computed by an algorithm – they are called pseudorandom numbers. A random

number generator is designed to quickly generate sequences of numbers that are

as close to statistically independent as possible. Eventually, an algorithm will

generate the same number seen sometime earlier in the sequence, and at this

point the sequence will begin to repeat. The period of the random number

generator is the number of values it can generate before repeating.

A long period is desirable, but there is a tradeoff between the length of the

period and the degree of statistical independence achieved within the period.

Hence Risk Solver offers a choice of four random number generators:

• Park-Miller “Minimal” Generator with Bayes-Durham shuffle and

safeguards. This generator has a period of 231-2. Its properties are good,

but the following choices are usually better.

• Combined Multiple Recursive Generator (CMRG) of L’Ecuyer. This

generator has a period of 2191, and excellent statistical independence of

samples within the period.

• Well Equidistributed Long-period Linear (WELL1024) generator of
Panneton, L’Ecuyer and Matsumoto. This very new generator combines a

long period of 21024 with very good statistical independence.

• Mersenne Twister generator of Matsumoto and Nishimura. This generator

has the longest period of 219937-1, but the samples are not as “equidistrib-

uted” as for the WELL1024 and CMRG generators.

• HDR (4) Random Number Generator, designed by Doug Hubbard. Permits

simulations running on various computer platforms to generate identical or

independent streams of random numbers.

Using Correlations

As described in the Frontline Solver User Guide chapter, “Mastering Simulation
and Risk Analysis Concepts,” you can specify that certain uncertain variables in

your model are correlated with other uncertain variables. This means that, on

each simulation trial, samples drawn for each uncertain variable will not be

independent of each other, but will be related – for example, if one variable is

positively correlated with another, large (or small) sample values for both

variables will tend to be drawn on the same trial. To define correlations

between uncertain variables, you use PSI Property functions such as

Frontline Solvers 2025 Q1 Reference Guide Page 133

PsiCorrDepen(), PsiCorrMatrix() or the new copula functions, PsiCopula,

PsiCopulaStudent, PsiCopulaGauss, passed as arguments to PSI Distribution

functions such as PsiNormal() or PsiUniform().

On a given run, the correlations you’ve defined for all uncertain variables can be

activated or deactivated, depending whether the Use Correlations check box is
checked or unchecked. You’ll normally want to leave this box checked, but by

unchecking the box and performing a run where all uncertain variables are

sampled independently of each other, you can see the difference – and assess the

impact of correlation on your model results.

To quickly change this option, you can click the downward pointing arrow

below the Correlate button on the Ribbon and select the Use Correlations

choice. The check mark on this menu choice corresponds to the checked box in

the Options dialog – changing one will change the other. Each time you click

this menu choice, it changes state, from checked to unchecked and vice versa.

Use the Fitting menu item to find the parameters of a correlation function that

match the existing (but unknown) correlation between two or more samples of

historical data. Analytic Solver offers correlation fitting using 6 correlation

types: rank, clayton, gumbel, frank, gauss and student. It is up to the user to

determine which correlation type results in the best fit to the data. See the
Correlation Fitting section within Analytic Solver User Guide for more

information.

Using PSI Technology or Excel for Trials

Analytic Solver uses its own Polymorphic Spreadsheet Interpreter (PSI

Technology) to perform Monte Carlo simulation trials at high speed – often 100

times faster or more than performing the trials by allowing Microsoft Excel to

recalculate the spreadsheet. Normally, you’ll want to use the PSI Interpreter for

simulation trials, since it is designed to compute the same values as Excel does,

but much faster than the Excel Interpreter. However, there are a few features of

Excel formulas and functions that the PSI Interpreter does not handle; if you use

these features in your model, you’ll see an error message when you try to run a
simulation. If your model requires the use of Excel features that are not

supported by the PSI Interpreter, you may have to use the Excel Interpreter

instead. To do this, simply click the radio button Use Excel Interpreter in the

Interpreter options group.

Interpreter

You can switch between the PSI Interpreter and Excel Interpreter using this
option. If you wish, you can use this option to check that you’re getting the

same simulation results from both interpreters. Note that small differences from

arithmetic roundoff error are to be expected; bear in mind that if no Random

Seed is set, the samples drawn on each run, and hence the results, will vary.

Frontline Solvers 2025 Q1 Reference Guide Page 134

CLT Threshold

VBA / SDK: Parameter Names "CLTThreshold", 1 <= integer value <= 1000

Starting with V2016-R2, Analytic Solver includes the ability to sum multiple

independent random variables using compound distributions. A compound

distribution generates values for the sum of N independent identically

distributed uncertain variables. A distribution is made compound through the

use of the PsiCompound() property.

When calculating a compound distribution, Analytic Solver first tries to

compute the distribution analytically. For example "=PsiExponential(par,

PsiCompund(N))" can be computed as PsiGamma(N, par) If Analytic Solver is

unable to compute a compound distribution analytically, but the frequency of the

severity function (N) is greater than the value for the CLT Threshold option,

then the distribution will be computed according to the Central Limit Theorem

as PsiNormal(m, s). (The parameters m and s will be computed analytically

from the corresponding analytical moments of the severity distribution.)

Othewise, the compound distribution will be computed using Monte Carlo

simulation to sum up N independent variates of the severity distribution. The

maximum value allowed for this option is 1000 while the minimum value

allowed is 1. The default setting is 100.

For more information on compound distributions, see the Examples: Simulation

and Risk Analysis chapter in the Analytic Solver User Guide.

Optimization tab

You can set these options in either the Analytic Solver Options dialog or, in

some cases, in the Task Pane – changing them in one will also update them in

the other.

Frontline Solvers 2025 Q1 Reference Guide Page 135

General Options

Optimizations to Run

Use this property to set the number of optimizations to run when you click the

Optimize button on the Ribbon, or the green arrow (“Solve”) in the Task Pane.

This is useful only if you’ve defined one or more optimization parameters, using

the Parameters Optimization choice on the Ribbon.

Only Run

The specific optimization the Solver will perform, if multiple optimizations are

defined. PsiOptParam parameters will be set for this index.

Interpreter

Analytic Solver uses its own Polymorphic Spreadsheet Interpreter (PSI

Technology) to parse the formulas on the worksheet(s) which is often 100 times
faster or more than allowing Microsoft Excel to recalculate the spreadsheet.

Normally, you’ll want to use the PSI Interpreter for optimization, since it is

designed to compute the same values as Excel does, but much faster than the

Excel Interpreter. However, there are a few features of Excel formulas and

functions that the PSI Interpreter does not handle; if you use these features in

your model, you’ll see an error message when you try to run an optimization. If

your model requires the use of Excel features that are not supported by the PSI

Interpreter, you may have to use the Excel Interpreter.

You can switch between the PSI Interpreter and Excel Interpreter using this

option. If you wish, you can use this option to check that you’re getting the

same simulation results from both interpreters. Note that small differences from
arithmetic roundoff error are to be expected; bear in mind that if no Random

Seed is set, the samples drawn on each run, and hence the results, will vary.

Solve Mode

Use this option to determine what action will be taken when you click the

Optimize button on the Ribbon, or the green arrow (“Solve”) in the Task Pane.

Select from Solve Complete Problem, Analyze without Solving, Solve

without Integer Constraints, or Solve for Recourse Variables. It’s

meaningful to Solve with Integer Constraints only if you have integer

constraints in your model. Similarly, it’s meaningful to Solve for Recourse

variables only if you have recourse decision variables in an optimization model

with uncertainty.

Frontline Solvers 2025 Q1 Reference Guide Page 136

Solve Uncertain Models

Use this option to determine how an optimization model with uncertainty will be

solved when you click the Optimize button on the Ribbon, or the green arrow

(“Solve”) in the Task Pane. Your optimization includes uncertainty if the

formula for the objective, or any constraint, depends (directly or indirectly) on

an uncertain variable cell, where you’ve entered a PSI distribution function

(such as PsiNormal). Select from Simulation Optimization, Stochastic

Transformation, Stochastic Decomposition, or Automatic. Automatic (the

default choice) allows Analytic Solver to choose the solution method

automatically.

Use Psi Functions to Define Model on Worksheet

Set this option to True if you want to use optimization-specific PSI functions to

define the objective, variables or constraints of your model. These are functions

such as PsiVar() to define decision variables, PsiCon() to define constraints, and

PsiObj() to define the objective. Please see the section, Using Psi Optimization

Functions, later in this guide, for a complete description of each Psi function.

Use Interactive Optimization

Set this option to True if you want to run an optimization automatically

whenever you make a change to your spreadsheet. This is primarily useful (i) on

modest-size models where the optimization completes very quickly and (ii) after

you’ve finished developing and testing your optimization model. You can ask

‘what if’ by changing a number on the spreadsheet, and see how the optimal

solution changes with Interactive Optimization.

Transformation Options

Nonsmooth Model Transformation

Use this option to choose whether Analytic Solver will attempt to transform

constraints in your model that are non-smooth functions of the decision variables

into equivalent linear constraints that depend on newly-introduced binary integer

and continuous decision variables.

You can choose Always, Never, and Automatic.

• Automatic is the default choice: Analytic Solver will automatically

diagnose your model, and if it contains non-smooth functions that are

candidates for transformation, Analytic Solver will attempt the

transformation and will diagnose the resulting expanded model. If your

model is not converted to a Linear Program (LP) or Mixed-Integer

Program (MIP), the transformation will not be applied. This option

takes the most time, but is completely automatic. If your model is

successfully transformed, you should be sure to check, and probably

adjust, the Big M Value option.

• Always is useful only when you know that your model uses non-
smooth functions and that the transformations will succeed. Never is

useful if you are certain that your model doesn’t use non-smooth

functions, and you’d like to save some time, or if you just don’t want

the transformation to be attempted. The transformed model will always

be used even if the conversion does not result in a LP/MIP or NLP

(Nonlinear problem).

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Big_M_Value.htm

Frontline Solvers 2025 Q1 Reference Guide Page 137

A simple example is a constraint A1 <= 100 where A1 contains

=IF(B1=0,C1,D1). If B1 is (or depends on) a decision variable, this constraint is

non-smooth – in fact discontinuous – which means that the model cannot be

solved to optimality by either linear programming (fastest and most reliable) or

smooth nonlinear optimization.

Assuming for simplicity that B1 is a decision variable that is non-negative, this

constraint can be transformed by introducing a new binary integer variable Y1,

and a new constraint B1 <= BigM * Y1, where BigM is a constant larger than

any possible value for B1 (you can set this value with the Big M Value option).

The IF function in A1 is replaced with =D1*Y1+C1*(1-Y1). Now when Y1=0,

B1 is forced to be = 0, and A1=C1; when Y1=1, B1 can have any positive value,

and A1=D1. The non-smooth IF function is transformed into a set of linear

functions, so a faster and more reliable linear programming Solver can

potentially be used – but the overall size of the model is increased.

Analytic Solver can perform much more complex transformations automatically,

for constraints involving the Excel functions IF, AND, OR, NOT, MIN, MAX,
and the relational operators <=, = and >=. Such transformations can result in a

significantly larger model, but if the resulting model is entirely linear, this can

be more than offset by the faster speed and reliability of a linear programming

Solver.

Big M Value

Use this option to set a “Big M” constant value to be used in newly generated

constraints that result from a Nonsmooth Model Transformation. The default

value is 1E6 or 1 million – but if you are using Analytic Solver's transformation

features, you should ensure that this value is correct for your model: It must be

bigger than any numeric value that may appear in your intermediate calculations
(for example, bigger than any value a in an expression IF(a>=b,…)) but it

should not be excessively large.

If your value for the Big M option is smaller than the largest value that occurs in

your intermediate calculations, the generated constraints will not have the
desired effect, and your solution will not be valid for your original problem. If

your Big M value is too large, the transformed model will be poorly scaled, and

the Solver will likely encounter problems with numerical stability as it performs

computations with your too-large values. So it pays to investigate the results

computed by your what-if spreadsheet model, and set the Big M option

appropriately.

Stochastic Transformation

This option has an effect only if the Solve Uncertain Models option is set to

Stochastic Transformation. You can choose Deterministic Equivalent, Robust

Counterpart, or Automatic. This transformation can succeed only if your
objective and constraints are linear functions of the decision variables (they can

also depend on uncertain variables).

Use this option to determine whether Analytic Solver will attempt to transform

your optimization model with uncertainty into a conventional optimization

model without uncertainty: either the Deterministic Equivalent model (as used in

stochastic linear programming), or a Robust Counterpart model (as used in

robust optimization).

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Big_M_Value.htm
mk:@MSITStore:C:/Users/Nicole/Documents/temp/Analytic%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Problems_with_Poorly_Scaled_Models.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Solve_Uncertain_Models.htm

Frontline Solvers 2025 Q1 Reference Guide Page 138

Automatic, the default choice, will use the transformation to Deterministic

Equivalent form if your model includes recourse decisions and no chance

constraints; otherwise it will use the transformation to Robust Counterpart form.

In both cases, the result of a successful transformation is a conventional linear

programming model, but with considerably more decision variables and
constraints than the original model. Generally, the Robust Counterpart model is

much smaller than the Deterministic Equivalent model, but the solution of this

model may be only an approximate (and conservative) solution of the original

problem.

Chance Constraints Use

This option has an effect only if the Solve Uncertain Models option is set to
Stochastic Transformation, and the Stochastic Transformation option is set to

either Robust Counterpart or Automatic (and the Automatic method selects the

Robust Counterpart form). It determines the norm (distance measure) used to

constrain the size of uncertainty sets in the Robust Counterpart model.

Select from the L1 Norm, L2 Norm, L-Inf Norm, or D Norm (the default).

The D norm is equivalent to the intersection of the L1 norm and L-Inf (infinity)

norm. If you choose the L2 norm, the Robust Counterpart model will be a SOCP

(second order cone programming) model, which requires an SOCP or smooth

nonlinear solver (such as the SOCP Barrier Solver or GRG Nonlinear Solver). If

you choose the L1, L-Inf or D norm, the Robust Counterpart model will be an

LP (linear programming) model that can be solved efficiently with an LP, QP, or
SOCP Solver.

Auto Adjust Chance Constraints

This option has an effect only if your model includes chance constraints, the

Solve Uncertain Models option is set to Stochastic Transformation, and the

Stochastic Transformation option is set to either Robust Counterpart or

Automatic (and the Automatic method selects the Robust Counterpart form).

Set this option to True if you want Analytic Solver to automatically re-solve the

Robust Counterpart model while adjusting the size of uncertainty sets created

for chance constraints, in an effort to find a better (less conservative) solution.

This can take significantly more time for a large model. If this option is set to

False (the default), Analytic Solver will not automatically re-solve the RC

model, but it will offer you the option to re-solve once the initial solution is

found, by pressing a newly-available button at the top of the Task Pane Output

tab.

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Solve_Uncertain_Models.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Stochastic_Transformation.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Solve_Uncertain_Models.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Stochastic_Transformation.htm

Frontline Solvers 2025 Q1 Reference Guide Page 139

Advanced Options

Supply Engine with

This option has an effect only if the Optimization Interpreter option is set to Psi

Interpreter. Use this option to specify what kind (and how much) analysis of

your model you want Analytic Solver to perform when you click the Optimize

button or the green-arrow Solve button to solve your model.

If you use Automatic (the default choice), Analytic Solver asks the Solver

Engine (chosen either automatically or by your selection on the Engine tab)

what kind of model analysis it can use, and performs that analysis before starting

the Solver Engine. This is usually the best choice, since it means that Solver

Engines that can exploit model structure information will have that information.

But since most Solver Engines can run without structure information, you may

occasionally want to set this option.

The Gradients option has the smallest computational cost: It means that Solver

Engines will benefit from fast, accurate gradients computed via automatic

differentiation, but they will not have model structure, dependency, or convexity

information (for example, which variables or functions in the model are linear).

The Structure option includes the Gradients option, plus it performs a structure

and dependency analysis and makes this information available to the Solver

Engine. The Convexity option includes the Gradients and Structure options,

plus it performs an analysis of the convexity of the objective and constraints; it

requires the greatest amount of computation.

Use Incremental Parsing

This option has an effect only if the Optimization Interpreter option (for

optimization models) or the Simulation Interpreter (for simulation models) is set

to Psi Interpreter. You can use this option to improve performance if you are

making small changes to a large Excel model and then re-solving the model.

To perform its work, the Polymorphic Spreadsheet Interpreter must scan and

parse (analyze) your Excel formulas. This can take considerable time for a large

model. If this option is set to False, the PSI Interpreter will re-reparse the entire
model each time you Solve; this will take more time. If this option is set to True,

the PSI Interpreter will save and re-use the parsed form of the model; as you

make changes to individual cell values or formulas, it will read and parse just

the changes, adding them to the parsed form of the model; this will take more

memory on an ongoing basis.

Use Sparse Variables

This option has an effect only if the Optimization Interpreter option is set to Psi

Interpreter. Use this option to determine whether the PSI Interpreter should

operate in (its own) Sparse mode or Dense mode. The default setting is False,

meaning that the Interpreter operates in its Dense mode.

If you set this option to True, the PSI Interpreter will use its own Sparse mode,

which can save memory when your optimization model is sparse, but possibly at

the expense of extra time, since a Structure analysis is always performed when

analyzing or solving (regardless of the setting of the Supply Engine with

option).

To check the sparsity of your model, click the Analyze button in the Task Pane
Model tab, then check the Sparsity option at the very bottom of the Model tab,

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Simulation_Interpreter.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Supply_Engine_with.htm

Frontline Solvers 2025 Q1 Reference Guide Page 140

which reports the percentage of nonzeroes (from 0 to 100) in your model. A low

number means that your model is very sparse.

Use Sparse Cubes

This option has an effect only if the Interpreter (in the Optimization or

Simulation sections on the Platfom tab on the Solver Task Pane) option is set to

Psi Interpreter. Use this option to determine whether the PSI Interpreter should

calculate a cube defined by PsiCube() or PsiTableCube() using Sparse mode or

Dense mode.

Most large cubes are sparse in nature. While they may contain thousands of

elements, in practice, not all combinations of dimension elements are

possible. Hence, not all will define a model function during the Psi Interpreter's
evaluation of the problem. This means that most cubes will provoke output

results as sparse cubes (with missing constraints). Such sparsity in a cube, also

known as structural sparsity, can be exploited to save memory and gain speed.

A sparse cube is defined by missing values in cells for PsiCube() and by missing

records for PsiTableCube(). If this option is equal to False and you have

defined a cube using PsiCube() or PsiTableCube(), elements missing from the

cube will be considered equal to 0. If you set this option to True, you have

defined a cube using PsiCube() with missing values or PsiTableCube() with

missing records, and the percentage of elements missing or empty is more than

30% of the total possible cube elements, those missing elements or records will

not be included in the model.

For an example of how to use a sparse cube see the Dimensional Modeling

chapter in the Analytic Solver User Guide.

Only Parse Active Sheet

This option has an effect only if the Optimization Interpreter option is set to Psi

Interpreter. Use this option to determine whether the PSI Interpreter should

scan and parse only the active worksheet, or the entire workbook (and possibly
other workbooks) when analyzing and solving models. The default setting is

False, meaning that all worksheets and workbooks should be scanned.

If you have a large workbook that contains many worksheets and cell formulas

that don’t participate in the Solver model, setting this option to True can save a

good deal of time; however cells on other worksheets or in other workbooks that

are referenced in formulas making up the Solver model will be treated as

constant – even if they actually contain formulas that refer back to decision

variable cells on the active worksheet.

Scan for Bounds

Use this option to determine whether Analytic Solver should spend time

scanning the model in order to properly classify certain constraints that you

enter as either general constraints or bounds on decision variables. The default

setting is True, which enables scanning for bounds.

In the Task Pane Model tab, constraints such as A1 >= 0 (with a constant

right hand side) will appear in the ‘Bounds’ outline group when A1 is a decision

variable, or in the ‘Normal’ group when A1 contains a formula and is not a
decision variable. But constraints such as A1 >= B1 require more analysis:

If A1 is a decision variable and B1 contains a constant, this is a simple variable

bound; but if B1 contains a formula that depends on some other decision

variable; then this is a general constraint.

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm

Frontline Solvers 2025 Q1 Reference Guide Page 141

In a large model, a formula in B1 may depend on hundreds or thousands of other

cells, and there may be hundreds or thousands of constraints such as A1 >=

B1. When the Scan for Bounds option is set to True, Analytic Solver will

spend time “in the background” tracing down these formulas, to determine

whether constraints of this form are general constraints or bounds on the
variables. (You may notice that constraints such as A1 >= B1 will move

from the Normal outline group to the Bounds group while you are doing other

work.) When this option is set to False, this work is not performed, and some

variable bounds my remain in the Normal group.

The setting of this option has no effect on actually solving the model: In that

case the PSI Interpreter and Solver Engine will determine for certain whether

each constraint is a general constraint or a variable bound. It only affects the

display of the constraints in the Task Pane Model tab.

Scan for Bounds

Use this option to determine whether a Formula Dependency Test should be

applied to your model. Setting this option to "False" will restrict Solver from

applying the test which can be especially helpful in models containing cascading

constraints, or constraints that depend on previously defined constraints, where

Solver is returning "There is not enough memory available to solve the problem

at cell XX."

Analytic Solver automaticaly detects cascading constraints using a formula

dependency test. When such constraints are detected in a model, Analytic Solver
automatically switches from Reverse mode of evaluation to Forward mode, in

order to reduce the amount of time Solver spends parsing the model. Since

Forward evaluation mode requires much more memory than Reverse evaluation

mode, Analytic Solver could stop and return the result, "There is not enough

memory available to solve the problem at cell XX", when Forward evaluation

mode is used.

If your model contains cascading constraints and Solver is returning this "out of

memory" result, set this option to False to use the Reverse mode of evaluation.

Analytic Solver will most likely spend more time parsing your model but should

not return an "out of memory" error.

Frontline Solvers 2025 Q1 Reference Guide Page 142

General Options Tab

You can set these options in either the Analytic Solver Options dialog or, in

some cases, in the Task Pane – changing them in one will also update them in

the other.

Log Level

Use this option to determine how much information is displayed in the Task

Pane Output tab solution log area, by Analytic Solver and the selected Solver

Engine. You can select from Minimal, Normal (the default) or Verbose.

The specific kind and amount of information displayed for Minimal, Normal or

Verbose depends on the Solver Engine used to solve the problem. Typically,

Verbose generates much more output in the solution log, such as results from a

presolve step and/or from each major iteration, or subproblem for mixed-integer

problems.

Note: When using the Gurobi Solver, KNitro Solver, LP/Quadratic Solver or

Large Scale LP Solver Engines, setting Verbose to "true" will print the entire
engine solve log. This can be helpful for diagnosing unexpected errors.

Wrap Text in Output Pane

Use this option to control whether messages in the Output Pane “wrap” onto

additional lines.

Frontline Solvers 2025 Q1 Reference Guide Page 143

If this option is set to True, messages that exceed the width of the Pane will be

split (at word boundaries) onto two or more lines. This is most convenient for

viewing Solver Result messages and similar information.

If this option is set to False, messages will appear on a single line. This can be

useful if you’ve set the Log Level to Verbose and you’re viewing an iteration
log or similar information. You can use the scroll bar at the bottom of the Output

Pane to see the entire message, or you can resize the whole Task Pane to display

more information at once.

Solver Parameters Dialog

Use this option to control whether messages in the Output Pane “wrap” onto

additional lines.

If this option is set to True, messages that exceed the width of the Pane will be

split (at word boundaries) onto two or more lines. This is most convenient for

viewing Solver Result messages and similar information.

If this option is set to False, messages will appear on a single line. This can be

useful if you’ve set the Log Level to Verbose and you’re viewing an iteration

log or similar information. You can use the scroll bar at the bottom of the Output

Pane to see the entire message, or you can resize the whole Task Pane to display

more information at once.

Note: This option not available in Risk Solver Pro.

Operating Mode

The Operating Mode determines how much Analytic Solver will try to help the

user with dialogs and Help text, when using the software and designing your

model:

• Guided Mode prompts you step-by-step when solving, with dialogs.

• Auto-Help Mode, the default, shows dialogs or Help only when there’s a
problem or error condition.

• Expert Mode provides only messages in the Task Pane Output tab. (This

mode not supported when using a trial license.)

Note: This option not available in Risk Solver Pro.

Support Mode

The Support Mode determines how much Analytic Solver will try to help you by

connecting automatically to Frontline Systems’ Technical Support.

• Active Support automatically reports events, errors and problems to

Frontline Support, receives and displays messages to you from Support, and

allows you to start a Live Chat with Support while working in Excel.

• Standard Support automatically reports events, errors and problems

anonymously to Frontline Support, but does not provide a means to receive

messages or start a Live Chat with Support.

• Basic Support provides no automatic connection to Frontline Support.

Users will be required to contact Frontline Systems via email, website, or
phone if help is needed. (This mode not supported when using a trial

license.)

Note: This option not available in Risk Solver Pro.

Frontline Solvers 2025 Q1 Reference Guide Page 144

Dimensional Calculation

This option is only available in Analytic Solver Desktop when a model has been

formulated using Dimensional Modeling. (See the Dimensional Modeling

chapter within the Analytic Solver User Guide for more information on how to

formulate a model using Dimensional Modeling.)

If this option is set to Manual, PsiCubeData() functions can only be calculated
using the Analytic Solver Menu using Model – Cube Result – Calculate on the

Dimensional Modeling menu.

If this option is set to Automatic, PsiCubeData() functions can be calculated by

clicking F9 or by using Model – Cube Result – Calculate on the Dimensional

Modeling menu.

This option does not exist in Analytic Solver Cloud.

Solver Server

Use this section to solve your optimization or simulation model by calling

Frontline’s RASON Server, a Frontline container or Solver SDK, with results

appearing in your spreadsheet, just as if you had solved the model locally. See

the section, “Using Solver Server to Solve Models”, in the installation and Add-

Ins chapter in the Analytic Solver User Guide for more information.

Tree Options Tab

You can set these options in either the Analytic Solver Options dialog or, in

some cases, in the Task Pane – changing them in one will also update them in

the other.

Certainty Equivalents

Use this option to determine the evaluation criterion to be used at each decision

node in a decision tree. Choose Expected Value for a risk-neutral criterion, that

Frontline Solvers 2025 Q1 Reference Guide Page 145

selects the alternative with the highest (if maximizing, or the lowest if

minimizing) expected value (probability-weighted average) at each node.

Choose Exponential Utility Function to use a criterion that incorporates risk

aversion. You can set the shape of the utility function with the Risk Tolerance,

Scalar A and Scalar B options.

Decision Node EV/CE

Use this option to determine how a decision tree should be evaluated. Choose

Maximize to maximize the Expected Value or Certainty Equivalent of the

alternatives at each decision node, or Minimize to minimize the EV or CE at

each node.

Risk Tolerance

Use this option to help determine the shape of the exponential utility function,

used to choose an alternative at each decision code, when you select the

Certainty Equivalents option Exponential Utility Function. The exponential

utility function takes the form U = A – B*EXP(-x/RT) where x is the value of

the alternative, RT is the Risk Tolerance you set with this option, and A and B

are parameters you set with the Scalar A and Scalar B options.

Scalar A

Use this option to help determine the shape of the exponential utility function,

used to choose an alternative at each decision code, when you select the

Certainty Equivalents option Exponential Utility Function. The exponential

utility function takes the form U = A – B*EXP(-x/RT) where x is the value of

the alternative, RT is the Risk Tolerance option, A is the value you set with this

option, and B is the Scalar B option.

Scalar B

Use this option to help determine the shape of the exponential utility function,

used to choose an alternative at each decision code, when you select the

Certainty Equivalents option Exponential Utility Function. The exponential

utility function takes the form U = A – B*EXP(-x/RT) where x is the value of

the alternative, RT is the Risk Tolerance option, A is the value you set with this
option, and B is the Scalar B option.

Frontline Solvers 2025 Q1 Reference Guide Page 146

Bounds Options Tab

You can set these options in either the Analytic Solver Options dialog or, in

some cases, in the Task Pane – changing them in one will also update them in

the other.

Decision Variable Bounds

Use the Lower Bound option to place a default lower bound on all decision
variables that do not have explicit lower bounds defined by >= constraints. For

example, if you want all decision variables to be non-negative, set the value of

this option to 0. You can still set other bounds on individual decision variables,

such as A1 >= 5 or A1 >= -5, by choosing Constraints Variable Type/Bound >=.

Use this Upper Bound option to place a default upper bound on all decision

variables that do not have explicit upper bounds defined by <= constraints. This

is very useful when you are solving with the Multistart option or with the

Evolutionary Solver. For example, set the value of this option to 100 if you want

all decision variables to have that upper bound. You can still set other bounds on

individual decision variables, such as A1 <= 90 or A1 <= 110, by choosing

Constraints Variable Type/Bound <=.

Note: This option not included in Risk Solver Pro.

Frontline Solvers 2025 Q1 Reference Guide Page 147

Distribution Bounds

Use the Lower Cutoff Measure and Upper Cutoff Measure options only if you

want to set global default bounds on the probability distributions of all uncertain

variables. This option specifies the “units of measure” for the values you enter in

the Lower Cutoff and Upper Cutoff options. Choose None (the default) if you

don’t want to set these global bounds.

If you choose Percentile, then the Lower Cutoff and Upper Cutoff values must

be between 0.01 and 0.99, and they specify percentiles of each uncertain

variable’s probability distribution. If you choose Std Deviation, then the Lower

Cutoff and Upper Cutoff can be any positive or negative value, and they specify

the number of standard deviations away from the mean for each uncertain
variable.

Analytic Solver supports both Cutoff bounds and Censor bounds. When you use

Cutoff bounds, random samples from the distribution are effectively rescaled to

lie within the lower and upper bounds. When you use Censor bounds, random

samples from the distribution that lie above the upper bound are set equal to the

upper bound, and samples that lie below the lower bound are set equal to the

lower bound; this causes a “buildup of probability mass” at the bounds – which

is appropriate in some situations, but not in others.

Use the Cutoff option only if you want to set a “Cutoff” type lower bound on the

probability distributions of all uncertain variables. The value you enter for this
option is expressed in either percentiles or standard deviations, depending on the

setting of the Cutoff Measure option. Percentile measures must lie between 0.01

and 0.99, Std Deviation measures can be any value.

Use the Lower Censure option only if you want to set a “Censor” type lower

bound on the probability distributions of all uncertain variables. The value you

enter for this option is expressed in either percentiles or standard deviations,

depending on the setting of the Censor Measure option. Percentile measures

must lie between 0.01 and 0.99, Std Deviation measures can be any value.

Use the Upper Censure option only if you want to set a “Censor” type upper

bound on the probability distributions of all uncertain variables. The value you

enter for this option is expressed in either percentiles or standard deviations,
depending on the setting of the Censor Measure option. Percentile measures

must lie between 0.01 and 0.99, Std Deviation measures can be any value.

Chart Options Tab

You can use the Chart Options tab to set certain ‘workbook-level’ options for

the appearance of your charts of uncertain variables and uncertain functions.

But you can override these settings for any specific uncertain variable or

function, by simply displaying the Uncertain Variable and Uncertain Function

dialog, setting options in its Chart Settings pane, and clicking the Apply button

while selecting “This Chart Only.”

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Lower_Cutoff.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Upper_Cutoff.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Cutoff_Measure.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Censor_Measure.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Censor_Measure.htm

Frontline Solvers 2025 Q1 Reference Guide Page 148

You can also use this tab to control Analytic Solver’s behavior when you are

editing cells and formulas in your Excel worksheet. By default, Analytic Solver
displays small pop-up charts when your mouse hovers over an uncertain variable

or uncertain function cell for more than about 1 second, and it opens the

Uncertain Variable or Uncertain Function dialog if you double-click one of

these cells. If you don’t want these things to happen, you can “turn them off”

here or on the General tab. (See below.)

Setting Default Chart Properties

Chart Type

Type: You can select line, bar or area chart types from the dropdown list.

Color: To change the chart color, click the dropdown arrow, then click the

color you want in the “color picker.”

Gridlines: You can select None, Horizontal, Vertical, or Both.

Effects

3D: If this box is checked, a three-dimensional perspective chart is drawn. If it

is unchecked, a two-dimensional chart is drawn.

Transparency: By clicking the spinner control, you can increase or decrease

the degree of transparency in the colors used to draw the chart.

Controlling Pop-Up Charts and Dialogs

Show Pop-Up Charts

If this box is checked, pop-up charts are displayed when you hover the mouse

over an uncertain variable or uncertain function cell. If it is unchecked, pop-up

Frontline Solvers 2025 Q1 Reference Guide Page 149

charts are not displayed. Note: Uncertain function pop up charts only appear

when Interactive Simulation is turned on.

Show Dialogs on Double-Click

If this box is checked, the Uncertain Variable dialog is displayed when you

double-click an uncertain variable cell, and the Uncertain Function dialog is

displayed when you double-click an uncertain function cell. If it is unchecked,

the dialogs are not displayed; in this case, double-clicking an uncertain variable

or uncertain function cell will activate editing of the formula in that cell (a

normal Excel behavior).

Show Charts after Simulation

Select this option to display a histogram of the uncertain functions in your

model after a simulation has completed. It is important to choose which charts

you want displayed when this option is selected. On the uncertain function

dialog, choose Chart Options in the drop down menu at the right, and click the

Chart Display Option “Show chart after each simulation.” Repeat for each chart

to display each automatically after a simulation has completed.

Markers Tab

You can use the Markers tab, shown below, to define ‘workbook-level’ chart

Markers, which will appear by default on each of your charts of uncertain

variables and uncertain functions. On each chart, you can control whether these

‘workbook-level’ Markers will be visible or invisible.

Frontline Solvers 2025 Q1 Reference Guide Page 150

You define Markers in the Options dialog tab Markers tab in exactly the same

way you define them in the Uncertain Variable or Uncertain Function dialog

right-hand pane Markers tab, as described under “Chart Markers” in the earlier

section of this chapter “Chart Formatting, Copy/Paste and Printing.” For each

Marker, you define a Name (used to identify the Marker throughout the

workbook), a Type, a Value, a Color, a Description (which optionally appears

on the chart), and the Visible and Show Description properties.

In the Uncertain Variable or Uncertain Function dialog right-hand pane Markers

tab, you can select a workbook-level Marker from the dropdown list, and check

the Visible box to make it appear on that chart, or uncheck this box to make the
Marker not appear on the chart.

Frontline Solvers 2025 Q1 Reference Guide Page 151

Problem Tab

The Problem tab, shown below, displays certain statistics about the size of your

simulation model, and size limits supported by your Analytic Solver license.

Your license may allow a limited or unlimited number of uncertain variables,

uncertain functions, correlations among variables, Monte Carlo trials per

simulation, or simulations per run. These are shown in the Problem tab.

You can define more uncertain variables, uncertain functions, and correlations

than the maximums shown in the Problem tab, and you can set the Trials per

Simulation and Simulations to Run options to higher values than the maximums.

You can save workbooks with these settings. But when you attempt to run a

simulation, an error message will appear if you have exceeded one or more of

the maximums.

Contact Frontline Systems at info@solver.com or (775) 831-0300 if you’d like

to upgrade your license to handle more uncertain variables, uncertain functions,

correlations, trials or simulations. It’s easy to upgrade – you simply enter a new

license code that Frontline will provide to you, as explained in the next section.

You can obtain a Risk Solver license that sets each maximum to “Unlimited,” as
shown on the next page; but please bear in mind that, if you create a sufficiently

large model, you will encounter other practical limits such as the amount of

memory or time required to run simulations, or maximum size limits supported

by Microsoft Excel.

Controlling Use of Multiple Processor Cores
Analytic Solver Desktop uses Windows facilities to create multiple “threads” of

execution that can be run on different processor cores. If you have other

compute-intensive applications running at the same time as Analytic Solver, you

Frontline Solvers 2025 Q1 Reference Guide Page 152

can control the number of cores used, separately for optimization and

simulation, with options on the Task Pane Platform tab:

The default value of 0 means: “use as many threads as there are processor cores

in the machine.” (The actual number of threads used may vary dynamically

during execution.) You can instead set this to a specific number of threads.

Note: If using a trial license, only 1 thread is supported.

Note: This option is not applicable in Analytic Solver Cloud.

Managing Your License
Click the License button to open the License Manager where you can manage

your current licenses and accounts, open our Product Selection Wizard, connect

to Live Chat or peruse through a list of FAQs. Click License – Manage

License/Manage Account to open the Licensing Center.

The "MyLicenses" tab displays your current license and license type, along with

the expiration date.

Frontline Solvers 2025 Q1 Reference Guide Page 153

Click About Analytic Solver to open the following dialog containing information

on this release.

Click Support Live Chat to open a Live Chat window. If you run into any issues
when using the software, the best way to get help is to start a Live Chat with our

support specialists This will start a Live Chat during our business hours (or send

us a message at other hours), just as if you were to start a Live Chat on

www.solver.com – but it saves you and our tech support rep a lot of time –

because the software reports your latest error message, model diagnosis, license

issue or other problem, without you having to type anything or explain verbally

what’s happened. You’ll see a dialog like this:

Since the software automatically sends diagnostic information to Tech Support,

we can usually identify and resolve the problem faster. (Note: No contents from

your actual spreadsheet model is sent, only information such as the number of

variables and constraints, last error message, and Excel and Windows version.)

Note: If Support Live Chat is disabled, click the down arrow beneath Help and

select Support Mode – Active Support.

http://www.solver.com/

Frontline Solvers 2025 Q1 Reference Guide Page 154

Click the Account tab to view your account on www.solver.com. Click Edit

Profile to edit the information. Click Live Chat to open a Live Chat window or

Log Out to log out of the product.

Click the Product Guide tab to view a list of products and pricing information.

Click Product Selection Wizard to open the Product Selection Wizard. See the
next section for information on this feature.

Click the Questions tab to review a list of FAQs, submit a support ticket or start

a live chat.

http://www.solver.com/

Frontline Solvers 2025 Q1 Reference Guide Page 155

Product Selection Wizard
Select Product Selection Wizard from the Licensing Center to open a series of

dialogs that will help you determine which product will best meet your needs

based on your recent pattern of use.

Select the Product that you'd like to purchase and then click Next. Click the

Optimization Choices link to learn more about Analytic Solver products that can

solve optimization models and to find more information on speed, memory, and

the use of plug-in Solver Engines.

Frontline Solvers 2025 Q1 Reference Guide Page 156

On this screen, the Product Selection Wizard will recommend a product or

products based on your answers on the previous screens. Click Upgrade to

purchase the recommended product. Click the Optimization Choices link to

learn more about Analytic Solver products that can solve optimization models.

If at any time you'd like to chat with a member of our Technical Support staff,

click Live Chat. Or if you'd like to amend your answers on a previous dialog,

click Back.

When you run a simulation or optimization model that contains too many

decision variables/uncertain variables or constraints/uncertain functions for the
selected engine, the Product Wizard will automatically appear and recommend a

product that can solve your model.

When you click “Test Run”, the Product Wizard will immediately run the

optimization or simulation model using the recommended product. (Only

Frontline Solvers 2025 Q1 Reference Guide Page 157

summary information will be available.) At this point, you can purchase the

recommended product(s), or close the dialog.

This same behavior will also occur when solving smaller models, if you select a

specific external engine, from the Engine drop down menu on the Engine tab of

the Solver Task Pane, for which you do not have a license. The Product Wizard
will recommend the selected engine, and allow you to solve your model using

this engine. Once Solver has finished solving, you will have the option to

purchase the product.

Getting Help
Should you run into any problems downloading or installing any of our

products, we’re happy to help. Call us at 775-831-0300 or email us at

support@solver.com.

AI Agent

If you are new to Analytic Solver and/or optimization, simulation, forecasting

and data science, don’t worry – Frontline’s AI technical support assistant, AI

Agent, is here to help. AI Agent is designed to provide assistance and support
for users of Frontline Solvers' Analytic Solver and Analytic Solver Data Science

software. The AI Agent is knowledgeable about the functionality and features of

the software, as well as the concepts and processes involved in optimization,

simulation and data science/forecasting. Just enter a topic or question such as

“What classification algorithms are supported in Analytic Solver Data Science?”

and click Submit Query to get started.

mailto:support@solver.com

Frontline Solvers 2025 Q1 Reference Guide Page 158

Toggle between Precision, Balanced, and Creative to determine the type of

answers you want. If Precise is selected, AI Agent will attempt to be as exact as

possible while Creative will result in a very broad and high-level answer. Use

Balanced (the default) for the best of both worlds.

Note: Frontline’s AI Agent uses artificial intelligence which could produce

erroneous information about people, places or facts, including misinformation

concerning Analytic Solver. Frontline Systems bears no responsibility for these
inaccuracies.

Note: Analytic Solver Upgrade or Solver Academy licenses do not include

support for AI Agent. This button will be disabled.

Analytic Solver Help Center

To open Analytic Solver Help, simply click the Help icon on the ribbon to gain

access to video demos, User Guides, online Help, example models, and Website

support pages to learn how to use our software tools, and how to build an effective

model.

Frontline Solvers 2025 Q1 Reference Guide Page 159

Examples

Clicking this menu item will open a browser pointing to the workbook, Frontline

Example Models Overview.xlsx. In the Desktop app, this file is copied to

C:\ProgramData\Frontline Systems\Examples during installation.

Knowledge Base

Click Knowledge Base to peruse a multitude of online articles related to support

and installation issues or to locate articles that will help you to quickly build

accurate, efficient optimization, simulation, and data science models.

User Guide
Click the User Guides menu choice to open PDF files of the Analytic Solver
Optimization and Simulation User and Reference Guides, Analytic Solver Data

Science (formerly Analytic Solver Data Mining) User or Reference Guides, or

our Quick Start Guides.

Submit a Support Ticket

If you're having installation, technical, or modeling issues, submit a Support

Ticket to open an online support request form. Submit your email address and a

short, concise description of the issue that you are experiencing. You'll receive

a reply from one of Frontline's highly trained Support Specialists within 24

hours, and generally much sooner.

Our technical support service is designed to supplement your own efforts: Getting you
over stumbling blocks, pointing out relevant sections of our User Guides or example

models, helping you fix a modeling error, or -- in rare cases -- working around an issue

with our software (always at our expense).

Operating Mode

Click Operating Mode to switch between three different levels of help.

Frontline Solvers 2025 Q1 Reference Guide Page 160

• Guided Mode prompts you step-by-step when solving, with dialogs.

• Auto-Help Mode shows dialogs or Help only when there’s a problem or

error condition.

• Expert Mode provides only messages in the Task Pane Output tab. (This
mode not supported when using a trial license.)

Click the Education & Training tab to visit Solver Academy – Frontline's online

training academy, watch video tutorials or live webinars, or learn more about

optimization, simulation or data science.

Solver Academy

Solver Academy is Frontline Systems' own learning platform. It's the place

where business analysts can gain expertise in advanced data science

analytics: forecasting, data science, text mining, mathematical optimization,

simulation and risk analysis, and stochastic optimization.

Video Tutorials/Live Webinars

Click Video Tutorials to be directed to Frontline's You Tube Channel. Browse

videos on how to create an optimization or simulation model using Analytic

Solver or construct a data science or prediction model using Analytic Solver

Data Science.

Click Live Webinars to be redirected to www.solver.com to join a live or pre-

recorded webinar. Topics include Using Analytic Solver Data Science to Gain

Insights from your Excel Data, Overview of Monte Carlo Simulation

Applications, Applications of Optimization in Excel, etc.

Learn more!

Click any of the three Learn More buttons to learn more about how you can
solve large-scale optimization, simulation, and data science models, reduce

http://solver.academy/
http://www.solver.com/

Frontline Solvers 2025 Q1 Reference Guide Page 161

costs, quantify and mitigate risk, and create forecasting, data science and text

mining models using Analytic Solver Data Science (formerly Analytic Solver

Data Mining).

Frontline Solvers 2025 Q1 Reference Guide Page 162

Solver Result Messages

Introduction
This chapter documents the Solver Result Messages that can be returned when
you optimize a model in Analytic Solver Desktop or Cloud, and discusses some

of the characteristics and limitations of the Solver Engines. You should read

this chapter in conjunction with the Frontline Solver User Guide chapter

“Getting Results: Optimization.”

Result Messages and Codes
When the solution process completes, a Solver Result Message appears at the

bottom of the Task Pane and in the Output tab, as shown below. At this point,

your worksheet contains the best solution found – values for the decision

variable cells, and calculated values for the objection function and constraints.

If you are using Analytic Solver Desktop, you can click the Solver Result

Message hyperlink (in green) to open a Help window explaining the meaning of

the result.

Frontline Solvers 2025 Q1 Reference Guide Page 163

Each Solver Result Message has a corresponding integer result code, as

documented in this chapter. If you are controlling the Solver via a VBA

program and you’ve called the Problem.Solver.Optimize method, the Solver

object OptimizeStatus property holds this result code. If you’ve called the

legacy SolverSolve function, this function will return the integer result code.

Standard Solver Result Messages

The standard Solver included with Microsoft Excel can return the result codes

and messages numbered 0 through 13 (message -1 is returned only for Frontline

Systems product licensing problems). Analytic Solver returns the same integer

result codes and displays the same Solver Result Messages described in this

section, for all the conditions it shares with the standard Solver. But the

meanings of these messages have been generalized for the LP/Quadratic Solver,

SOCP Barrier Solver, nonlinear GRG Solver, Interval Global Solver, and

Evolutionary Solver, and the conditions they may return. Please see the

explanations of each message, especially for return code 0, “Solver found a

solution.”

Note the engines bundeled within the Analytic Solver family of products and the

Excel solver.

Analytic Solver Products

Excel Solver

GRG Nonlinear Engine GRG Nonlinear

Standard LP/Quadratic Engine Simplex LP

Standard Evolutionary Engine Evolutionary

Standard Interval Global Engine

Standard SOCP Barrier Engine

Large Scale Frontline Engines

Plug-in Solver engines return the same codes and display the same messages as

the built-in Solver engines whenever possible, but they can also return custom

result codes (starting with 1000) and display custom messages, as described in

their individual documentation. The Interval Global Solver can return three of

these custom result codes and messages, described at the end of this section.

-1. A licensing problem was detected, or your trial license has expired.

This message appears if Analytic Solver cannot find its licensing information, if

the licensing information is invalid, or if you have a time-limited evaluation

license that has expired. Click the Help button for further information about the

licensing problem. Please call Frontline Systems at (775) 831-0300, or send

email to us at info@solver.com for further assistance.

0. Solver found a solution. All constraints and optimality conditions are satisfied.

This means that the Solver has found the optimal or “best” solution under the

circumstances. The exact meaning depends on whether you are solving a linear

or quadratic, smooth nonlinear, global optimization, or integer programming

problem, as outlined below. Solvers for non-smooth problems rarely if ever

display this message, because they have no way of testing the solution for true

optimality.

Frontline Solvers 2025 Q1 Reference Guide Page 164

If you are solving a linear programming problem or a convex quadratic

programming problem with the LP/Quadratic Solver, the Solver has found the

globally optimal solution: There is no other solution satisfying the constraints

that has a better value for the objective. It is possible that there are other

solutions with the same objective value, but all such solutions are linear
combinations of the current decision variable values.

If you are solving a linear (LP), convex quadratic (QP) or quadratically

constrained (QCP), or second order cone programming (SOCP) problem with

the SOCP Barrier Solver, the Solver has found the globally optimal solution:

There is no other solution satisfying the constraints that has a better value for the

objective. It’s possible that there are other solutions with the same objective

value, but all such solutions are linear combinations of the current decision

variable values.

If you are solving a smooth nonlinear optimization problem with no integer

constraints, the GRG Solver has found a locally optimal solution: There is no

other set of values for the decision variables close to the current values and
satisfying the constraints that yields a better value for the objective. In general,

there may be other sets of values for the variables, far away from the current

values, which yield better values for the objective and still satisfy the

constraints.

If you are using the Interval Global Solver (within the Analytic Solver products)

for global optimization of a smooth nonlinear problem with no integer

constraints, this means that the Solver has found the globally optimal solution:

There is no other solution satisfying the constraints that has a better value for the

objective. But this is subject to limitations due to the finite precision of

computer arithmetic – discussed below in “Limitations on Global Optimization”

– that can, in rare cases, cause the Solver to “miss” a feasible solution with an
even better objective value.

If you are solving a mixed-integer programming problem (any problem with

integer constraints), this message means that the Branch & Bound method has

found a solution satisfying the constraints (including the integer constraints)

with the “best possible” objective value (but see the next paragraph). If the

problem is linear or quadratic, the true integer optimal solution has been found.

If the problem is smooth nonlinear, the Branch & Bound process has found the

best of the locally optimal solutions found for subproblems by the nonlinear

Solver.

In the standard Microsoft Excel Solver, this message also appears for mixed-
integer problems where the Solver stopped because the solution was within the

range of the true integer optimal solution allowed by the Tolerance value in the

Solver Options dialog (5% by default). When the Branch & Bound process

stops due to a nonzero Tolerance without “proving optimality,” the message

“Solver found an integer solution within tolerance. All constraints are satisfied”

(result code 14) is displayed to distinguish this condition (see below).

1. Solver has converged to the current solution. All constraints are satisfied.

This means that Solver has found a series of “best” solutions that satisfy the
constraints, and that have very similar objective function values; however, no

single solution strictly satisfies the Solver’s test for optimality. The exact

meaning depends on whether you are solving a smooth nonlinear problem with

the GRG Solver or the Interval Global Solver, or a non-smooth problem with the

Evolutionary Solver.

When the GRG Solver or the Interval Global Solver is being used, this message

means that the objective function value is changing very slowly as the Solver

Frontline Solvers 2025 Q1 Reference Guide Page 165

progresses from point to point. More precisely, the Solver stops if the absolute

value of the relative (i.e. percentage) change in the objective function, in the last

few iterations, is less than the Convergence tolerance on the Task Pane Engine

tab. A poorly scaled model is more likely to trigger this stopping condition,

even if Use Automatic Scaling is set to True on the Task Pane Engine tab. If
you are sure that your model is well scaled, you should consider why it is that

the objective function is changing so slowly. For more information, see the

discussion of “GRG Solver Stopping Conditions” below.

When the Evolutionary Solver is being used, this message means that the

“fitness” of members of the current population of candidate solutions is

changing very slowly. More precisely, the Evolutionary Solver stops if 99% or

more of the members of the population have “fitness” values whose relative (i.e.

percentage) difference is less than the Convergence tolerance on the Task Pane

Engine tab. The “fitness” values incorporate both the objective function and a

penalty for infeasibility, but since the Solver has found some feasible solutions,

this test is heavily weighted towards the objective function values. If you
believe that the Solver is stopping prematurely when this test is satisfied, you

can make the Convergence tolerance smaller, but you may also want to increase

the Mutation Rate and/or the Population Size, in order to increase the diversity

of the population of trial solutions. For more information, see the discussion of

“Evolutionary Solver Stopping Conditions” below.

2. Solver cannot improve the current solution. All constraints are satisfied.

This means that the Solver has found solutions that satisfy the constraints, but it

has been unable to further improve the objective, even though the tests for
optimality (“Solver found a solution”) and convergence (“Solver converged to

the current solution”) have not yet been satisfied. The exact meaning depends

on whether you are solving a smooth nonlinear problem with the GRG Solver, a

global optimization problem with the Interval Global Solver, or a non-smooth

problem with the Evolutionary Solver.

When the GRG Solver is being used, this message occurs very rarely. It means

that the model is degenerate and the Solver is probably cycling. One possibility

worth checking is that some of your constraints are redundant, and should be

removed. For more information, see the discussion of “GRG Solver Stopping

Conditions” below.

When the Interval Global Solver is being used, this message is more common.
It means that the Solver has not found an “improved global solution” (a feasible

solution with an objective value better than the currently best known solution),

in the amount of time specified for the Max Time without Improvement option

Task Pane Engine tab. The reported solution is the best one found so far, but the

search space has not been fully explored. For more information, see the

discussion of “Interval Global Solver Stopping Conditions” below. If you

receive this message, and you are willing to spend more solution time to have a

better chance of “proving” global optimality, increase the value of the Max

Time without Improvement option.

When the Evolutionary Solver is being used, this message is much more

common. It means that the Solver has been unable to find a new, better member
of the population whose “fitness” represents a relative (percentage)

improvement over the current best member’s fitness of more than the Tolerance

value on the Limit Options dialog tab, in the amount of time specified by the

Max Time without Improvement option in the same dialog. Since the

Evolutionary Solver has no way of testing for optimality, it will normally stop

with either “Solver converged to the current solution” or “Solver cannot

improve the current solution” if you let it run for long enough. If you believe

Frontline Solvers 2025 Q1 Reference Guide Page 166

that this message is appearing prematurely, you can either make the Tolerance

value smaller (or even zero) or increase the amount of time allowed by the Max

Time without Improvement option. For more information, see the discussion of

“Evolutionary Solver Stopping Conditions” below.

3. Stop chosen when the maximum iteration limit was reached.

This message appears when (i) the Solver has completed the maximum number

of iterations, or trial solutions, allowed for the Iterations option in the Task Pane

Engine tab and (ii) you clicked on the Stop button when the Solver displayed the

Show Trial Solution dialog. You may increase the value in the Iterations box, or

click on the Continue button instead of the Stop button in the Show Trial

Solution dialog. But you should also consider whether re-scaling your model or

adding constraints might reduce the total number of iterations required.

If you are solving a mixed-integer programming problem (any problem with
integer constraints), this message is relatively unlikely to appear. The

Evolutionary Solver uses the Max Subproblems and Max Feasible Solutions

options on the Limit Options dialog tab, and the Branch & Bound method

(employed by the other Solver engines on problems with integer constraints)

uses the Max Subproblems and Max Integer Solutions options on the Integer

Options dialog tab, to control the overall solution process. The count of

iterations against which the Iteration limit is compared is reset on each new

subproblem, so this limit usually is not reached.

If you are using Stochastic Decomposition to solve for a stochastic linear model,

this status will be returned if the algorithm performs over 5,000 iterations.

4. The objective (Set Cell) values do not converge.

This message appears when the Solver is able to increase (if you are trying to

Maximize) or decrease (for Minimize) without limit the value calculated by the

objective or Set Cell, while still satisfying the constraints. Remember that, if

you’ve selected Minimize, the objective may take on negative values without

limit unless this is prevented by the constraints or bounds on the variables. Set

the Assume Non-Negative option to True on the Task Pane Engine tab to

impose >= 0 bounds on all variables.

If the objective is a linear function of the decision variables, it can always be

increased or decreased without limit (picture it as a straight line), so the Solver

will seek the extreme value that still satisfies the constraints. If the objective is a

nonlinear function of the variables, it may have a “natural” maximum or

minimum (for example, =A1*A1 has a minimum at zero), or no such limit (for

example, =LOG(A1) increases without limit).

If you receive this message, you may have forgotten a constraint, or failed to

anticipate values for the variables that allow the objective to increase or decrease

without limit. The final values for the variable cells, the constraint left hand

sides and the objective should provide a strong clue about what happened.

The Evolutionary Solver never displays this message, because it has no way of
systematically increasing (or decreasing) the objective function, which may be

non-smooth. If you have forgotten a constraint, the Evolutionary Solver may

find solutions with very large (or small) values for the objective – thereby

making you aware of the omission – but this is not guaranteed.

5. Solver could not find a feasible solution.

This message appears when the Solver could not find any combination of values

for the decision variables that allows all of the constraints to be satisfied

simultaneously. If you are using the LP/Quadratic Solver or the SOCP Barrier

Frontline Solvers 2025 Q1 Reference Guide Page 167

Solver, and the model is well scaled, the Solver has determined for certain that

there is no feasible solution.

If you are using the nonlinear GRG Solver, the GRG method (which always

starts from the initial values of the variables) was unable to find a feasible

solution; but there could be a feasible solution far away from these initial values,
which the Solver might find if you run it with different initial values for the

variables.

If you are using the Interval Global Solver, this message means that the Solver

could find no feasible solutions after a systematic exploration of the search

space. The Interval Global Solver is designed to “prove feasibility” as well as

global optimality, and there is very likely no feasible solution; but this is subject

to limitations due to the finite precision of computer arithmetic – discussed

below in “Limitations on Global Optimization” – that can, in rare cases, cause

the Solver to “miss” a solution.

If you are using the Evolutionary Solver, the evolutionary algorithm was unable
to find a feasible solution; it might succeed in finding one if you run it with

different initial values for the variables and/or increase the Precision value on

the Task Pane Engine tab (which reduces the infeasibility penalty, thereby

allowing the evolutionary algorithm to explore more “nearly feasible” points).

If you are solving a problem with chance constraints using simulation

optimization, this message means that the Solver could find no solution that

satisfies these constraints to the chance measures (such as 95%) that you

specified. If you ‘relax’ the chance measures (to say 90%) and solve again, it’s

possible that a feasible solution will be found. For robust optimization, see

result codes 26 through 29.

In any case, you should first look for conflicting constraints, i.e. conditions that
cannot be satisfied simultaneously. Most often this is due to choosing the wrong

relation (e.g. <= instead of >=) on an otherwise appropriate constraint. The

easiest way to do this is to select the Feasibility Report, shown in the Reports list

box when this message appears, and click OK. (This report can take time for the

LP/Quadratic Solver or SOCP Barrier Solver, more time for the GRG Solver,

and much more time for the Interval Global Solver; it is not available for the

Evolutionary Solver.) For an example of using the Feasibility Report to

diagnose an infeasible solution, see “The Feasibility Report” in the chapter

“Solver Reports.”

6. Solver stopped at user’s request.

This message appears only if you press ESC or the Pause icon on the Output tab

of the Solver Task Pane to display the Show Trial Solution dialog, and then

click on the Stop button. If you are controlling the Solver from a VBA program,

remember that the user may press ESC while your VBA program is running.

You can write VBA code to disable the ESC key, or – better – define a VBA

function that the Solver will call instead of displaying the Show Trial Solution

dialog (an Evaluator in the object-oriented API, or a ShowRef function

argument in the “traditional” SolverSolve function.). Be sure to test for this

OptimizeStatus or integer result (6) in your VBA code, and take action
appropriate for your model.

7. The linearity conditions required by this Solver engine are not satisfied.

In the standard Excel Solver, this message is worded “The conditions for

Assume Linear Model are not satisfied,” and it can appear only when the

Assume Linear Model box in the Solver Options dialog is checked.

Frontline Solvers 2025 Q1 Reference Guide Page 168

This message appears if you’ve selected the LP/Quadratic Solver and the

Solver’s tests determine that the constraints are not linear functions of the

variables or the objective is not a linear or convex quadratic function of the

variables; or if you’ve selected the SOCP Barrier Solver and the Solver’s tests

determine that the constraints or the objective are not linear or convex quadratic
functions of the variables. To understand exactly what is meant by a linear or

quadratic function, read the section “Quadratic Functions” in the chapter

“Mastering Conventional Optimization Concepts.”

Field-installable Solver engines can also display this message. If you’ve

selected the Large-Scale LP/QP Solver or the XPRESS Solver Engine, this

message appears if the constraints are not linear functions of the variables or the

objective is not a linear or convex quadratic function of the variables. If you’ve

selected the MOSEK Solver Engine (Standard Edition), this message appears if

the constraints or the objective are not linear or convex quadratic functions of

the variables.

If you receive this message, examine the formulas for the objective and
constraints for nonlinear or non-smooth functions or operators applied to the

decision variables. Simply follow the steps in “Transformation Options” in the

chapter “Platform Option Reference” to pinpoint the exact cell formulas that

aren’t linear. If you have Analytic Solver Upgrade and you've reach the limits

of your license, select and examine the Structure Report to determine which

functions or variables in your model are not linear; see “The Structure Report”

in the chapter “Solver Reports.”

8. The problem is too large for Solver to handle.

This message – or the more specific message Too many adjustable cells, Too

many constraints, or Too many integer adjustable cells – appears when the

Solver determines that your model is too large for the Solver engine that is

selected (in the Solver engine dropdown list) at the time you click Solve. You’ll

have to select – or possibly install – another Solver engine appropriate for your

problem, or else reduce the number of variables, constraints, or integer variables

to proceed.

You can check the size (the number of variables, constraints, bounds, and

integers) of the problem you have defined, and compare it to the size limits of

the Solver engine you are using, by scrolling down to the bottom of the Task

Pane Engine tab. The problem size is also displayed in the Solver Model dialog.

9. Solver encountered an error value in a target or constraint cell.

This message appears when the Solver recalculates your worksheet using a new

set of values for the decision variables (Changing Cells), and discovers an error

value such as #VALUE!, #NUM!, #DIV/0! or #NAME? in the cell calculating

the objective (Set Cell) or one of the constraints. Inspecting the worksheet for

error values like these will usually indicate the source of the problem. If you’ve

entered formulas for the right hand sides of certain constraints, the error might

have occurred in one of these formulas rather than in a cell on the worksheet.
For this and other reasons, it’s better to use only constants and cell references on

the right hand sides of constraints.

If you see #VALUE!, #N/A or #NAME?, look for names or cell references to

rows or columns that you have deleted. If you see #NUM! or #DIV/0!, look for

unanticipated values of the decision variables which lead to arguments outside

the domains of your functions – such as a negative value supplied to SQRT. You

can often add constraints to avoid such domain errors; if you have trouble with a

constraint such as A1 >= 0, try a constraint such as A1 >= 0.0001 instead.

Frontline Solvers 2025 Q1 Reference Guide Page 169

In the Analytic Solver products, when the Polymorphic Spreadsheet Interpreter

is used (Solve With = PSI Interpreter), a more specific message usually appears

instead of “Solver encountered an error value in a (nonspecific) target or

constraint cell.” At a minimum, the message will say “Excel error value

returned at cell address,” where address (e.g. Sheet1!A1) tells you exactly
where the error was encountered. Other messages may tell you more about the

error. The general form of the message is:

Error condition at cell address. Edit your formulas, or use Excel Interpreter

in the Solver Model dialog. Error condition is one of the following:

Floating point overflow Invalid token

Runtime stack overflow Decision variable with formula

Runtime stack empty Decision variable defined more than once

String overflow Missing Diagnostic/Memory evaluation

Division by zero Unknown function

Unfeasible argument Unsupported Excel function

Type mismatch Excel error value returned

Invalid operation Non-smooth special function

See also result code 21, “Solver encountered an error computing derivatives,”

and result code 12, with messages that can appear when the Interpreter first

analyzes the formulas in your model (when you click the Check Model or Solve

button).

“Floating point overflow” indicates that the computed value is too large to

represent with computer arithmetic; “String overflow” indicates that a string is
too long to be stored in a cell. “Division by zero” would yield #DIV/0! on the

worksheet, and “Unfeasible argument” means that an argument is outside the

domain of a function, such as =SQRT(A1) where A1 is negative.

“Unknown function” appears for functions whose names are not recognized by

the Interpreter, such as user-written functions in VBA. “Unsupported Excel

function” appears for the few functions that the Interpreter recognizes but does

not support. The PSI Interpreter does not support the following functions:

Call(), Cell(), CubeX(), EuroConvert(), GetPivotData(), HyperLink(), Info(),

RegisterID(), and SqlRequest().

The Evolutionary Solver and the field-installable OptQuest Solver rarely, if

ever, display this message – since they maintain a population of candidate
solutions and can generate more candidates without relying on derivatives, they

can simply discard trial solutions that result in error values in the objective or

the constraints. If you have a model that frequently yields error values for trial

solutions generated by the Solver, and you are unable to correct or avoid these

error values by altering your formulas or by imposing additional constraints, you

can still use the Evolutionary Solver or OptQuest Solver to find (or make

progress towards) a “good” solution.

10. Stop chosen when the maximum time limit was reached.

This message appears when (i) the Solver has run for the maximum time

(number of seconds) allowed in the Max Time field on the Engine tab of the

Solver Task Pane and (ii) you clicked on the Stop button when the Solver

displayed the Show Trial Solution dialog. You may increase the value in the

Max Time box or click on the Continue button instead of the Stop button in the

Show Trial Solution dialog. But you should also consider whether re-scaling

your model or adding constraints might reduce the total solution time required.

Frontline Solvers 2025 Q1 Reference Guide Page 170

11. There is not enough memory available to solve the problem.

This message appears when the Solver could not allocate the memory it needs to
solve the problem. However, since Microsoft Windows supports a “virtual

memory” much larger than your available RAM by swapping data to your hard

disk, before you see this message you are likely to notice that solution times

have greatly slowed down, and the hard disk activity light in your PC is

flickering during the solution process, or even when “Analyzing Solver Model,”

“Diagnosing Problem Function” or “Setting Up Problem” appears on the Excel

status bar.

The Polymorphic Spreadsheet Interpreter in Analytic Solver can use a

considerable amount of memory, when you solve a problem by clicking the

Optimize icon on the Ribbon or the Solve icon on the Solver Task Pane, and

when you click Optimize – Analyze Original Model on the Ribbon. You can
progressively reduce the memory used by the Interpreter by taking the following

actions in order, using the Solver Model dialog:

1. Check the Sparse box in the Advanced options group.

2. Set the Check For option to Gradients.

3. Set the Solve With option to Excel Interpreter.

When Solve With = Excel Interpreter, the PSI Interpreter is not used and does

not use any memory; any further problems are due to memory demands of the

Solver engines, Microsoft Excel and Windows. You can save some memory by

closing any Windows applications other than Excel, closing programs that run in

the System Tray, and closing any Excel workbooks not needed to solve the
problem.

12. Another Excel instance is using SOLVER32.DLL. Try again later.

This message appeared in early versions of the standard Excel Solver; it does

not occur in modern versions of Microsoft Excel and Windows. In the Analytic

Solver products, result code 12 is associated with the message “Error condition

at cell address. Edit your formulas, or use Excel Interpreter in the Solver Model

dialog,” which is explained in the next section.

13. Error in model. Please verify that all cells and constraints are valid.

This message means that the internal “model” (information about the variable

cells, objective, constraints, Solver options, etc.) is not in a valid form. An

“empty” or incomplete Solver model, perhaps one with no objective and no

constraints other than bounds on the variables, can cause this message to appear.

You might also receive this message if you’ve modified the values of certain

hidden defined names used by the Solver, either interactively or in a VBA

program. To guard against this possibility, you should avoid using any defined

names beginning with “solver” in your own application.

Analytic Solver Result Messages

Analytic Solver may return the result codes and display the messages in the

previous section, as well as the result codes and messages explained below.

These result codes and messages are related to capabilities of Analytic Solver:

the Polymorphic Spreadsheet Interpreter, advanced methods for mixed-integer

problems and global optimization problems, new types of constraints such as

alldifferent and conic, and optimization of models that involve uncertainty.

Frontline Solvers 2025 Q1 Reference Guide Page 171

12. Error condition at cell address. Edit your formulas, or use Excel Interpreter in the
Solver Model dialog.

This message appears when the Polymorphic Spreadsheet Interpreter first

analyzes the formulas in your model after you click the Solve button or the

Check Model button in the Solver Model dialog. Address is the worksheet

address of the cell (in Sheet1!A1 form) where the error was encountered, and

Error condition is one of the following:

OLE error Missing (

Invalid token Missing)

Unexpected end of formula Wrong number of parameters

Invalid array Type mismatch

Invalid number Code segment overflow

Invalid fraction Expression too long

Invalid exponent Symbol table full

Too many digits Circular reference

Real constant out of range External name

Integer constant out of range Multi-area not supported

Invalid expression Non-smooth function

Undefined identifier Unknown function

Range failure Loss of significance

Many of these messages will never appear as long as you entered your formulas

in the normal way through Microsoft Excel, because Excel “validates” your

formulas and displays its own error messages as soon as you complete formula

entry. Some of the messages you may encounter are described in the following
paragraphs.

Undefined identifier appears if you’ve used a name or identifier (instead of a

cell reference such as A1) in a formula, and that name was not defined using the

Insert Name Define… or Insert Name Create… commands in Excel, this

message will appear. The “labels in formulas” feature was dropped in Excel

2007, and the Interpreter does not support this use of labels in formulas. You

should define these labels with the Insert Name Define… or Insert Name

Create… commands, or else set Solve With = Excel Interpreter to avoid using

the PSI Interpreter.

Circular reference appears if Excel has already warned you about a circular
reference in your formulas, and it can also appear if you’ve used formulas in a

“potentially circular” way. (For example, if cells A1:A2 contain {=1+B1:B4}

and cells B3:B4 contain {=1+A1:A4}, Excel doesn’t consider this a circular

reference, but the PSI Interpreter does.) If you must use circular references in

your model, in the Platform tab of the Task Pane, change the Interpreter option

from “Automatic” to “Excel Interpreter” so you avoid using the PSI Interpreter.

External name appears if your formulas use references to cells in other

workbooks (not just other worksheets), and the Interpreter is unable to open

those workbooks. You should ensure that the external workbooks are in the

same folder as the Solver workbook, or for better performance, move or copy

the worksheets you need into the workbook containing the Solver model.

Multi-area not supported or Missing) appears if your formulas or defined

names use multiple selections such as (A1:A5,C1:H1). While the Interpreter

does accept argument lists consisting of single selections, such as

=SUM(A1:A5,C1:H1), it does not accept multiple selections for defined names,

or for single arguments such as =SUMSQ((A1:A5,C1:H1), (B1:B5,C2:H2)). If

you must use such multiple selections, you’ll have to set Solve With = Excel

Interpreter.

Frontline Solvers 2025 Q1 Reference Guide Page 172

Note: As mentioned above, in the standard Excel Solver, result code 12 was

associated with the message “Another Excel instance is using SOLVER32.DLL.

Try again later,” which does not occur in modern versions of Excel and

Window.

13. Error in model. Please verify that all cells and constraints are valid.

As above, means that the internal “model” (information about the variable cells,

objective, constraints, Solver options, etc.) is not in a valid form. An “empty” or

incomplete Solver model, perhaps one with no objective and no constraints other

than bounds on the variables, can cause this message to appear. You might also

receive this message if you’ve modified the values of certain hidden defined

names used by the Solver, either interactively or in a VBA program. To guard

against this possibility, you should avoid using any defined names beginning

with “solver” in your own application.

14. Solver found an integer solution within tolerance. All constraints are satisfied.

If you are solving a mixed-integer programming problem (any problem with

integer constraints) using Analytic Solver or a subset product with a non-zero

value for the integer Tolerance setting in the Integer section of the Task Pane

Engine tab, the Branch & Bound method has found a solution satisfying the

constraints (including the integer constraints) where the relative difference of

this solution’s objective value from the true optimal objective value does not

exceed the integer Tolerance setting. (For more information, see “Integer
Section of the Engine Tab Options” in the chapter “Solver Engine Option

Reference.”) This may actually be the true integer optimal solution; however,

the Branch & Bound method did not take the extra time to search all possible

remaining subproblems to “prove optimality” for this solution. If all

subproblems were explored (which can happen even with a non-zero Tolerance

in some cases), Analytic Solver will produce the message “Solver found a

solution. All constraints are satisfied” (result code 0, shown earlier in this

section).

15. Stop chosen when the maximum number of feasible [integer] solutions was reached.

If you are using the Evolutionary Solver, this message appears when (i) the

Solver has found the maximum number of feasible solutions (values for the

variables that satisfy all constraints) allowed by the Max Feasible Sols options

setting on the Engine tab of the Solver Task Pane and (ii) you clicked on the

Stop button when the Solver displayed the Show Trial Solution dialog. You may

increase the value in the Max Feasible Sols box, or click on the Continue button

instead of the Stop button in the Show Trial Solution dialog to continue the

solution process.

If you are using one of the other Solver engines on a problem with integer con-

straints, this message appears when (i) the Solver has found the maximum
number of integer solutions (values for the variables that satisfy all constraints,

including the integer constraints) allowed by the Max Integer Sols option setting

on the Engine tab of the Solver Task Pane and (ii) you clicked on the Stop

button when the Solver displayed the Show Trial Solution dialog. You may

increase the value for the Max Integer Sols option, or click on the Continue

button instead of the Stop button in the Show Trial Solution dialog. But you

should also consider whether the problem is formulated correctly, and whether

you can add constraints to “tighten” the formulation. If you are using the

LP/Quadratic Solver in Analytic Solver Comprehensive or Analytic Solver

Optimization, try activating more Cuts and Heuristics in the Integer section of

the Task Pane Engine tab.

Frontline Solvers 2025 Q1 Reference Guide Page 173

16. Stop chosen when the max number of feasible [integer] subproblems was reached.

If you are using the Evolutionary Solver, this message appears when (i) the
Solver has explored the maximum number of subproblems allowed in the Max

Subproblems option field on the Engine tab of the Solver Task Pane and (ii) you

clicked the Stop button when the Solver displayed the Show Trial Solution

dialog. You may increase the value for the Max Subproblems option, or click on

the Continue button instead of the Stop button in the Show Trial Solution dialog

to continue the solution process.

If you are using one of the other Solver engines on a problem with integer con-

straints, this message appears when (i) the Solver has explored the maximum

number of integer subproblems (each one is a “regular” Solver problem with

additional bounds on the variables) allowed in the Max Subproblems option

field on the Engine tab of the Solver Task Pane and (ii) you clicked on the Stop
button when the Solver displayed the Show Trial Solution dialog. You may

increase the value for Max Subproblems, or click on the Continue button instead

of the Stop button in the Show Trial Solution dialog. But you should also

consider whether the problem is formulated correctly, and whether you can add

constraints to “tighten” the formulation. If you are using the LP/Quadratic

Solver in Analytic Solver Comprehensive or Analytic Solver Optimization, try

activating more Cuts and Heuristics in the Integer section on the Task Pane

Engine tab.

17. Solver converged in probability to a global solution.

If you are using the multistart methods for global optimization, with either the

nonlinear GRG Solver, or a field-installable nonlinear Solver engine, this

message appears when the multistart method’s Bayesian test has determined that

all of the locally optimal solutions have probably been found; the solution

displayed on the worksheet is the best of these locally optimal solutions, and is

probably the globally optimal solution to the problem.

The Bayesian test initially assumes that the number of locally optimal solutions

to be found is equally likely to be 1, 2, 3, … etc. up to infinity, and that the

relative sizes of the regions containing each locally optimal solution follow a

uniform distribution. After each run of the nonlinear GRG Solver, or field-
installable Solver engine, an updated estimate of the most probable total number

of locally optimal solutions is computed, based on the number of subproblems

solved and the number of locally optimal solutions found so far. When the

number of locally optimal solutions actually found so far is within one unit of

the most probable total number of locally optimal solutions, the multistart

method stops and displays this message.

18. All variables must have both upper and lower bounds.

If you are using the Interval Global Solver or the OptQuest Solver, this message
appears if you have not defined lower and upper bounds on all of the decision

variables in the problem. If you are using the Evolutionary Solver or the

multistart methods for global optimization, and you have checked the box

“Require Bounds on Variables” on the Engine tab of the Solver Task Pane (it is

set to True by default), this message will also appear. You should add the

missing bounds and try again. Lower bounds of zero can be applied to all

variables by setting the Assume Non-Negative option to True on the Engine tab

in the Solver Task Pane or by entering “0” for the Decision Vars Lower option

on the Platform tab of the Solver Task Pane. Non-zero upper or lower bounds

can be added as constraints in the Model tab of the Solver Task Pane or by

entering a value for Decision Vars Upper or Decision Vars Lower on the

Platform tab in the Solver Task Pane. You must define bounds on all variables

Frontline Solvers 2025 Q1 Reference Guide Page 174

in order to use the Interval Global Solver or the OptQuest Solver. For the

Evolutionary Solver or the multistart methods, such bounds are not absolutely

required (you can uncheck the box “Require Bounds on Variables”), but they are

a practical necessity if you want the Solver to find good solutions in a

reasonable amount of time.

19. Variable bounds conflict in binary or alldifferent constraint.

This message appears if you have both a binary or alldifferent constraint on a

decision variable and a <= or >= constraint on the same variable (that is

inconsistent with the binary or alldifferent specification), or if two or more of

the same decision variables appear in more than one alldifferent constraint.

Binary integer variables always have a lower bound of 0 and an upper bound of

1; variables in an alldifferent group always have a lower bound of 1 and an

upper bound of N, where N is the number of variables in the group. You should
check that the binary or alldifferent constraint is correct, and ensure that

alldifferent constraints apply to non-overlapping groups of variables. If a <= or

>= constraint causes the conflict, remove it if possible and try to solve again.

20. Lower and upper bounds on variables allow no feasible solution.

This message appears if you’ve defined lower and upper bounds on a decision

variable, where the lower bound is greater than the upper bound. This

(obviously) means there can be no feasible solution, but most Solver engines

will detect this condition before even starting the solution process, and display
this message instead of “Solver could not find a feasible solution” to help you

more quickly identify the source of the problem. If you have defined your

bounds and other constraints in uniform blocks, the lower and upper bounds on a

given range of cells will appear consecutively in the Solver Parameters dialog

outlined list (where they are grouped and sorted), making it easy to spot the

inconsistent bounds.

21. Solver encountered an error computing derivatives. Consult Help on Derivatives, or
use Excel Interpreter in the Solver Model dialog.

This message appears when the Polymorphic Spreadsheet Interpreter in Analytic

Solver is being used (Solve With = PSI Interpreter), and the Interpreter

encounters an error when computing derivatives via automatic differentiation.

The most common cause of this message is a non-smooth function in your

objective or constraints, for which the derivative is undefined. But in general,

automatic differentiation is somewhat more strict than finite differencing: As a

simple example, =SQRT(A1) evaluated at A1=0 will yield this error message

when the Solver is using automatic differentiation (since the derivative of the

SQRT function is algebraically undefined at zero), but it won’t yield an error

when Solve With = Excel Interpreter and the Solver is using finite differencing.

If you receive this message, create a Structure Report to pinpoint the exact cell

formulas that are non-smooth, and confirm that the “Nonsmooth Model

Transformation” option on the Task Pane Platform tab is set to “Automatic” to

eliminate the non-smooth functions automatically. If you can’t modify your

formulas to eliminate the non-smooth functions, your options are to (i) use a

Solver engine, such as the Evolutionary Solver or the OptQuest Solver, that

doesn’t require derivatives, or (ii) set Solve With = Excel Interpreter and solve

the problem using finite differencing.

22. Variable appears in more than one cone constraint.

This message appears when you click Solve if the same decision variable

appears in more than one cone constraint. You can define as many cone

Frontline Solvers 2025 Q1 Reference Guide Page 175

constraints as you want, but each one must constrain a different group of

decision variables.

If you receive this message, examine the constraints listed under “Conic” in the

Task Pane Model tab to find the variable cell(s) that appear in more than one

cone constraint. You’ll have to modify the problem to eliminate this overlap.

23. Formula depends on uncertainties, must be summarized or transformed. Learn more
using the Solver Model dialog Diagnosis tab.

You may see this message when you are first starting to build optimization

models that include uncertainty – consider it part of the “learning experience.”

You’ll be defining constraints or an objective, computed by formulas that
depend on uncertain parameters: Each such formula represents an array of

sample values, one for each realization of the uncertainties. For your model to

be well-defined, the objective or constraint must either be summarized to a

single value (such as a mean or percentile value) or transformed into a set of

single-valued constraints (through an automatic transformation in the Solver

Model dialog).

To correct the problem, you can (i) use the Task Pane Model tab to define the

constraint as a chance constraint or the objective as an expected value or risk

measure objective, or (ii) edit the formula so that its ‘top level’ value is

computed by a PSI Statistics function such as PsiMean() or PsiPercentile(). It’s

important to understand why you need to summarize or transform a formula that
depends on uncertainties: To learn more, read the chapter “Mastering Stochastic

Optimization Concept” in the Analytic Solver User Guide.

24. Excel Interpreter can only handle normal objective and constraints.

This message appears when you click Solve if you’ve used the Solver

Parameters dialog to define a chance constraint or an expected value or risk

measure objective, but you’ve selected the Excel Interpreter on the Options tab

of the Solver Model dialog. The PSI Interpreter can handle these types of

constraints or objectives, without using PSI Statistics functions on the

worksheet. But the Excel Interpreter cannot do this; you must use PSI Statistics
functions to summarize the array of sample values represented by the objective

and each constraint that depends on uncertainty. For example, you can compute

a VaR-type chance constraint with a PsiPercentile() function. If you are using

Analytic Solver Upgrade, the Excel Interpreter is your only option, so you must

use PSI Statistics functions on the worksheet.

25. Simulation optimization doesn't handle models with recourse decisions.

This message appears when you click Solve if you’ve defined a recourse

decision variable, but you’ve set “Solve Uncertain Models” to “Simulation
Optimization” on the Platform tab on the Solver Task Pane. Simulation

optimization, as defined in the academic literature and as implemented by

Analytic Solver doesn’t support the concept of recourse decision variables.

However, Analytic Solver enables you to solve problems using stochastic

programming and robust optimization methods, both of which do support

recourse decision variables. To learn more, read the chapter “Mastering

Stochastic Optimization Concepts” in the Analytic Solver User Guide.

26. Solver could not find a feasible solution to the robust chance constrained problem.

This message may appear when you solve a model with uncertainty and chance

constraints using robust optimization. When you do this, the Solver transforms

your original model with uncertainty into a robust counterpart model that is a

conventional optimization problem without uncertainty.

Frontline Solvers 2025 Q1 Reference Guide Page 176

This message means that the Solver could not find a feasible solution to the

robust counterpart problem. It does not necessarily mean that there is no

feasible solution to the original problem; the robust counterpart is an

approximation to the problem defined by your chance constraints that may yield

conservative solutions which over-satisfy the chance constraints.

When this message appears, there may be an option to “Auto Adjust Chance

Constraints” – a small white button containing a green arrow, as shown below

for result code 27. Your simplest course of action is to select this option and

click OK. The Solver will then re-solve the problem, automatically adjusting

the sizes of robust optimization uncertainty sets created for the chance

constraints, in an effort to find a feasible solution.

If you don’t see the option “Auto Adjust Chance Constraints,” this normally

means that the automatic improvement algorithm has already been tried

(possibly because the “Auto Adjust Chance” option is set in the Task Pane), and

this algorithm was unable to find a feasible solution. In this case, you should

proceed as described for result code 5, “Solver could not find a feasible
solution:” Look for conflicting constraints, i.e. conditions that cannot be

satisfied simultaneously, perhaps due to choosing the wrong relation (e.g. <=

instead of >=) on an otherwise appropriate constraint.

27. Solver found a conservative solution to the robust chance constrained problem. All
constraints are satisfied.

This message may appear when you solve a model with uncertainty and chance

constraints using robust optimization. When you do this, the Solver transforms

your original model with uncertainty into a robust counterpart model that is a

conventional optimization model without uncertainty.

The message means that the Solver found an optimal solution to the robust

counterpart model, but when this solution was tested against your original

model (using Monte Carlo simulation to test satisfaction of the chance

constraints), the solution over-satisfied the chance constraints; this normally

means that the solution is ‘conservative’ and the objective function value can be

further improved.

When this message appears, there may be an option to “Auto Adjust Chance
Constraints” – a small white button containing a green arrow, as shown below.

Your simplest course of action is to select this option and click OK. The Solver

will then re-solve the problem, automatically adjusting the sizes of robust

optimization uncertainty sets created for the chance constraints, in an effort to

improve the solution.

If you don’t see the option “Auto Adjust Chance Constraints,” this normally

means that the automatic improvement algorithm has already been tried

(possibly because the “Auto Adjust Chance” option is set in the Task Pane.

An alternative course of action is to manually adjust the Chance measures of

selected chance constraints, and re-solve the problem. The automatic
improvement algorithm uses general-purpose methods to find an improved

solution; you may be able to do better by adjusting Chance measures based on

your knowledge of the problem.

28. Solver has converged to the current solution of the robust chance constrained
problem. All constraints are satisfied.

This message may appear when you solve a model with uncertainty and chance
constraints using robust optimization, and you’ve checked the box “Auto Adjust

Chance” in the Solver Model dialog Stochastic tab, or you’ve previously viewed

Frontline Solvers 2025 Q1 Reference Guide Page 177

the Solver Results dialog and selected the “Auto Adjust Chance Constraints”

option. It means that the Solver has found the best ‘improved solution’ it can;

the normal constraints are satisfied, and the chance constraints are satisfied to

the Chance level that you specified in the Solver Parameters dialog.

This is usually a very good solution, but it does not rule out the possibility that
you may be able to find an even better solution by manually adjusting Chance

measures based on your knowledge of the problem, and re-solving.

29. Solver cannot improve the current solution of the robust chance constrained
problem. All constraints are satisfied.

This message may appear when you solve a model with uncertainty and chance
constraints using robust optimization, and you’ve checked the box “Auto Adjust

Chance” in the Solver Model dialog Platform tab, or you’ve previously viewed

the Solver Results dialog and selected the “Auto Adjust Chance Constraints”

option. It means that the Solver could not find an improved solution that

satisfies all of the chance constraints to the Chance level that you specified in

the Solver Parameters dialog. Typically in this case, some of the chance

constraints will be satisfied to the level you specified, or even over-satisfied, but

others will be under-satisfied.

You may find that the solution is acceptable, but if the chance constraints must

be satisfied to the level you specified, further work will be required. You may be

able to find an improved solution by manually adjusting Chance measures based
on your knowledge of the problem, and re-solving.

30. Stochastic Decomposition cannot be used because the objective depends on
uncertain variables.

This result may be returned when you solve a model with uncertainty when

Solve Uncertain Models is set to Stochastic Decomposition on the Platform Tab

Task Pane. This status means that Solver has been given a model that includes
uncertainty (an uncertain variable) in the objective function. The Stochastic

Decomposition algorithm does not support uncertain variable coefficients in the

objective function. If your model contains uncertain coefficients in the objective

function, you must set Solve Uncertain Models (on the Platform Tab Task Pane)

to either: Stochastic Transformation, Simulation Optimization or Automatic. If

set to Automatic, Solver will choose the best method of robust optimization to

solve your model.

31. Stochastic Decomposition cannot be used because some recourse variable
coefficients depend on uncertain variables.

This result may be returned when you solve a model with uncertainty using the

Stochastic Decomposition algorithm. This status means that Solver has been

given a model that includes an uncertain coefficient for a recourse variable. The

Stochastic Decomposition algorithm does not support uncertain variables as

coefficients for recourse variables in either the objective or in a constraint. If

your model contains uncertain coefficients for the recourse variables, you must

set Solve Uncertain Models (on the Platform Tab Task Pane) to

either: Stochastic Transformation, Simulation Optimization or Automatic. If set
to Automatic, Solver will choose the best method of robust optimization to solve

your model.

32. Stochastic Decomposition can only be used on models with recourse variables.

This result may be returned when you solve a model with uncertainty using the

Stochastic Decomposition algorithm. This status means no recourse variables

are present in the model. The Stochastic Decomposition algorithm requires the

Frontline Solvers 2025 Q1 Reference Guide Page 178

presence of recourse variables in the model. If your model does not meet this

requirement, you must set Solve Uncertain Models (on the Platform Tab Task

Pane) to either: Stochastic Transformation, Simulation Optimization or

Automatic. If set to Automatic, Solver will choose the best method of robust

optimization to solve your model.

33. Uncertain constraints must contain recourse variables in Stochastic Decomposition.

This result may be returned when you solve a model with uncertainty using the

Stochastic Decomposition algorithm. The Stochastic Decomposition algorithm

requires the presence of recourse variables in any constraint that contains

uncertainty. If your model does not meet this requirement, you must set Solve

Uncertain Models (on the Platform Tab Task Pane) to either: Stochastic

Transformation, Simulation Optimization or Automatic. If set to Automatic,

Solver will choose the best method of robust optimization to solve your model.

34. Stochastic Decomposition requires at least one constraint without uncertainties.

This result may be returned when you solve a model with uncertainty using the

Stochastic Decomposition algorithm. The Stochastic Decomposition algorithm

requires at least one “normal” constraint. If your model does not meet this

requirement, Analytic Solver will stop with this status. Adding a simple

constraint where at least two of your decision variables must be greater than

some constant, say 0, will satisfy this requirement.

35. Stochastic Decomposition requires the Psi Interpreter.

This result is returned when you attempt to solve a model with uncertainty using

the Stochastic Decomposition algorithm when the Optimization Model

Interpreter option is set to Excel Interpreter. The Stochastic Decomposition

algorithm requires the Psi Interpreter. Set the Interpreter option under

Optimization Model, on the Platform tab of the Solver Task Pane, to Psi

Interpreter to fix this issue.

36. Stochastic Decomposition requires at least some uncertain coefficients in the model.

This result may be returned when you solve a model with uncertainty using the

Stochastic Decomposition algorithm. The Stochastic Decomposition algorithm

requires at least one uncertain variable. If your model does not meet this

requirement, Analytic Solver will stop with this status. Adding an uncertain

variable as a coefficient for at least one of your variables, will satisfy this

requirement.

39. Transformed model result is not feasible. Please adjust Big M value.

The “Big M Value” option setting (on the Platform tab of the Solver Task Pane)

is used in newly generated constraints that result from a Nonsmooth Model

Transformation. The default value is 1E6 or 1 million – but if you are using

Analytic Solver’s transformation features, you should ensure that this value is

correct for your model: It must be bigger than any numeric value that may

appear in your intermediate calculations (for example, bigger than any value a in

an expression IF(a>=b,…)) but it should not be excessively large.

If your value for the Big M option is smaller than the largest value that occurs in

your intermediate calculations, the generated constraints will not have the

desired effect, and your solution will not be valid for your original problem. If
your Big M value is too large, the transformed model will be poorly scaled, and

the Solver will likely encounter problems with numerical stability as it performs

computations with your too-large values. So it pays to investigate the results

computed by your what-if spreadsheet model, and set the Big M option

appropriately.

mk:@MSITStore:C:/Users/Nicole/Documents/temp/Analytic%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Problems_with_Poorly_Scaled_Models.htm

Frontline Solvers 2025 Q1 Reference Guide Page 179

999. Unexpected error. Please contact Technical Support.

This status signifies that an unexpected exception has occurred within Solver. If
this status is returned, please contact our technical support team at

support@solver.com.

Interval Global Solver Result Messages

The Interval Global Solver can return many of the standard result codes and

Solver Result Messages described above, but it can also return one of three

custom result codes and messages, as described below.

1000. Interval Solver requires PSI Interpreter and strictly smooth functions.

This message appears if you select the Interval Global Solver engine and solve,
and the Interpreter option is set to Excel Interpreter on the Task Pane Platform

tab or if your model contains any non-smooth functions. The Interval Global

Solver considers the ‘special’ functions ABS, IF, MAX, MIN or SIGN non-

smooth. If you receive this message, create a Structure Report to pinpoint the

exact cell formulas that are non-smooth; you must modify these formulas to use

the Interval Global Solver.

1001. Function cannot be evaluated for given real or interval arguments.

This message may appear (instead of “Solver encountered an error value…”) if
the Interval Global Solver encounters an arithmetic operation or function that it

cannot evaluate for the current values of the decision variables. Recall that the

Interval Global Solver evaluates Excel formulas over intervals such as [1, 2] as

well as real numbers. In the course of seeking a solution, the Solver may have

to evaluate a formula that (for example) involves division by an interval

containing zero, or the square root of an interval containing negative values,

which yield errors. If you receive this message, try adding constraints, or

adjusting the right hand sides of existing constraints to eliminate the problem.

For example, if you have trouble with a constraint such as A1 >= 0, try a

constraint such as A1 >= 0.0001 instead.

1002. Solution found, but not proven globally optimal.

This message indicates that the Interval Global Solver has systematically

explored the solution space and has found a solution that is very probably the

global optimum, but it has not been able to “prove global optimality.” Most

often, this means that there is more than a tiny difference between this solution’s

objective value and the best bound on the global optimum’s objective value that

the Solver has been able to find. For more information, see the discussion of

“Interval Global Solver Stopping Conditions” in the section “Limitations on

Global Optimization.”

1003. Interval Solver can not handle Dimensional Models.

This message appears if you select the Interval Global Solver engine and solve a

model using dimensional modeling. The Interval Global Solver does not support

this functionality. Choose a different engine, appropriate for the model type,

from the Engine drop down menu and resolve. For more information on

Dimensional Modeling, see the "Dimensional Modeling" chapter within the

Analytic Solver User Guide.

mailto:support@solver.com

Frontline Solvers 2025 Q1 Reference Guide Page 180

Problems with Poorly Scaled Models
A poorly scaled model is one that computes values of the objective, constraints,

or intermediate results that differ by several orders of magnitude. A classic

example is a financial model that computes a dollar amount in millions or

billions and a return or risk measure in fractions of a percent. Because of the

finite precision of computer arithmetic, when these values of very different

magnitudes (or others derived from them) are added, subtracted, or compared –

in the user’s model or in the Solver’s own calculations – the result will be

accurate to only a few significant digits. After many such steps, the Solver may

detect or suffer from “numerical instability.”

The effects of poor scaling in a large, complex optimization model can be
among the most difficult problems to identify and resolve. It can cause Solver

engines to return messages such as “Solver could not find a feasible solution,”

“Solver could not improve the current solution,” or even “The linearity

conditions required by this Solver engine are not satisfied,” with results that are

suboptimal or otherwise very different from your expectations. The effects may

not be apparent to you, given the initial values of the variables, but when the

Solver explores Trial Solutions with very large or small values for the variables,

the effects will be greatly magnified.

Dealing with Poor Scaling

Most Solver engines include a Use Automatic Scaling option. When this option

is selected, the Solver rescales the values of the objective and constraint
functions internally in order to minimize the effects of poor scaling. But this

can only help with the Solver’s own calculations – it cannot help with poorly

scaled results that arise in the middle of your Excel formulas.

The best way to avoid scaling problems is to carefully choose the “units”

implicitly used in your model so that all computed results are within a few

orders of magnitude of each other. For example, if you express dollar amounts

in units of (say) millions, the actual numbers computed on your worksheet may

range from perhaps 1 to 1,000.

With Analytic Solver, you can check your model for scaling problems that arise

in the middle of your Excel formulas by selecting the Scaling Report when it is

available on the Ribbon, and examining the results of this report, as described in
the chapter “Solver Reports.” This report is available only when certain Solver

Result Messages appear and a scaling problem is found.

The Tolerance Option and Integer Constraints
Users who solve problems with integer constraints using the standard Excel

Solver occasionally report that “Solver claims it found an optimal solution, but I

manually found an even better solution.” What happens in such cases is that the

Solver stops with the message “Solver found a solution” because it found a

solution within the range of the true integer optimal solution allowed by the

Tolerance option in the Task Pane Engine tab. In similar cases, Analytic Solver

displays a message “Solver found an integer solution within tolerance,” to avoid

confusion.

When you solve a mixed-integer programming problem (any problem with

integer constraints) using the LP/Quadratic, SOCP Barrier, GRG or Interval

Global Solver, all of which employ the Branch & Bound method, the solution

Frontline Solvers 2025 Q1 Reference Guide Page 181

process is governed by the integer Tolerance option on the Solver Options or

Integer Options dialog tab. Since the default setting of the Tolerance option is

0.05, the Solver stops when it has found a solution satisfying the integer

constraints whose objective is within 5% of the true integer optimal solution.

Therefore, you may know of or be able to discover an integer solution that is
better than the one found by the Solver.

The reason that the default setting of the integer Tolerance option is 0.05 is that

the solution process for integer problems – which can take a great deal of time in

any case – often finds a near-optimal solution (sometimes the optimal solution)

relatively quickly, and then spends far more time exhaustively checking other

possibilities to find (or verify that it has found) the very best integer solution.

The integer Tolerance default setting is a compromise value that often saves a

great deal of time, and still ensures that a solution found by the Solver is within

5% of the true optimal solution.

To ensure that the Solver finds the true integer optimal solution – possibly at the

expense of far more solution time – set the integer Tolerance option to zero. In
Analytic Solver, look for the Tolerance option on the Task Pane Engine tab.

Limitations on Smooth Nonlinear Optimization
As discussed in the chapter “Examples: Conventional Optimization” in the

Analytic Solver User Guide, nonlinear problems are intrinsically more difficult

to solve than linear problems, and there are fewer guarantees about what the

Solver can do. If your smooth nonlinear problem is convex, the Solver will

normally find the globally optimal solution (subject to issues of poor scaling and

the finite precision of computer arithmetic). But if your problem is non-convex,

the Solver will normally find only a locally optimal solution, close to the starting

values of the decision variables, when you click Solve.

With Analytic Solver, you can easily check whether your model is convex or
non-convex when you click Optimize – Analyze Original Problem. The result

of the convexity test may be conclusive (the Solver has proven that the model is

convex or non-convex) or inconclusive (the Solver was unable to prove either

condition). If the test is inconclusive, you are best advised to assume that your

model is non-convex, unless you can prove through your own mathematical

analysis that it is convex.

When dealing with a non-convex problem, it is a good idea to run the Solver

starting from several different sets of initial values for the decision variables.

Since the Solver follows a path from the starting values (guided by the direction

and curvature of the objective function and constraints) to the final solution

values, it will normally stop at a peak or valley closest to the starting values you
supply. By starting from more than one point – ideally chosen based on your

own knowledge of the problem – you can increase the chances that you have

found the best possible “optimal solution.” An easy way to do this is to check

the Global Optimization options for your chosen Solver Engine, and use the

multistart method to automatically run the Solver from multiple starting points.

Note that, when the GRG Nonlinear Solver is selected in the dropdown list in

the Task Pane (and Automatic Engine Selection is not used), the Generalized

Reduced Gradient algorithm is used to solve the problem – even if it is actually

a linear model that could be solved by the (faster and more reliable) Simplex or

Barrier method. The GRG method will usually find the optimal solution to a

linear problem, but occasionally you will receive a Solver Result Message
indicating some uncertainty about the status of the solution – especially if the

Frontline Solvers 2025 Q1 Reference Guide Page 182

model is poorly scaled, as discussed above. So you should always ensure that

you have selected the right Solver engine for your problem.

GRG Solver Stopping Conditions

It is helpful to understand what the nonlinear GRG Solver can and cannot do,

and what each of the possible Solver Result Messages means for this Solver
engine. At best, the GRG Solver alone – like virtually all “classical” nonlinear

optimization algorithms – can find a locally optimal solution to a reasonably

well-scaled, non-convex model. At times, the Solver will stop before finding a

locally optimal solution, when it is making very slow progress (the objective

function is changing very little from one trial solution to another) or for other

reasons.

Locally Versus Globally Optimal Solutions

When the first message (“Solver found a solution”) appears, it means that the

GRG Solver has found a locally optimal solution – there is no other set of values

for the decision variables close to the current values that yields a better value for

the objective function. Figuratively, this means that the Solver has found a

“peak” (if maximizing) or “valley” (if minimizing) – but if the model is non-

convex, there may be other taller peaks or deeper valleys far away from the

current solution. Mathematically, this message means that the Karush - Kuhn -

Tucker (KKT) conditions for local optimality have been satisfied (to within a

certain tolerance, related to the Precision setting on the Task Pane Engine tab).

When Solver has Converged to the Current Solution

When the GRG Solver’s second stopping condition is satisfied (before the KKT

conditions are satisfied), the second message (“Solver has converged to the

current solution”) appears. This means that the objective function value is

changing very slowly for the last few iterations or trial solutions. More

precisely, the GRG Solver stops if the absolute value of the relative change in

the objective function is less than the value for the Convergence option on the

Task Pane Engine tab for the last 5 iterations. While the default value of 1E-4
(0.0001) is suitable for most problems, it may be too large for some models,

causing the GRG Solver to stop prematurely when this test is satisfied, instead

of continuing for more iterations until the KKT conditions are satisfied.

A poorly scaled model is more likely to trigger this stopping condition, even if

the Use Automatic Scaling option is set to True on the Task Pane Engine tab.

So it pays to design your model to be reasonably well scaled in the first place:

The typical values of the objective and constraints should not differ from each

other, or from the decision variable values, by more than three or four orders of

magnitude.

If you are getting this message when you are seeking a locally optimal solution,
you can change the setting for the Convergence option to a smaller value such as

1E-5 or 1E-6; but you should also consider why it is that the objective function

is changing so slowly. Perhaps you can add constraints or use different starting

values for the variables, so that the Solver does not get “trapped” in a region of

slow improvement.

When Solver Cannot Improve the Current Solution

The third stopping condition, which yields the message “Solver cannot improve

the current solution,” occurs only rarely. It means that the model is degenerate

and the Solver is probably cycling. The issues involved are beyond the level of

Frontline Solvers 2025 Q1 Reference Guide Page 183

this Reference Guide, as well as most of the books recommended in the

Introduction. One possibility worth checking is that some of your constraints

are redundant, and should be removed. If this suggestion doesn’t help and you

cannot reformulate the problem, try using the Interval Global Solver or the

Evolutionary Solver. To go further with the nonlinear Solver, you may need
specialized consulting assistance.

GRG Solver with Multistart Methods

The multistart methods for global optimization included in Analytic Solver can

overcome some of the limitations of the GRG Solver alone, but they are not a

panacea. The multistart methods will automatically run the GRG Solver (or a

field-installable nonlinear Solver engine) from a number of starting points and

will display the best of several locally optimal solutions found, as the probable

globally optimal solution. Because the starting points are selected at random

and then “clustered” together, they will provide a reasonable degree of

“coverage” of the space enclosed by the bounds on the variables. The tighter

the variable bounds you specify and the longer the Solver runs, the better the
coverage.

However, the performance of the multistart methods is generally limited by the

performance of the GRG Solver on the subproblems. If the GRG Solver stops

prematurely due to slow convergence, or fails to find a feasible point on a given

run, the multistart method can improve upon this only by finding another

starting point from which the GRG Solver can find a feasible solution, or a

better locally optimal solution, by following a different path into the same

region.

If the GRG Solver reaches the same locally optimal solution on many different

runs initiated by the multistart method, this will tend to decrease the Bayesian

estimate of the number of locally optimal solutions in the problem, causing the
multistart method to stop relatively quickly. In many cases this indicates that

the globally optimal solution has been found – but you should always inspect

and think about the solution, and consider whether you should run the GRG

Solver manually from starting points selected based on your knowledge of the

problem.

GRG Solver and Integer Constraints

Like the multistart methods, the performance of the Branch & Bound method on

nonlinear problems with integer constraints is limited by the performance of the

GRG Solver on the subproblems. If the GRG Solver stops prematurely due to

slow convergence, or fails to find a feasible point on a given run, this may

prevent the Branch & Bound method from finding the true integer optimal
solution. In most cases, the combination of the Branch & Bound method and the

GRG Solver will at least yield a relatively good integer solution. However, if

you are unable to find a sufficiently good solution with this combination of

methods, consider using one of the field-installable nonlinear Solver engines for

Analytic Solver Comprehensive or Analytic Solver Optimization.

Limitations on Global Optimization
With Analytic Solver, you have several choices available for solving global

optimization problems: You can use the nonlinear GRG Solver (or a field-

installable nonlinear Solver engine) with multistart methods; you can use the

Frontline Solvers 2025 Q1 Reference Guide Page 184

Interval Global Solver; or you can use the Evolutionary Solver or OptQuest

Solver to seek global solutions to smooth nonlinear problems, though they are

designed primarily for non-smooth problems.

Which choice should you use? Perhaps the best answer is “try them all, and use

the one that performs best on your model.” But you may favor the Interval
Global Solver if it’s important to you to find the true global optimum – not just a

“better” local optimum, or a “good” solution that’s better than what you’re using

now. For example, if you’re seeking the minimum energy configuration of

atoms in a molecule, you’ll want the true global optimum because in nature, the

molecule will be in that configuration most of the time. The Interval Global

Solver may take longer to run, but it has a better chance than other methods of

finding the true global optimum, and it is the only Solver engine that can

“prove” that it has found the global optimum.

This section describes the characteristics and limitations of global optimization

with the Interval Global Solver. For more information on the multistart

methods, see “GRG Solver with Multistart Methods” in the previous section,
“Limitations on Smooth Nonlinear Optimization.” For more information on the

Evolutionary Solver, see the following section, “Limitations on Non-Smooth

Optimization.”

Rounding and Possible Loss of Solutions

The Interval Global Solver uses deterministic methods to search for the global

optimum, whereas the Evolutionary Solver and the multistart methods for global

optimization use nondeterministic methods, which involve an element of

random chance. Given time, the Interval Global Solver will find a “proven”

global optimum, and it will find all real solutions to a system of nonlinear

equations (subject to the limitations described here). The Evolutionary Solver

and multistart methods have no way to “prove” that the global optimum has
been found.

But in rare cases, when its advanced options are used, the Interval Global Solver

can “lose track of” potential solutions that might prove to be the global

optimum, fail to find a feasible solution, or “lose” real solutions of a system of

nonlinear equations, because of roundoff errors that can arise from the use of

finite precision computer arithmetic. This is more likely to occur for solution(s)

found at or very close to the boundaries of constraints.

The Interval Global Solver uses the Polymorphic Spreadsheet Interpreter’s

interval arithmetic methods, which use “directed rounding” of floating point

arithmetic operations at the machine level, to eliminate the possibility of
roundoff error. If you use only the “Classic Interval” option in the Methods

option group on the Task Pane Engine tab, you can be confident that the Interval

Global Solver will (eventually, given enough time) find a “proven” global

optimum. But in its advanced methods, the Interval Global Solver uses both

interval arithmetic and ordinary real arithmetic, for the sake of performance; it

avoids using directed rounding for all arithmetic operations, even those

involving ordinary real numbers (which would have to be enclosed in narrow

intervals), and it seeks to avoid spending a great deal of time processing large

numbers of very small “boxes” to rigorously verify that they don’t contain

possible solutions.

The ideal of finding globally optimal solutions with rigorous guarantees is no
doubt achievable for problems of low dimension (with a small number of

variables). But it has been shown that the simplest possible global optimization

problem – a quadratic programming problem in the general case (where the

Frontline Solvers 2025 Q1 Reference Guide Page 185

objective is non-convex, and there may be many locally optimal points at

constraint boundaries) – is NP-hard, meaning that the solution time is very

likely to grow exponentially with the number of decision variables.

The Interval Global Solver trades off rigorous guarantees of finding the globally

optimal solution in favor of fast solution times on realistic size problems. And
its methods, while not rigorous, are very effective at finding the true global

optimum. In fact, Frontline Systems has not yet seen or constructed an example

problem where the Interval Global Solver actually “loses” a solution that turns

out to be the global optimum. As a practical matter, you are likely to receive a

Solver Result Message such as “Solution found, but not proven globally

optimal” or “Solver cannot improve the current solution” in situations where, for

various reasons, the Solver has not been able to verify that it has found the true

global optimum.

Interval Global Solver Stopping Conditions

It is helpful to understand what the Interval Global Solver can and cannot do,

and what each of the possible Solver Result Messages means for this Solver
engine. At best, the Interval Global Solver will find a “proven” globally optimal

solution to a reasonably well-scaled smooth nonlinear optimization problem – in

a reasonable amount of time. But at times, the Solver will be unable to “prove”

that the solution is globally optimal, unable to improve the current solution in a

reasonable amount of time, or unable to find a feasible solution. And the words

“proven” and “prove” are in quotes because they are subject to limitations due to

roundoff error, as discussed above under “Rounding and Possible Loss of

Solutions.”

When Solver Cannot Find a Feasible Solution

When the Interval Global Solver reports that “Solver could not find a feasible

solution,” and you have allowed the Solver to run without interruption until this

message appears, it is very likely – though not 100% certain – that no feasible

solution exists. The Interval Global Solver is designed to “prove feasibility” as

well as global optimality, but this is subject to limitations due to roundoff error.

When Solver Cannot Improve the Current Solution

When the Interval Global Solver reports that “Solver cannot improve the current

solution,” it means that the Solver has not found an “improved global solution”

(a feasible solution with an objective value better than the currently best known

solution), in the amount of time specified by the Max Time without

Improvement option on the Task Pane Engine tab. The reported solution is the

best one found so far, but the search space has not been fully explored. If you

receive this message, and you are willing to spend more solution time to have a

better chance of “proving” global optimality, increase the value of the Max

Time without Improvement option.

When Solver Cannot Prove Global Optimality

The Interval Global Solver processes a list of “boxes” that consist of bounded

intervals for each decision variable, progressively subdividing and “shrinking”

them, and improving a known bound on the globally optimal objective function

value. Eventually, the boxes that remain each enclose a locally optimal solution,

and the best of these is chosen as the globally optimal solution. The Interval
Global Solver returns “Solver found a solution” (result code 0) when it

determines that, in the box enclosing the best solution, (i) the bounded intervals

Frontline Solvers 2025 Q1 Reference Guide Page 186

for each decision variable are smaller than the Accuracy value, and (ii) the

objective value in this box differs from the best known bound on the globally

optimal objective by no more than the Accuracy value. When the Interval

Solver finishes processing the list of boxes, but the above two conditions are not

met, it returns the message “Solution found, but not proven globally optimal.”

Interval Global Solver and Integer Constraints

As with the nonlinear GRG Solver, the performance of the Branch & Bound

method on nonlinear global optimization problems with integer constraints is

limited by the performance of the Interval Global Solver on the subproblems. If

the Interval Global Solver should fail to find the globally optimal solution, or

fail to find a feasible point when one exists on a given run, this may prevent the

Branch & Bound method from finding the true integer optimal solution. Since a

single global optimization run can take a great deal of time, and the Branch &

Bound process may require thousands of such runs, the Interval Global Solver

makes further tradeoffs in favor of fast solutions rather than guarantees of

finding the global optimum on each run, when it is solving a problem with
integer constraints. In most cases, however, the combination of the Branch &

Bound method and the Interval Global Solver will at least yield a relatively good

integer solution.

Limitations on Non-Smooth Optimization
As discussed in the chapter “Mastering Conventional Optimization Concepts” in

the Analytic Solver User Guide, non-smooth problems – where the objective

and/or constraints are computed with discontinuous or non-smooth Excel

functions – are the most difficult types of optimization problems to solve. There

are few, if any, guarantees about what the Solver (or any optimization method)

can do with these problems.

The most common discontinuous function in Excel is the IF function where the
conditional test is dependent on the decision variables. Other common

discontinuous functions are CHOOSE, the LOOKUP functions, and COUNT.

Common non-smooth functions in Excel are ABS, MIN and MAX, INT and

ROUND, and CEILING and FLOOR. Functions such as SUMIF and the

database functions are discontinuous if the criterion or conditional argument

depends on the decision variables.

If your optimization problem contains discontinuous or non-smooth functions,

your simplest course of action is to use the Evolutionary Solver to find a “good”

solution. You should read the section “Evolutionary Solver Stopping

Conditions” below and the discussion earlier in this chapter of specific Solver

Result Messages, to ensure that you understand what the various messages say
about your model. You can try using the nonlinear GRG Solver on problems of

this type, but you should be aware of the effects of non-smooth functions on

these Solver engines, which are summarized below.

You can use discontinuous functions such as IF and CHOOSE in calculations on

the worksheet that are not dependent on the decision variables, and are therefore

constant in the optimization problem. But any discontinuous functions that do

depend on the variables make the overall Solver model non-smooth. Users

sometimes fail to realize that certain functions, such as ABS and ROUND, are

non-smooth. For more information on this subject, read the section

“Discontinuous and Non-Smooth Functions” in the Analytic Solver User Guide

chapter “Mastering Conventional Optimization Concepts.”

Frontline Solvers 2025 Q1 Reference Guide Page 187

Effect on the GRG and LP/Quadratic Solvers

A smooth nonlinear solver, such as the GRG Solvers, relies on derivative or

gradient information to guide it towards a feasible and optimal solution. Since it

is unable to compute the gradient of a function at points where the function is

discontinuous, or to compute curvature information at points where the function

is non-smooth, it cannot guarantee that any solution it finds to such a problem is

truly optimal. In practice, the GRG Solver can sometimes deal with
discontinuous or non-smooth functions that are “incidental” to the problem, but

as a general statement, this Solver engine requires smooth nonlinear functions

for the objective and constraints.

If you are using Analytic Solver, with default settings, the Interpreter will

compute derivatives of the problem functions using automatic differentiation. If

you try to solve a problem with non-smooth or discontinuous functions (other

than the ‘special functions’ ABS, IF, MAX, MIN or SIGN) using the GRG

Solver, you’ll likely receive the message “Solver encountered an error

computing derivatives.” You can set the Interpreter option on the Task Pane

Platform tab to Excel Interpreter and solve your model – but only with the

caveats noted above. Analytic Solver Upgrade always uses the Excel
Interpreter, so these caveats apply whenever you try to solve a non-smooth

problem.

If you try to solve a problem with non-smooth or discontinuous functions with

the LP/Quadratic Solver (using the Excel Interpreter option), it is possible –

though very unlikely – that the linearity test performed by the Solver will not

detect the discontinuities and will proceed to try to solve the problem. (This

probably means that the functions are linear over the range considered by the

linearity test – but there are no guarantees at all that the solution found is

optimal!)

Evolutionary Solver Stopping Conditions

It is helpful to understand what the Evolutionary Solver can and cannot do, and

what each of the possible Solver Result Messages means for this Solver engine.

At best, the Evolutionary Solver – like other genetic or evolutionary algorithms

– will be able to find a good solution to a reasonably well-scaled model.

Because the Evolutionary Solver does not rely on derivative or gradient

information, it cannot determine whether a given solution is optimal – so it

never really knows when to stop. Instead, the Evolutionary Solver stops and

returns a solution either when certain heuristic rules (discussed below) indicate

that further progress is unlikely, or else when it exceeds a limit on computing

time or effort that you’ve set.

“Good” Versus Optimal Solutions

The Evolutionary Solver makes almost no assumptions about the mathematical

properties (such as continuity, smoothness or convexity) of the objective and the

constraints. Because of this, it actually has no concept of an “optimal solution,”

or any way to test whether a solution is optimal. The Evolutionary Solver

knows only that a solution is “better” in comparison to other solutions found

earlier. It may sometimes find the true optimal solution, on models with a

limited number of variables and constraints; on such models, the heuristic
stopping rules discussed below may cause the Solver to stop at an appropriate

time and report this solution. But the Evolutionary Solver will not be able to tell

you that this solution is optimal.

Frontline Solvers 2025 Q1 Reference Guide Page 188

When you use the Evolutionary Solver, you may find – like other users of

genetic and evolutionary algorithms – that you spend a lot of time running and

re-running the Solver, trying to find better solutions. This is an inescapable

consequence of using a Solver engine that makes few or no assumptions about

the nature of the problem functions. You can never be sure whether you’ve
found the best solution, or what the payoff might be of running the evolutionary

algorithm for a longer time. When the Evolutionary Solver stops, you may very

well find that, if you keep the resulting solution and restart the Evolutionary

Solver, it will find an even better solution. You may also find that starting the

GRG Solver from the point where the Evolutionary Solver stops will yield a

better (sometimes much better) solution.

When Solver has Converged to the Current Solution

This message means that the “fitness” of members of the current population of

trial solutions is changing very slowly. More precisely, the Evolutionary Solver

stops if 99% or more of the members of the population have “fitness” values

whose relative (i.e. percentage) difference is less than the Convergence tolerance

on the Task Pane Engine tab. This condition may mean that the Solver has

found a globally optimal solution – if so, new members of the population (that

replace other, less fit members) will tend to “crowd around” this solution.

However, it may also mean that the population has lost diversity – a common

problem in genetic and evolutionary algorithms – and hence the evolutionary

algorithm is unable to generate new and better solutions through mutation or

crossover of current population members. In this latter case, it may help to
interrupt the Solver with the ESC key and click the Restart button (which

replaces the worst half of the population with newly sampled points), or to run

the Evolutionary Solver again with a larger Population Size and/or an increased

Mutation Rate, which increases the chances of a diverse population.

When Solver Cannot Improve the Current Solution

This message means that the Solver has been unable to find a new, better
member of the population whose “fitness” represents a relative (percentage)

improvement over the current best member’s fitness of more than the Tolerance

value on the Limits group on the Task Pane Engine tab, in the amount of time

specified by the Max Time without Improvement option in the option group.

Under this heuristic stopping rule, the Evolutionary Solver will continue

searching for better solutions as long as it is making the degree of progress that

you have indicated via the Tolerance value; if it is unable to make that much

progress in the time you’ve specified, the Solver will stop and report the best

solution found.

Evaluating a Solution Found by the Evolutionary Solver

Once you have a solution from the Evolutionary Solver, what can you do with

it? Here are some ideas:

1. Keep the resulting solution, restart the Evolutionary Solver from that

solution, and see if it is able to find an even better solution in a reasonable

length of time.

2. Tighten the Convergence and Tolerance values, increase the Max

Subproblems and Max Feasible Sols values, and restart the Evolutionary
Solver. This will take more time, but will allow the Solver to explore more

possibilities.

Frontline Solvers 2025 Q1 Reference Guide Page 189

3. Increase the Population Size and/or the Mutation Rate, and restart the

Evolutionary Solver. This will also take more time, but will tend to

increase the diversity of the population and the portion of the search space

that is explored.

4. Keep the resulting solution, switch to the GRG Solver and start it from that
solution, and see if it finds the same or a better solution. If the GRG Solver

displays the message “Solver found a solution,” you may have found at

least a locally optimal point (but remember that this test depends on

smoothness of the problem functions).

5. Select and examine the Population Report. If the Best Values are similar

from run to run of the Evolutionary Solver, and if the Standard Deviations

are small, this may be reason for confidence that your solution is close to

the global optimum. Since optimization tends to drive the variable values to

extremes, if the solution is feasible and the Best Values are close to the

Maximum or Minimum Values listed in the Population Report, this may

indicate that you have found an optimal solution.

As you work with the Evolutionary Solver, you will appreciate its ability to find

“good” solutions to previously intractable optimization problems, but you will

also come to appreciate its limitations. The Evolutionary Solver allows you to

spend less time analyzing the mathematical properties of your model, and still

obtain “good” solutions – but as we suggested in the Introduction, it is not a

panacea.

If your problem is large, or if the payoff from a true optimal solution is

significant, you may want to invest more effort to formulate a model that

satisfies the requirements of a smooth nonlinear optimization problem, or even

an integer linear problem. The chapter “Building Large-Scale Models” in the
Analytic Solver User Guide describes many techniques you can use to replace

non-smooth functions with smooth nonlinear or integer linear expressions. With

enough work, you may be able to obtain a significantly better solution with the

other Solver engines, and to know with some certainty whether or not you have

found the optimal solution.

Frontline Solvers 2025 Q1 Reference Guide Page 190

Platform Option Reference

This chapter describes the options available on the Task Pane Platform tab. It

also briefly describes how these options may be examined or set using VBA

when using Analytic Solver Desktop, or in another programing language using

Frontline’s Solver Platform SDK.

Note: It is not possible to call Analytic Solver Cloud via VBA.

In Analytic Solver, options may be examined or set interactively via the Task
Pane Platform tab as described in this chapter, or, if using Analytic Solver

Desktop, programmatically using either the new object-oriented API described

below and in the chapter “VBA Object Model Reference,” or the traditional

VBA functions described in the later chapter “Traditional VBA Function

Reference.”

In Solver Platform SDK, options may be examined or set via its object-oriented

API, just like Analytic Solver’s API, or via the SDK procedural API. The

object-oriented API is described below; the SDK procedural API is described in

the SDK API Reference Guide. The string names of most options are the same

for both Analytic Solver and the SDK, and are shown for each option below.

Setting Options Programmatically
In Analytic Solver Desktop, you can examine or set Platform options in VBA

using the object-oriented API described in this section. In the Solver Platform

SDK, you can examine or set these options, in a variety of programming

languages, using the same object-oriented API. In both cases, all option values

are of type double, though for some options only integer values, or values 0 and

1 are used.

Object-Oriented API

In the object-oriented API, each Platform option or parameter is represented by

a ModelParam object instance. This object has properties Name, Value,

Default (the initial or default value), MinValue, and MaxValue (the minimum

and maximum allowed values). All the options or parameters for a Solver
engine belong to a collection, which is a ModelParamCollection object.

In VBA, we must first create an instance of the Problem class

 Dim myProb as ASP.Problem

Next we must initialize either the worksheet (if setting only optimization

options) or the workbook (if setting simulation options for running simulation or

simulation/optimization models).

‘for optimization options

myProb.Init ActiveSheet

Frontline Solvers 2025 Q1 Reference Guide Page 191

‘for simulation options

myProb.Init ActiveWorkbook

To access an option or parameter, you start with a reference to the Model object,

say myProb.Model. The Model object’s Params property refers to the

ModelParamCollection. As with all collections, you can access an individual

ModelParam in the collection by name or by index. For example, to refer to the

option that selects either the PSI Interpreter or the Excel Interpreter, you’d write

myProb.Model.Params("Interpreter").

Once you have a reference to the ModelParam object, you can get or set its

properties using simple assignment statements. For example, you can set

Analytic Solver to use the Excel Interpreter by writing:

VBA: myProb.Model.Params("Interpreter").Value = 2

To get the current Interpreter option setting, put the property reference on the

right hand side of an assignment statement (declaring Dim Inter As Double):

VBA: Inter = myProb.Model.Params("Interpreter").Value

In Solver Platform SDK, the same kinds of assignment statements can be used,

with just slight differences due to the syntax of various programming languages:

VB6: myProb.Model.Params("Interpreter").Value = 2

VB.NET: myProb.Model.Params("Interpreter").Value = 2

C++: myProb.Model.Params(L" Interpreter").Value = 2;

C#: myProb.Model.Params("Interpreter").Value = 2;

Matlab: myProb.Model.Params(Interprete).Value = 2;

Java:
myProb.Engine().Params().Item("Interpreter").Value(2);

(Since Java currently lacks properties, the syntax used by the Solver Platform

SDK is different.) To get the current Interpreter option value, put the property

reference on the right hand side of an assignment statement, for example in C#:

double Inter =

myProb.Model.Params("Interpreter").Value;

You can access all of the Platform options and parameters by indexing the

ModelParamCollection. For example, myProb.Model.Params(0) refers to the

first parameter in the collection. In all the object-oriented languages, you can

write a for-loop to index through all of the parameters like the following

example in VBA, VB6 or VB.NET:

For i = 0 to myProb.Model.Params.Count - 1

 MsgBox myProb.Model.Params(i).Name & " = " &

 myProb.Model.Params(i).Value

Next i

In VBA, VB6, VB.NET, and C#, you can also iterate through a collection using

a “for each” loop:

Dim myParam as ModelParam

For Each myParam in myProb.Model.Params

 MsgBox myParam.Name & " = " & myParam.Value

Next

Frontline Solvers 2025 Q1 Reference Guide Page 192

Platform Solver Options
The Platform tab in the Analytic Solver Desktop Task Pane contains multiple

sections: Optimization, Simulation, Decision Tree, Diagnosis, Transformation,

Default Bounds, Advanced and General.

The Platform tab in Analytic Solver Cloud contains the sections: Optimization,

Simulation, Decision Tree, Diagnosis, Transformation, and Default Bounds.

Each option within each section is described below. Note that you can access

these same options by selecting the Platform tab and clicking on the Options

button on the ribbon.

Optimization Model

Below are screen shots of the Optimization Model section located on the

Platform Tab in the Desktop and Cloud Task Pane.

If using Analytic Solver Desktop, in order to set these options or properties in

VBA, you must first create an instance of the Problem class and initialize the

Excel Worksheet (by name or by using “ActiveSheet”), for example:

 Dim myProb as New ASP.Problem

 myProb.Init ActiveSheet

Analytic Solver Desktop

Analytic Solver Cloud

Optimizations to Run

VBA / SDK: Property: myProb.Solver.NumOptimizations = integer_value, 0 <

integer_value

Frontline Solvers 2025 Q1 Reference Guide Page 193

Use this property to set the number of optimizations to run when you click the

Optimize button on the Ribbon, or the green arrow (“Solve”) in the Task Pane.

This is useful only if you’ve defined one or more optimization parameters, using

the Parameters Optimization choice on the Ribbon.

You can use these features to run multiple, parameterized optimizations. For
example, in a portfolio optimization model, you could define an optimization

parameter in a cell, to be varied from (say) 8% to 14%, and select this cell as the

right hand side of a “return threshold” constraint in your model. If you set the

Optimizations to Run value to 7, Analytic Solver would solve 7 portfolio

optimization problems: the first one would have a return threshold of 8%, the

second would have a return threshold of 9%, and so on through the 7th problem

with a return threshold of 14%. You could then use the Reports and Charts

buttons on the Ribbon to examine results across all 7 optimization problems.

Run Specific Optimization

VBA / SDK: Property: myProb.Solver.OptimizationIndex = integer_value, 0 <

integer_value <= Optimizations to Run

The specific optimization the Solver will perform, if multiple optimizations are

defined. PsiOptParam parameters will be set for this index.

Optimization Interpreter

VBA / SDK: Parameter Name "OptInterpreter", 0 (Automatic), 1 (Psi

Interpreter), or 2 (Excel Interpreter)

Use this option to select the Interpreter to be used for Optimization problems, to

compute normal values, function gradients and other quantities from the

formulas in your model.

Choose Psi Interpreter to use Analytic Solver’s Polymorphic Spreadsheet
Interpreter, Excel Interpreter to use standard Excel recalculation, or

Automatic (the default choice) to allow Analytic Solver to choose the

Interpreter automatically.

The Microsoft Excel Interpreter, like all spreadsheet programs, includes an

"engine" or interpreter for spreadsheet formulas. It reads or "parses" user-written

formulas such as =A1 + A2*A3 - SQRT(A4), and "interprets" this formula,

whenever the user changes any of the numbers in A1 through A4, to calculate a

new value for the spreadsheet cell. This is conventional spreadsheet

recalculation, and it yields single numbers as values.

PSI is an acronym for Polymorphic Spreadsheet Interpreter. Like Excel, the PSI

interpreter reads or "parses" spreadsheet formulas, but it is capable of
interpreting these formulas in many different ways, in effect "overloading" each

operator and function with new and more powerful "meanings," that yield:

• Conventional number values, as in Excel

• Intervals such as [2, 4], computing in effect all possible values from 2 to 4

• Vectors of values, computing "gradients" or rates of change for all input

assumptions simultaneously

and many other meanings not covered here. Computation of gradients is crucial

to speed and accuracy in optimization. Computation of intervals is a key

technology for global optimization. The PSI Interpreter achieves a dramatic

Frontline Solvers 2025 Q1 Reference Guide Page 194

speedup of optimization in Analytic Solver, by interpreting Excel formulas at a

higher level, without using its own "spreadsheet compiler" capabilities.

No matter what you choose here, after an optimization (or simulation) run is

finished, your spreadsheet formulas are always recalculated by Excel; only the

values of PSI function calls are determined by Analytic Solver. Whenever
you’re in Excel Ready model, you are using the normal Excel Interpreter.

During the time when an optimization is being run, the PSI Interpreter is

normally much faster than the Excel Interpreter, and it can compute more

accurate function gradients than the Excel Interpreter. The PSI Interpreter is

more ‘strict’ than the Excel Interpreter, so you may see an error message in the

Task Pane Output tab if your model uses certain (unusual) Excel formulas that

the PSI Interpreter won’t accept.

This option not included in Analytic Solver Cloud as both products always use

Analytic Solver's Polymorphic Spreadsheet Interpreter.

Solve Mode

VBA / SDK: Parameter Name "SolveMode", 0 (Solve Complete Model), 1

(Analyze Without Solving), 2 (Solve Without Integer Constraints) or 3 (Solve

for Recourse Variables)

Use this option to determine what action will be taken when you click the

Optimize button on the Ribbon, or the green arrow (“Solve”) in the Task Pane.

Select from Solve Complete Problem, Analyze without Solving, Solve

without Integer Constraints, or Solve for Recourse Variables. It’s

meaningful to Solve with Integer Constraints only if you have integer

constraints in your model. Similarly, it’s meaningful to Solve for Recourse

variables only if you have recourse decision variables in an optimization model
with uncertainty.

Solve Uncertain Models

VBA / SDK: Parameter Name "SolveUncertain", 0 (Automatic), 1 (Simulation

Optimization), 2 (Stochastic Transformation) or 3 (Stochastic Decomposition)

Use this option to determine how an optimization model with uncertainty will be

solved when you click the Optimize button on the Ribbon, or the green arrow

(“Solve”) in the Task Pane. Your optimization includes uncertainty if the

formula for the objective, or any constraint, depends (directly or indirectly) on

an uncertain variable cell, where you’ve entered a PSI distribution function

(such as PsiNormal).

Select from Simulation Optimization, Stochastic Transformation, Stochastic

Decomposition (Analytic Solver Desktop only), or Automatic. Automatic (the

default choice) allows Analytic Solver to choose the solution method

automatically.

Simulation Optimization is the most general method (it can handle nonlinear and

non-smooth models), but is also the slowest and least reliable. Stochastic

Transformation works only with linear models that include uncertainty; it uses

either stochastic programming or robust optimization methods to solve the

problem (see the Transformation options for further information). Stochastic

Decompostion (supported only in Analytic Solver Desktop) can be used when

the model contains uncertainty and recourse variables, but this method does not
support chance constraints or uncertainty in the objective.

Frontline Solvers 2025 Q1 Reference Guide Page 195

Use Psi Functions to Define Model on
Worksheet

VBA / SDK: Parameter Name "PsiOptimizationFunctions", 0 (False) or 1 (True)

Set this option to True if you want to use optimization-specific PSI functions to

define the objective, variables or constraints of your model. These are functions

such as PsiVar() to define decision variables, PsiCon() to define constraints, and

PsiObj() to define the objective. Please see the section, Using Psi Optimization

Functions, later in this guide, for a complete description of each Psi function.

This option not applicable in Analytic Solver Cloud.

Use Interactive Optimization

VBA / SDK: Parameter Name "InteractiveOptimization", 0 (False) or 1 (True)

Set this option to True if you want to run an optimization automatically

whenever you make a change to your spreadsheet. This is primarily useful (i) on

modest-size models where the optimization completes very quickly and (ii) after

you’ve finished developing and testing your optimization model. You can ask

‘what if’ by changing a number on the spreadsheet, and see how the optimal

solution changes with Interactive Optimization.

This option not supported in Analytic Solver Cloud.

Number of Threads

VBA / SDK: Parameter Name "NumThreads", 0 (False) or 1 (True)

Use this option to set the number of threads of execution to be used for

optimization problems. (This makes a difference only if your PC has more than

one processor core.) The default value is 0, meaning that the number of threads

should be determined automatically. This means that the Solver may use as

many threads as you have processor cores, and will allocate the threads for

different purposes to achieve the fastest solutions. If you are running other

applications at the same time you are solving a problem, you may wish to limit

the number of threads to a smaller value, such as 1 or 2.

Note: Only 1 thread is supported when using a trial license.

This option not applicable in Analytic Solver Cloud.

Simulation Model

Below are screen shots of the Simulation Model section located on the Platform

Tab in the Task Pane in Analytic Solver Desktop and Analytic Solver Cloud.

To set these options or properties in VBA, you must first create an instance of

the Problem class and initialize the Excel Workbook (by name or by using

“ActiveWorkbook”), for example:

 Dim myProb as New ASP.Problem

 myProb.Init ActiveWorkbook

Frontline Solvers 2025 Q1 Reference Guide Page 196

Analytic Solver Desktop

Analytic Solver Cloud / Analytic Solver Desktop

Simulations to Run

VBA / SDK: Property: myProb.Solver.NumSimulations = integer_value, 0 <

integer_value

Use this property to set the number of simulations to run when you click the

Simulate button on the Ribbon, or the green arrow in the Task Pane. This is

useful only if you’ve defined one or more simulation parameters, using the

Parameters Simulation choice on the Ribbon.

You can use these features to run multiple, parameterized simulations. For

example, in an airline yield management model where the number of “no-

shows” for a departing flight depends on the number of tickets sold, you could

define a cell for the number of tickets sold as a simulation parameter, varied

from (say) 100 to 150. If you set the Simulations to Run value to 51, Analytic

Solver would run 51 simulations: the first would use 100 tickets sold, the second

would use 101 tickets sold, and so on through the 51st problem with 150 tickets
sold. You could then use the Reports and Charts buttons on the Ribbon to

examine results across all 51 simulations.

Run Specific Simulation

VBA / SDK: Property: myProb.Solver.SimulationIndex = integer_value, 0 <

integer_value <= Simulations to Run

The specific simulation Solver will perform if multiple simulations are defined.

PsiSimParam parameters will be set for this index

Trials per Simulation

VBA / SDK: Property: myProb.Solver.NumTrials = integer_value, 0 <

integer_value

Frontline Solvers 2025 Q1 Reference Guide Page 197

Use this property to set the number of Monte Carlo trials to run in each

simulation. The default value is 1,000 trials, which is enough for a good

statistical sample in most models. But applications such as estimating the value

of options and other derivatives may need a higher number of trials.

Simulation Interpreter

VBA / SDK: Parameter Name “Interpreter”, 0 (Automatic), 1 (Psi Interpreter) or

2 (Excel Interpreter)

Use this option to select the Interpreter to be used for Simulation problems, to

compute Monte Carlo trial values from the formulas in your model.

Choose Psi Interpreter to use Analytic Solver’s Polymorphic Spreadsheet

Interpreter, Excel Interpreter to use standard Excel recalculation, or

Automatic (the default choice) to allow Analytic Solver to choose the

Interpreter automatically.

The Microsoft Excel Interpreter, like all spreadsheet programs, includes an

"engine" or interpreter for spreadsheet formulas. It reads or "parses" user-written
formulas such as =A1 + A2*A3 - SQRT(A4), and "interprets" this formula,

whenever the user changes any of the numbers in A1 through A4, to calculate a

new value for the spreadsheet cell. This is conventional spreadsheet

recalculation, and it yields single numbers as values.

PSI is an acronym for Polymorphic Spreadsheet Interpreter. Like Excel, the PSI

Interpreter reads or "parses" spreadsheet formulas, but it is capable of

interpreting these formulas in many different ways, in effect "overloading" each

operator and function with new and more powerful "meanings," that yield:

• Conventional number values, as in Excel

• Intervals such as [2, 4], computing in effect all possible values from 2 to 4

• Vectors of values, computing "gradients" or rates of change for all input

assumptions simultaneously

• Arrays of values, computing values for all Monte Carlo trials

simultaneously

and many other meanings not covered here. The last of these enables the PSI

interpreter to run Monte Carlo simulations up to 100 times faster. PSI

Technology is fundamentally different, and more general than spreadsheet

compilers. However, PSI Technology achieves a dramatic speedup of Monte

Carlo simulation by interpreting Excel formulas at a higher level, without using
its own "spreadsheet compiler" capabilities.

No matter what you choose here, after a simulation (or optimization) run is

finished, your spreadsheet formulas are always recalculated by Excel; only the

values of PSI function calls are determined by Analytic Solver. Whenever

you’re in Excel Ready model, you are using the normal Excel Interpreter.

During the time when a simulation is being run, the PSI Interpreter is normally

much faster than the Excel Interpreter. The PSI Interpreter is more ‘strict’ than

the Excel Interpreter, so you may see an error message in the Task Pane Output

tab if your model uses certain (unusual) Excel formulas that the PSI Interpreter

won’t accept.

This option is not applicable in Analytic Solver Cloud as Analytic Solver's

Polymorphic Spreadsheet Interpreter is always used in these products.

Frontline Solvers 2025 Q1 Reference Guide Page 198

Use Correlations

VBA / SDK: Parameter Name "UseCorrelations", 0 (False) or 1 (True)

This option determines whether correlations among uncertain variables that you

define (using the Correlations button on the Ribbon) will be used when

computing the random samples drawn for your uncertain variables in Monte

Carlo trials. The default value is True, meaning that correlations will be
respected. You would set this to False only if you wanted to see how your

simulation results would change if the uncertain variables were all independent

and not correlated.

Value to Display

VBA / SDK: Parameter Name "ValuetoDisplay", 0 (All Trials), 1 (Normal

Trials), 2 (Error Trials), 3 (Sample Mean) or 4 (Base Case)

Use this option in Analytic Solver Desktop to determine what values for

uncertain variables are returned by PSI distribution function calls (such as

=PsiNormal(1,2)) in your model, and hence what values are displayed on your

spreadsheet. Select from All Trials, Normal Trials, Error Trials, Sample

Mean, and Base Case:

• All Trials means that individual values from both normal trials and

error trials will be displayed. The specific trial values to be displayed

are determined by the Trial Number that appears in the Tools section of

the Analytic Solver Ribbon. You can use the left arrow and right arrow

to change the trial number.

• Normal Trials means that only individual values from normal trials

(where no simulation output or uncertain function had an Excel error

value) will be displayed; error trials will be skipped when you use the

left arrow and right arrow to change the trial number.

• Error Trials means that only individual values from error trials (where

at least one uncertain function had an Excel error value) will be

displayed; normal trials will be skipped when you use the left arrow

and right arrow to change the trial number.

• Sample Mean means that each PSI distribution function will return its

sample mean value across all of the normal trials; regardless of the

Trial Number setting.

• Base Case means that each PSI distribution function will return its base

case value (specified in the Base Case field of the Uncertain Variable

dialog, and stored via the PsiBaseCase() function), regardless of the

Trial Number setting. If a PSI distribution function doesn’t have a Base
Case value, it will return its sample mean value.

You can also set this option by clicking the small down-arrow next to the Trial

Number on the Ribbon, and choosing one of the above options from the

dropdown list.

This functionality is not supported in Analytic Solver Cloud.

Trial to Display

VBA / SDK: Property: myProb.Solver.SimulationIndex = integer_value", 0 <

integer_value <= Number of Trials

Frontline Solvers 2025 Q1 Reference Guide Page 199

Use this property in Analytic Solver Desktop to choose the Monte Carlo trial

number whose individual values should be displayed on your spreadsheet in

Excel Ready mode. The Trial Number appears on the Tools tab of the Analytic

Solver Task Pane; you can also use the left arrow and right arrow on the Ribbon

to change the trial number. If you have the Value to Display option set to
Sample Mean or Base Case, this option is ignored.

Dimensional Calculation

VBA / SDK: Parameter Name "DimCalc", 0 (Manual) or 1 (Automatic)

This option is only available in Analytic Solver Desktop when a model has been

formulated using Dimensional Modeling. (See the Dimensional Modeling

chapter within the Analytic Solver User Guide for more information on how to

formulate a model using Dimensional Modeling.)

If this option is set to Manual, PsiCubeData() functions can only be calculated

using the Analytic Solver Menu using Model – Cube Result – Calculate on the

Dimensional Modeling menu.

If this option is set to Automatic, PsiCubeData() functions can be calculated by

clicking F9 or by using Model – Cube Result – Calculate on the Dimensional

Modeling menu.

This option does not exist in Analytic Solver Cloud.

Number of Threads

VBA / SDK: Parameter Name "SimNumThreads", 0 (False) or 1 (True)

Use this option to set the number of threads of execution to be used in the Monte

Carlo simulation process. (This makes a difference only if your PC has more

than one processor core.) The default value is 0, meaning that the number of
threads should be determined automatically. This means that the Solver may use

as many threads as you have processor cores, and will allocate the threads for

different purposes to achieve the fastest solutions. If you are running other

applications at the same time you are solving a problem, you may wish to limit

the number of threads to a smaller value, such as 1 or 2.

This option is not applicable in Analytic Solver Cloud.

Decision Model

Below are screen shots of the Decision Model section located on the Analytic

Solver Desktop and Analytic Solver Cloud Platform Tabs in the Task Pane.

Note: Decision Tree options such as Certainty Equivalents, Decision Node

EV/CE, Risk Tolerance, Scalar A and Scalar B, cannot be set through VBA.

Frontline Solvers 2025 Q1 Reference Guide Page 200

Analytic Solver Desktop

Analytic Solver Cloud

Calculations to Run

VBA / SDK: This option is not supported in VBA or the SDK.

Use this property to set the number of calculations to run when you click the

green arrow on the Model tab on the Solver Task Pane to perform a calculation.

This is useful only if you’ve defined one or more calculation parameters, using

the Parameters – Calculation choice on the Ribbon.

You can use this feature to run multiple, parameterized calculations. For

example, imagine a custom function that calculates the balance of a mortgage

given a time period. Introducing a calculation parameter using PsiCalcParam,
and varying that parameter from 0 to 360 (where 0 to 360 indicates the month of

the mortage) you could then use the Reports and Charts buttons on the Ribbon

and/or the Tools tab on the Solver Task Pane to examine the balance of the

mortage across all 360 months.

 To define a Calculation Parameter, select an empty cell on the Excel worksheet,

and choose Parameters -- Calculation. Supply a lower bound and upper bound,

or a list of values that the Calculation Parameter should have on a series of

calculations. Then modify your formulas, or your optimization model cell

selections, to use the newly defined Calculation Parameter.

Run Specific Calculation

VBA / SDK: This option is not supported in VBA or the SDK.

The specific calculation Analytic Solver will perform if multiple calculations are

defined. PsiCalcParam parameters will be set for this index

Frontline Solvers 2025 Q1 Reference Guide Page 201

Certainty Equivalents

Use this option to determine the evaluation criterion to be used at each decision

node in a decision tree. Choose Expected Value for a risk-neutral criterion, that

selects the alternative with the highest (if maximizing, or the lowest if

minimizing) expected value (probability-weighted average) at each node.

Choose Exponential Utility Function to use a criterion that incorporates risk
aversion. You can set the shape of the utility function with the Risk Tolerance,

Scalar A and Scalar B options.

Decision Node EV/CE

Use this option to determine how a decision tree should be evaluated. Choose

Maximize to maximize the Expected Value or Certainty Equivalent of the

alternatives at each decision node or Minimize to minimize the EV or CE at

each node.

Risk Tolerance

Use this option to help determine the shape of the exponential utility function,

used to choose an alternative at each decision code, when you select the
Certainty Equivalents option Exponential Utility Function. The exponential

utility function takes the form U = A – B*EXP(-x/RT) where x is the value of

the alternative, RT is the Risk Tolerance you set with this option, and A and B

are parameters you set with the Scalar A and Scalar B options.

Scalar A

Use this option to help determine the shape of the exponential utility function,

used to choose an alternative at each decision code, when you select the

Certainty Equivalents option Exponential Utility Function. The exponential

utility function takes the form U = A – B*EXP(-x/RT) where x is the value of

the alternative, RT is the Risk Tolerance option, A is the value you set with this

option, and B is the Scalar B option.

Scalar B

Use this option to help determine the shape of the exponential utility function,

used to choose an alternative at each decision code, when you select the

Certainty Equivalents option Exponential Utility Function. The exponential

utility function takes the form U = A – B*EXP(-x/RT) where x is the value of

the alternative, RT is the Risk Tolerance option, A is the value you set with this

option, and B is the Scalar B option.

Diagnosis

Below are screen shots of the Diagnosis section located on the Desktop and

Cloud Platform Tabs in the Task Pane.

Frontline Solvers 2025 Q1 Reference Guide Page 202

Analytic Solver Desktop

Analytic Solver Cloud

Intended Model Type

VBA / SDK: Parameter Name "DesiredModel", 1 (Linear), 2 (Quadratic), or 3

(Nonlinear)

Use this option to choose the exceptions that should be included in the Structure

report after analyzing a model. Select from Linear for a linear programming

problem, Quadratic for a quadratic programming problem, or Nonlinear for a

smooth nonlinear optimization problem.

You select the type of model you intended to create here; the Structure report

will then highlight formulas in your objective or constraints that do not satisfy
the requirements for this model type. For example, if you select Linear and then

choose Reports Optimization Structure Report, the report will highlight formulas

(if any) that create a nonlinear or non-smooth dependence on the decision

variables.

Intended Use of Uncertainty

VBA / SDK: Parameter Name "UseOfUncertainty", 2 (No Uncertainties), 3

(With Recourse Vars), 4 (In Chance Constraints) or 5 (In Psi Stat Functions)

Use this option to choose the exceptions that should be included in the

Uncertainty Report after analyzing a model. Select from No Uncertainties if

you intended that your model should not depend on any uncertain variables,,

With Recourse Vars if you meant to use uncertainty only in constraints that
depend on recourse decision variables, In Chance Constraints if you meant to

use uncertainty only in chance constraints, or In Psi Stat Functions if you

intended to use uncertainty in several ways, but always summarized through PSI

Statistics functions.

You select your intended use of uncertainty here; the Uncertainty Report will

then highlight formulas in your objective or constraints that do not satisfy the

requirements for this use of uncertainty. For example, if you want to create a

stochastic linear programming model with recourse, but without chance

constraints, you would choose With Recourse Vars.

If you are using simulation optimization, and you see the Solver Result message
“Formula depends on uncertainties, must be summarized or transformed”, you

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Formula_depends_on_uncertainties_must_be_summarized_or_transformed.htm

Frontline Solvers 2025 Q1 Reference Guide Page 203

can select In Psi Stat Functions here, then select Reports Optimization

Uncertainty Report to identify the formulas in your model that depend on

uncertainty and are not summarized through PSI Statistics functions such as

PsiMean().

Transformation

Below are screen shots of the Transformation section located on the Desktop

and Cloud Platform Tab in the Task Pane.

To set these options or properties in VBA, you must first create an instance of

the Problem class and initialize the Excel Worksheet (by name or by using

“ActiveSheet”), for example:

 Dim myProb as New ASP.Problem

 myProb.Init ActiveSheet

Analytic Solver Desktop

Analytic Solver Cloud

Nonsmooth Model Transformation

VBA / SDK: Parameter Name "TransformNonsmooth", 0 (Automatic), 1

(Always), or 2 (Never)

Use this option to choose whether Analytic Solver will attempt to transform

constraints in your model that are non-smooth functions of the decision variables

into equivalent linear constraints that depend on newly-introduced binary integer

and continuous decision variables.

You can choose Always, Never, and Automatic. Automatic is the default

choice: Analytic Solver will automatically diagnose your model, and if it

contains non-smooth functions that are candidates for transformation, Analytic

Solver will attempt the transformation and will diagnose the resulting expanded

model. This takes the most time, but is completely automatic. If your model is

Frontline Solvers 2025 Q1 Reference Guide Page 204

successfully transformed, you should be sure to check, and probably adjust, the

Big M Value option.

Always is useful only when you know that your model uses non-smooth

functions and that the Solver’s transformations will succeed. Never is useful if

you are certain that your model doesn’t use non-smooth functions, and you’d
like to save some time, or if you just don’t want the transformation to be

attempted.

A simple example is a constraint A1 <= 100 where A1 contains

=IF(B1=0,C1,D1). If B1 is (or depends on) a decision variable, this constraint is

non-smooth – in fact discontinuous – which means that the model cannot be

solved to optimality by either linear programming (fastest and most reliable) or

smooth nonlinear optimization.

Assuming for simplicity that B1 is a decision variable that is non-negative, this

constraint can be transformed by introducing a new binary integer variable Y1,

and a new constraint B1 <= BigM * Y1, where BigM is a constant larger than
any possible value for B1 (you can set this value with the Big M Value option).

The IF function in A1 is replaced with =D1*Y1+C1*(1-Y1). Now when Y1=0,

B1 is forced to be = 0, and A1=C1; when Y1=1, B1 can have any positive value,

and A1=D1. The non-smooth IF function is transformed into a set of linear

functions, so a faster and more reliable linear programming Solver can

potentially be used – but the overall size of the model is increased.

Note: This feature is particularly useful when the product of two binary

variables in the objective function creates a quadratic model. If this option is set

to “Always,” Analytic Solver will convert the model into its linear equivalent.

Analytic Solver can perform much more complex transformations automatically,

for constraints involving the Excel functions IF, AND, OR, NOT, MIN, MAX,
and the relational operators <=, = and >=. Such transformations can result in a

significantly larger model, but if the resulting model is entirely linear, this can

be more than offset by the faster speed and reliability of a linear programming

Solver.

Big M Value

VBA / SDK: Parameter Name "BigM", 1 <= integer value <= 1E+30

Use this option to set a “Big M” constant value to be used in newly generated

constraints that result from a Nonsmooth Model Transformation. The default

value is 1E6 or 1 million – but if you are using Analytic Solver’s transformation

features, you should ensure that this value is correct for your model: It must be

bigger than any numeric value that may appear in your intermediate calculations

(for example, bigger than any value a in an expression IF(a>=b,…)) but it

should not be excessively large.

If your value for the Big M option is smaller than the largest value that occurs in

your intermediate calculations, the generated constraints will not have the

desired effect, and your solution will not be valid for your original problem. If

your Big M value is too large, the transformed model will be poorly scaled, and

the Solver will likely encounter problems with numerical stability as it performs
computations with your too-large values. So it pays to investigate the results

computed by your what-if spreadsheet model, and set the Big M option

appropriately.

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Big_M_Value.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Big_M_Value.htm
mk:@MSITStore:C:/Users/Nicole/Documents/temp/Analytic%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Problems_with_Poorly_Scaled_Models.htm

Frontline Solvers 2025 Q1 Reference Guide Page 205

Stochastic Transformation

VBA / SDK: Parameter Name "StochasticTransformation", 0 (Automatic), 1

(Deterministic), or 2 (Robust Counterpart)

This option has an effect only if the Solve Uncertain Models option is set to

Stochastic Transformation. You can choose Deterministic Equivalent, Robust

Counterpart, or Automatic. This transformation can succeed only if your
objective and constraints are linear functions of the decision variables (they can

also depend on uncertain variables).

Use this option to determine whether Analytic Solver will attempt to transform

your optimization model with uncertainty into a conventional optimization

model without uncertainty: either the Deterministic Equivalent model (as used in

stochastic linear programming), or a Robust Counterpart model (as used in

robust optimization).

Automatic, the default choice, will use the transformation to Deterministic

Equivalent form if your model includes recourse decisions and no chance

constraints; otherwise it will use the transformation to Robust Counterpart form.

In both cases, the result of a successful transformation is a conventional linear

programming model, but with considerably more decision variables and

constraints than the original model. Generally, the Robust Counterpart model is

much smaller than the Deterministic Equivalent model, but the solution of this

model may be only an approximate (and conservative) solution of the original

problem.

Chance Constraints Use

VBA / SDK: Parameter Name "ChanceConstraintNorm", 1 (L1 Norm), 2 (L2

Norm), 3 (L-Inf Norm) or 4 (D Norm)

This option has an effect only if the Solve Uncertain Models option is set to

Stochastic Transformation, and the Stochastic Transformation option is set to
either Robust Counterpart or Automatic (and the Automatic method selects the

Robust Counterpart form). It determines the norm (distance measure) used to

constrain the size of uncertainty sets in the Robust Counterpart model.

Select from the L1 Norm, L2 Norm, L-Inf Norm, or D Norm (the default).

The D norm is equivalent to the intersection of the L1 norm and L-Inf (infinity)

norm. If you choose the L2 norm, the Robust Counterpart model will be a SOCP

(second order cone programming) model, which requires an SOCP or smooth

nonlinear solver (such as the SOCP Barrier Solver or GRG Nonlinear Solver). If

you choose the L1, L-Inf or D norm, the Robust Counterpart model will be an

LP (linear programming) model that can be solved efficiently with an LP, QP, or

SOCP Solver.

Auto Adjust Chance Constraints

VBA / SDK: Parameter Name "ChanceAutoAdjust", 1 (True) or 0 (False)

This option has an effect only if your model includes chance constraints, the

Solve Uncertain Models option is set to Stochastic Transformation, and the

Stochastic Transformation option is set to either Robust Counterpart or

Automatic (and the Automatic method selects the Robust Counterpart form).

Set this option to True if you want Analytic Solver to automatically re-solve the

Robust Counterpart model while adjusting the size of uncertainty sets created

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Solve_Uncertain_Models.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Solve_Uncertain_Models.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Stochastic_Transformation.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Solve_Uncertain_Models.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Stochastic_Transformation.htm

Frontline Solvers 2025 Q1 Reference Guide Page 206

for chance constraints, in an effort to find a better (less conservative) solution.

This can take significantly more time for a large model. If this option is set to

False (the default), Analytic Solver will not automatically re-solve the RC

model, but it will offer you the option to re-solve once the initial solution is

found, by pressing a newly-available button at the top of the Task Pane Output
tab.

Default Bounds

Below are screen shots of the Default Bounds section located on the Platform

Tab in the Task Pane of Analytic Solver Desktop and Analtyic Solver Cloud.

To set Decision Vars Upper and Lower, you must first create an instance of the

Problem class and initialize the Excel Worksheet (by name or by using

“ActiveSheet”).

 Dim myProb as New ASP.Problem

 myProb.Init ActiveSheet

To set the Cutoff and Censure options, you must first create an instance of the

Problem class and initialize the Excel Workbook (by name or by using

“ActiveWorkbook”), for example:

 Dim myProb as New ASP.Problem

 myProb.Init ActiveWorkbook

Analytic Solver Desktop

Frontline Solvers 2025 Q1 Reference Guide Page 207

Analytic Solver Cloud

Decision Vars Lower

VBA / SDK: Parameter Name "DefaultLowerBound", any real number

Use this option to place a default lower bound on all decision variables that do

not have explicit lower bounds defined by >= constraints. For example, if you

want all decision variables to be non-negative, set the value of this option to 0.
You can still set other bounds on individual decision variables, such as A1 >= 5

or A1 >= -5, by choosing Constraints Variable Type/Bound >=.

Decision Vars Upper

VBA / SDK: Parameter Name "DefaultUpperBound", any real number

Use this option to place a default upper bound on all decision variables that do

not have explicit upper bounds defined by <= constraints. This is very useful

when you are solving with the Multistart option or with the Evolutionary Solver.

For example, set the value of this option to 100 if you want all decision variables

to have that upper bound. You can still set other bounds on individual decision

variables, such as A1 <= 90 or A1 <= 110, by choosing Constraints Variable
Type/Bound <=.

Cutoff Measure

VBA / SDK: Parameter Name "CutoffType", 0 (None), 1 (Percentile), or 2

(Standard Deviation)

Use this option only if you want to set global default bounds on the probability

distributions of all uncertain variables. This option specifies the “units of

measure” for the values you enter in the Lower Cutoff and Upper Cutoff

options. Choose None (the default) if you don’t want to set these global bounds.

If you choose Percentile, then the Lower Cutoff and Upper Cutoff values must

be between 0.01 and 0.99, and they specify percentiles of each uncertain
variable’s probability distribution. If you choose Std Deviation, then the Lower

Cutoff and Upper Cutoff can be any positive or negative value, and they specify

the number of standard deviations away from the mean for each uncertain

variable.

Note: If set, the optional type argument of PsiTruncate() will override this

option. See the definition for PsiTruncate for more information.

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Lower_Cutoff.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Upper_Cutoff.htm

Frontline Solvers 2025 Q1 Reference Guide Page 208

Analytic Solver supports both Cutoff bounds and Censor bounds. When you use

Cutoff bounds, random samples from the distribution are effectively rescaled to

lie within the lower and upper bounds. When you use Censor bounds, random

samples from the distribution that lie above the upper bound are set equal to the

upper bound, and samples that lie below the lower bound are set equal to the
lower bound; this causes a “buildup of probability mass” at the bounds – which

is appropriate in some situations, but not in others.

Lower Cutoff

VBA / SDK: Parameter Name "LowerCutoff", Percentiles must be between .01

and .99, Standard Deviation measures can be any real number

Use this option only if you want to set a “Cutoff” type lower bound on the

probability distributions of all uncertain variables. The value you enter for this

option is expressed in either percentiles or standard deviations, depending on the

setting of the Cutoff Measure option. Percentile measures must lie between 0.01

and 0.99, Std Deviation measures can be any value.

• This property accepts an "empty" argument. If not provided, the

default of -1E+30 will be used.

• A third optional argument, type, was added in V2019. If a 1 is passed

(default), the bounds will be interpreted as numbers. If a 2 is passed,

the bounds will be interpreted as standard deviations. If a 3 is passed,

the bounds will be interpred as percentiles which must be between 0

and 1.

Upper Cutoff

VBA / SDK: Parameter Name "UpperCutoff", Percentiles must be between .01
and .99, Standard Deviation measures can be any real number

Use this option only if you want to set a “Cutoff” type upper bound on the

probability distributions of all uncertain variables. The value you enter for this

option is expressed in either percentiles or standard deviations, depending on the

setting of the Cutoff Measure option. Percentile measures must lie between 0.01

and 0.99, Std Deviation measures can be any value.

• This property accepts an "empty" argument. If not provided, the

default of 1E+30 will be used.

• A third optional argument, type, was added in V2019. If a 1 is passed

(default), the bounds will be interpreted as numbers. If a 2 is passed,
the bounds will be interpreted as standard deviations. If a 3 is passed,

the bounds will be interpred as percentiles which must be between 0

and 1.

Censure Measure

VBA / SDK: Parameter Name "CensureType", 0 (None), 1 (Percentile), or 2

(Standard Deviation)

Use this option only if you want to set global default bounds on the probability

distributions of all uncertain variables. This option specifies the “units of

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Cutoff_Measure.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Cutoff_Measure.htm

Frontline Solvers 2025 Q1 Reference Guide Page 209

measure” for the values you enter in the Lower Censor and Upper Censor

options. Choose None (the default) if you don’t want to set these global bounds.

If you choose Percentile, then the Lower Censor and Upper Censor values must

be between 0.01 and 0.99, and they specify percentiles of each uncertain

variable’s probability distribution. If you choose Std Deviation, then the Lower
Censor and Upper Censor can be any positive or negative value, and they

specify the number of standard deviations away from the mean for each

uncertain variable.

Note: If set, the optional type argument of PsiCensure() will override this

option. See the definition for PsiCensure for more information.

Analytic Solver supports both Cutoff bounds and Censor bounds. When you use

Cutoff bounds, random samples from the distribution are effectively rescaled to

lie within the lower and upper bounds. When you use Censor bounds, random

samples from the distribution that lie above the upper bound are set equal to the

upper bound, and samples that lie below the lower bound are set equal to the
lower bound; this causes a “buildup of probability mass” at the bounds – which

is appropriate in some situations, but not in others.

Lower Censure

VBA / SDK: Parameter Name "LowerCensure", Percentiles must be between .01

and .99, Standard Deviation measures can be any real number

Use this option only if you want to set a “Censor” type lower bound on the

probability distributions of all uncertain variables. The value you enter for this

option is expressed in either percentiles or standard deviations, depending on the

setting of the Censor Measure option. Percentile measures must lie between 0.01

and 0.99, Std Deviation measures can be any value.

• This property accepts an "empty" argument. If not provided, the

default of -1E+30 will be used.

• A third optional argument, type, was added in V2019. If a 1 is passed

(default), the bounds will be interpreted as numbers. If a 2 is passed,

the bounds will be interpreted as standard deviations. If a 3 is passed,

the bounds will be interpred as percentiles which must be between 0

and 1.

Upper Censure

VBA / SDK: Parameter Name "UpperCensure", Percentiles must be between .01

and .99, Standard Deviation measures can be any real number

Use this option only if you want to set a “Censor” type upper bound on the

probability distributions of all uncertain variables. The value you enter for this

option is expressed in either percentiles or standard deviations, depending on the

setting of the Censor Measure option. Percentile measures must lie between 0.01

and 0.99, Std Deviation measures can be any value.

• This property accepts an "empty" argument. If not provided, the

default of 1E+30 will be used.

• A third optional argument, type, was added in v2019. If a 1 is passed

(default), the bounds will be interpreted as numbers. If a 2 is passed,

the bounds will be interpreted as standard deviations. If a 3 is passed,

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Lower_Censor.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Upper_Censor.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Censor_Measure.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Censor_Measure.htm

Frontline Solvers 2025 Q1 Reference Guide Page 210

the bounds will be interpred as percentiles which must be between 0

and 1.

Advanced

Below is a screen shot of the Advanced section located on the Analytic Solver

Desktop Platform Tab in the Task Pane. This section is not included in Analytic
Solver Cloud.

Analytic Solver Desktop

Supply Engine with

VBA / SDK: Parameter Name "CheckFor", 1 (Gradients), 2 (Structure), 3

(Convexity), 4 (Automatic)

This option has an effect only if the Optimization Interpreter option is set to Psi

Interpreter. Use this option to specify what kind (and how much) analysis of

your model you want Analytic Solver to perform when you click the Optimize

button or the green-arrow Solve button to solve your model.

If you use Automatic (the default choice), Analytic Solver asks the Solver

Engine (chosen either automatically or by your selection on the Engine tab)

what kind of model analysis it can use, and performs that analysis before starting

the Solver Engine. This is usually the best choice, since it means that Solver
Engines that can exploit model structure information will have that information.

But since most Solver Engines can run without structure information, you may

occasionally want to set this option.

The Gradients option has the smallest computational cost: It means that Solver

Engines will benefit from fast, accurate gradients computed via automatic

differentiation, but they will not have model structure, dependency, or convexity

information (for example, which variables or functions in the model are linear).

The Structure option includes the Gradients option, plus it performs a structure

and dependency analysis and makes this information available to the Solver

Engine. The Convexity option includes the Gradients and Structure options,

plus it performs an analysis of the convexity of the objective and constraints; it
requires the greatest amount of computation.

Use Incremental Parsing

VBA / SDK: Parameter Name "IncrementalParsing", 0 (False) or 1 (True)

This option has an effect only if the Optimization Interpreter option (for

optimization models) or the Simulation Interpreter (for simulation models) is set

to Psi Interpreter. You can use this option to improve performance if you are

making small changes to a large Excel model and then re-solving the model.

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Simulation_Interpreter.htm

Frontline Solvers 2025 Q1 Reference Guide Page 211

To perform its work, the Polymorphic Spreadsheet Interpreter must scan and

parse (analyze) your Excel formulas. This can take considerable time for a large

model. If this option is set to False, the PSI Interpreter will re-reparse the entire

model each time you Solve; this will take more time. If this option is set to True,

the PSI Interpreter will save and re-use the parsed form of the model; as you
make changes to individual cell values or formulas, it will read and parse just

the changes, adding them to the parsed form of the model; this will take more

memory on an ongoing basis.

Use Sparse Variables

VBA / SDK: Parameter Name "Sparse", 0 (False) or 1 (True)

This option has an effect only if the Optimization Interpreter option is set to Psi

Interpreter. Use this option to determine whether the PSI Interpreter should

operate in (its own) Sparse mode or Dense mode. The default setting is False,

meaning that the Interpreter operates in its Dense mode.

If you set this option to True, the PSI Interpreter will use its own Sparse mode,
which can save memory when your optimization model is sparse, but possibly at

the expense of extra time, since a Structure analysis is always performed when

analyzing or solving (regardless of the setting of the Supply Engine with

option).

To check the sparsity of your model, click the Analyze button in the Task Pane

Model tab, then check the Sparsity option at the very bottom of the Model tab,

which reports the percentage of nonzeroes (from 0 to 100) in your model. A low

number means that your model is very sparse.

Use Sparse Cubes

VBA / SDK: Parameter Name "SparseCubes", 0 (False) or 1 (True)

This option has an effect only if the Interpreter (in the Optimization or

Simulation sections on the Platfom tab on the Solver Task Pane) option is set to

Psi Interpreter. Use this option to determine whether the PSI Interpreter should

calculate a cube defined by PsiCube() or PsiTableCube() using Sparse mode or

Dense mode.

Most large cubes are sparse in nature. While they may contain thousands of
elements, in practice, not all combinations of dimension elements are

possible. Hence, not all will define a model function during the Psi Interpreter's

evaluation of the problem. This means that most cubes will provoke output

results as sparse cubes (with missing constraints). Such sparsity in a cube, also

known as structural sparsity, can be exploited to save memory and gain speed.

A sparse cube is defined by missing values in cells for PsiCube() and by missing

records for PsiTableCube(). If this option is equal to False and you have

defined a cube using PsiCube() or PsiTableCube(), elements missing from the

cube will be considered equal to 0. If you set this option to True, you have

defined a cube using PsiCube() with missing values or PsiTableCube() with

missing records, and the percentage of elements missing or empty is more than
30% of the total possible cube elements, those missing elements or records will

not be included in the model.

For an example of how to use a sparse cube see the Dimensional Modeling

chapter in the Analytic Solver User Guide.

This option does not exist in Analytic Solver Cloud.

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm
mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Supply_Engine_with.htm

Frontline Solvers 2025 Q1 Reference Guide Page 212

Only Parse Active Sheet

VBA / SDK: Parameter Name "ActiveOnly", 0 (False) or 1 (True)

This option has an effect only if the Optimization Interpreter option is set to Psi

Interpreter. Use this option to determine whether the PSI Interpreter should

scan and parse only the active worksheet, or the entire workbook (and possibly

other workbooks) when analyzing and solving models. The default setting is
False, meaning that all worksheets and workbooks should be scanned.

If you have a large workbook that contains many worksheets and cell formulas

that don’t participate in the Solver model, setting this option to True can save a

good deal of time; however cells on other worksheets or in other workbooks that

are referenced in formulas making up the Solver model will be treated as

constant – even if they actually contain formulas that refer back to decision

variable cells on the active worksheet.

Scan for Bounds

VBA / SDK: Parameter Name "ScanforBounds", 0 (False) or 1 (True)

Use this option to determine whether Analytic Solver should spend time
scanning the model in order to properly classify certain constraints that you

enter as either general constraints or bounds on decision variables. The default

setting is True, which enables scanning for bounds.

In the Task Pane Model tab, constraints such as A1 >= 0 (with a constant

right hand side) will appear in the ‘Bounds’ outline group when A1 is a decision

variable, or in the ‘Normal’ group when A1 contains a formula and is not a

decision variable. But constraints such as A1 >= B1 require more analysis:

If A1 is a decision variable and B1 contains a constant, this is a simple variable

bound; but if B1 contains a formula that depends on some other decision

variable; then this is a general constraint.

In a large model, a formula in B1 may depend on hundreds or thousands of other
cells, and there may be hundreds or thousands of constraints such as A1 >=

B1. When the Scan for Bounds option is set to True, Analytic Solver will

spend time “in the background” tracing down these formulas, to determine

whether constraints of this form are general constraints or bounds on the

variables. (You may notice that constraints such as A1 >= B1 will move

from the Normal outline group to the Bounds group while you are doing other

work.) When this option is set to False, this work is not performed, and some

variable bounds my remain in the Normal group.

The setting of this option has no effect on actually solving the model: In that

case the PSI Interpreter and Solver Engine will determine for certain whether

each constraint is a general constraint or a variable bound. It only affects the
display of the constraints in the Task Pane Model tab.

Formula Dependency Test

Use this option to determine whether a Formula Dependency Test should be

applied to your model. Setting this option to "False" will restrict Solver from

applying the test which can be especially helpful in models containing cascading

constraints, or constraints that depend on previously defined constraints, where

Solver is returning "There is not enough memory available to solve the problem

at cell XX."

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Optimization_Interpreter.htm

Frontline Solvers 2025 Q1 Reference Guide Page 213

Analytic Solver automatically detects cascading constraints using a formula

dependency test. When such constraints are detected in a model, Analytic Solver

automatically switches from Reverse mode of evaluation to Forward mode, in

order to reduce the amount of time Solver spends parsing the model. Since

Forward evaluation mode requires much more memory than Reverse evaluation
mode, Analytic Solver could stop and return the result, "There is not enough

memory available to solve the problem at cell XX", when Forward evaluation

mode is used.

If your model contains cascading constraints and Solver is returning this "out of

memory" result, set this option to False to use the Reverse mode of evaluation.

Analytic Solver will most likely spend more time parsing your model but should

not return an "out of memory" error.

Recursive Parsing

Setting this option to True calls parseFormula recursively for all precedents of

the current formula (recommended).

The purpose of recursive parsing is to analyze and interpret Excel formulas in a

model. Recursive parsing of a formula means to drill down into the formula,
creating a precedents tree. If your workbook is large or contains many complex

formulas, this process can, rarely, result in a "stack overflow". In the case of a

"stack overflow", this option should be set to False.

Setting this option to False avoids recursion but the time spent in parsing your

model will typically increase, sometimes significantly.

Generate Loops for Copied Formulas

Only used when deploying a model to the RASON modeling language using the

Deploy Model button on the Analytic Solver ribbon. When True, Solver will

attempt to use a For Loop to convert uncertain variables and functions in a

simulation model or constraints in an optimization model to the RASON
modeling language. These uncertain variables/functions or constraints must be

of a similar form such that a simple For Loop correctly constructs them.

For example, take 3 uncertain functions of the form:

A1 = B1 * C1 + PsiOutput() D1 = PsiMean(A1)

A2 = B2 * C2 + PsiOutput() D2 = PsiMean(A2)

A3 = B3 * C3 + PsiOutput() D3 = PsiMean(A3)

These three functions would be converted to the following in the RASON

model.

 "uncertainFunctions": {

 "for(i in 1..3)": {

 "A1:A3[i]": {

 "formula": "(B1:B3[i]) * (C1:C3[i]) + PsiOutput(),

 "mean": [],

 "trials": [],

 }

 }

 }

Note that uncertain functions must be designated as output functions by

amending PsiOutput() at the end of each function or by entering PsiOutput(cell)

Frontline Solvers 2025 Q1 Reference Guide Page 214

in a blank cell. For example, PsiOutput(A1) designates the function in cell A1

as an output function.

Set this feature to False to convert each function separately. Note that this option

does not support functions which depend on the output of previous functions, for

example A2 = A1 + B2 * C2, A3 = A2 + B3 * C3, etc.

Similarly, a block of uncertain variables in a simulation model would be handled

in the same manner. For example, assume cells B1:B3 in the example above

contain the Psi distribution, PsiNormal(0,1). If this option is set to True, the

uncertainVariable section in the deployed RASON model would convert to:

"uncertainVariables": {

 "b1:b3": {

 "formula": "PsiNormal(0,1)",

 "aliasName": "Normal_Variables",

 "comment": "all uncertain variables use the

same PsiNormal distribution."

 }

 },

Hessian Method

VBA / SDK: Parameter Name "HessianMethod", 0 (Automatic), 1 (Reverse), 2

(Forward) or 3 (Reduced Space)

This setting only applies when utilizing the Psi Interpreter to calculate 2nd order

derivatives in a quadratic model (QP), quadratically constrained model (QCP)

and when solving nonlinear models (NLP) with the KNITRO engine. Analytic

Solver employs three methods for derivative computation: Reverse, Forward,

Reduced Space, and Automatic, which dynamically selects the most suitable

method based on model characteristics and available RAM. You can manually

override this selection by choosing one of the remaining three options.

Reverse is generally the most effective but demands the highest RAM usage. If

Analytic Solver encounters a memory error, it's advisable to attempt Forward
and then Reduced Space as alternatives. While Reverse consumes the most

RAM, Reduced Space is the least demanding. Opt for Reduced Space when

dealing with models featuring numerous variables and neither Reverse nor

Forward can successfully complete the computation.

In the event of a memory error under Automatic Choice, it's still worthwhile to

troubleshoot the model by attempting Reverse first, then Forward, and finally

adjusting to Reduced Space settings.

If Automatic is chosen, navigate to the Platform tab in the Solver Task Pane,

scroll to the bottom, and set Output to "Verbose." Proceed to solve the model,

and you'll find the Derivative Option selection printed in the Output tab.

Evaluation Diagnostics

VBA / SDK: Parameter Name "EvalDiagnostics", 0 (Automatic - Default), 1

(Full Algorithm)

This option specifies the algorithm used to calculate the memory requirements

for solving a model. Analytic Solver offers two options for estimating the

model's scale: Automatic (recommended) and Full. If you notice that the status

bar displays "Count Diagnosis" for an extended time period or you have limited

Frontline Solvers 2025 Q1 Reference Guide Page 215

memory available, you can switch from “Automatic” to “Full” to discover if one

offers better performance over the other.

General

Below is a screen shot of the General section located on the Analytic Solver

Desktop Platform Tab in the Task Pane. The options within this section are not

included in Analytic Solver Cloud.

Analytic Solver Desktop

Log Level

VBA / SDK: Parameter Name "LogLevel", -1 (None), 0 (Minimal), 1 (Normal)

or 2 (Verbose)

Use this option to determine how much information is displayed in the Task
Pane Output tab solution log area, by Analytic Solver and the selected Solver

Engine. You can select from Minimal, Normal (the default) or Verbose.

The specific kind and amount of information displayed for Minimal, Normal or

Verbose depends on the Solver Engine used to solve the problem. Typically,

Verbose generates much more output in the solution log, such as results from a

presolve step and/or from each major iteration, or subproblem for mixed-integer

problems.

Wrap Text in Output Pane

VBA / SDK: Parameter Name "WrapText", 0 (False), or 1 (True)

Use this option to control whether messages in the Output Pane “wrap” onto
additional lines.

If this option is set to True, messages that exceed the width of the Pane will be

split (at word boundaries) onto two or more lines. This is most convenient for

viewing Solver Result messages and similar information.

If this option is set to False, messages will appear on a single line. This can be

useful if you’ve set the Log Level to Verbose and you’re viewing an iteration

log or similar information. You can use the scroll bar at the bottom of the Output

Pane to see the entire message, or you can resize the whole Task Pane to display

more information at once.

Frontline Solvers 2025 Q1 Reference Guide Page 216

Solver Parameters Dialog

VBA / SDK: Parameter Name "DlgStyle", 0 (Automatic), 1 (Old Excel Style) or

2 (New Excel Style)

Use this option to control whether messages in the Output Pane “wrap” onto

additional lines.

If this option is set to True, messages that exceed the width of the Pane will be
split (at word boundaries) onto two or more lines. This is most convenient for

viewing Solver Result messages and similar information.

If this option is set to False, messages will appear on a single line. This can be

useful if you’ve set the Log Level to Verbose and you’re viewing an iteration

log or similar information. You can use the scroll bar at the bottom of the Output

Pane to see the entire message, or you can resize the whole Task Pane to display

more information at once.

Operating Mode

VBA / SDK: Parameter Name "OperatingMode", 0 (Expert Mode), or 1 (Auto-

Help Mode) or 2 (Guided Mode)

The Operating Mode determines how much Analytic Solver will try to help the

user with dialogs and Help text, when using the software and designing your

model:

• Guided Mode prompts you step-by-step when solving, with dialogs.

• Auto-Help Mode, the default, shows dialogs or Help only when there’s a

problem or error condition.

• Expert Mode provides only messages in the Task Pane Output tab. (This

mode not supported when using a trial license.)

Support Mode

VBA / SDK: Parameter Name "SupportMode", 0 (Basic Support), or 1 (Standard

Support) or 2 (Active Support)

The Support Mode determines how much Analytic Solver will try to help you by

connecting automatically to Frontline Systems’ Technical Support.

• Active Support automatically reports events, errors and problems to

Frontline Support, receives and displays messages to you from Support, and

allows you to start a Live Chat with Support while working in Excel.

• Standard Support automatically reports events, errors and problems

anonymously to Frontline Support, but does not provide a means to receive

messages or start a Live Chat with Support.

• Basic Support provides no automatic connection to Frontline Support.

Users will be required to contact Frontline Systems via email, website, or

phone if help is needed. (This mode not supported when using a trial

license.)

Autoselect Plug-in Solvers

VBA / SDK: Parameter Name "EngAuto", 0 (False), or 1 (True)

Frontline Solvers 2025 Q1 Reference Guide Page 217

This option is only available when one or more of the Solver field installable

engines is installed. When this option is set to True, Analytic Solver will

prioritize the selection of one of the external engines (such as Gurobi, Knitro,

Large Scale GRG, Large Scale SQP, Large Scale LP, Mosek, or OptQuest

Solver) over the five built in Solver Engines: Standard GRG Nonlinear Engine,
Standard LP/Quadratic Engine, Standard Evolutionary Engine, Standard Interval

Global Solver Engine, or Standard SOCP Barrier Engine.

Frontline Solvers 2025 Q1 Reference Guide Page 218

Solver Engine Option Reference

This chapter describes the options available on the Task Pane Engine tab, for

each of the bundled Solver engines in Analytic Solver Desktop or Analytic

Solver Cloud. It also briefly describes how these options may be examined or

set using Analytic Solver Desktop and VBA, or in another programing language

using Frontline’s Solver Platform SDK.

In Analytic Solver Desktop, options may be examined or set interactively via the

Task Pane Engine tab as described in this chapter, or programmatically using
either the new object-oriented API described below and in the chapter “VBA

Object Model Reference,” or the traditional VBA functions described in the

later chapter “Traditional VBA Function Reference.”

In Solver SDK, options may be examined or set via its object-oriented API,

just like Analytic Solver’s API, or via the SDK procedural API. The object-

oriented API is described below; the SDK procedural API is described in the

SDK API Reference Guide. The string names of most options are the same for

both products and are shown for each option below.

Bear in mind that the options that control numerical tolerances and solution

strategies are pre-set to the choices that are most appropriate for the majority of
problems; you should change these settings only when necessary, after carefully

reading this chapter. The options you will use most often are common to all the

Solver products, and control features like the display of iteration results, or the

upper limits on solution time or Solver iterations.

Setting Options Programmatically
In Analytic Solver Desktop, you can examine or set Solver Engine options in

VBA using the object-oriented API described in this section. In Solver SDK,

you can examine or set Solver Engine options, in a variety of programming

languages, using the same object-oriented API. In both cases, all option values

are of type double, though for some options only integer values, or values 0 and

1 are used.

Object-Oriented API

In the object-oriented API, each Solver engine option or parameter is

represented by an EngineParam object instance. This object has properties

Name, Value, Default (the initial or default value), MinValue, and MaxValue

(the minimum and maximum allowed values). All the options or parameters for

a Solver engine belong to a collection, which is an EngineParamCollection

object.

To access an option or parameter, you start with a reference to the Solver engine

object, say myEngine or myProb.Engine. The engine object’s Params property

refers to the EngineParamCollection object. As with all collections, you can

Frontline Solvers 2025 Q1 Reference Guide Page 219

access an individual EngineParam in the collection by name or by index. For

example, to refer to the Max Time limit for the problem’s currently selected

Solver engine, you’d write myProb.Engine.Params("MaxTime").

Once you have a reference to the EngineParam object (as above), you can get or

set its properties using simple assignment statements. For example, you can set
the Max Time limit for the currently selected Solver engine to 1000 seconds by

writing:

VBA: myProb.Engine.Params("MaxTime").Value = 1000

To get the current Max Time parameter value, put the property reference on the

right hand side of an assignment statement (declaring Dim maxTime As

Double):

VBA: maxTime = myProb.Engine.Params("MaxTime").Value

In the Solver Platform SDK, the same kinds of assignment statements can be

used, with just slight differences due to the syntax of various programming
languages:

VB6: myProb.Engine.Params("MaxTime").Value = 1000

VB.NET: myProb.Engine.Params("MaxTime").Value = 1000

C++: myProb.Engine.Params(L"MaxTime").Value = 1000;

C#: myProb.Engine.Params("MaxTime").Value = 1000;

Matlab: myProb.Engine.Params('MaxTime').Value = 1000;

Java:
myProb.Engine().Params().Item("MaxTime").Value(1000);

(Since Java currently lacks properties, the syntax used by the Solver Platform

SDK is different.) To get the current Max Time parameter value, put the

property reference on the right hand side of an assignment statement, for

example in C#:

double maxTime =

myProb.Engine.Params("MaxTime").Value;

You can access all of the options and parameters supported by a Solver engine

by indexing its EngineParamCollection. For example,

myProb.Engine.Params(0) refers to the first parameter in the collection. In all

the object-oriented languages, you can write a for-loop to index through all of

the parameters like the following example in VBA, VB6 or VB.NET:

For i = 0 to myProb.Engine.Params.Count - 1

 MsgBox myProb.Engine.Params(i).Name & " = " &

 myProb.Engine.Params(i).Value

Next i

In VBA, VB6, VB.NET, and C#, you can also iterate through a collection using
a “for each” loop:

Dim myParam as EngineParam

For Each myParam in myProb.Engine.Params

 MsgBox myParam.Name & " = " & myParam.Value

Next

Frontline Solvers 2025 Q1 Reference Guide Page 220

The Basic Microsoft Excel Solver
There is just one Solver Options dialog displayed by the standard Microsoft

Excel Solver, containing options for the included Solver engines. Note, starting

with Excel 2010 an Evolutionary Solver engine was added to the basic Excel

Solver. This dialog box is depicted below, as it appears in Excel 2016. All of

the options in this dialog are also present on the Engine tab in Analytic Solver.

Note: The linear engine included in the Excel Solver is the LP Simplex Engine.

Common Solver Options
On the next page are screen shots of the Engine Tab in the Analtyic Solver

Desktop and Analytic Solver Cloud Task Panes. We’ll walk through the

common options and then the options specific to each engine.

Frontline Solvers 2025 Q1 Reference Guide Page 221

Analytic Solver Desktop Analytic Solver Cloud

Max Time and Iterations

VBA / SDK: Parameter

Names "MaxTime", "Iterations", integer value > 0

The value for the Max Time option determines the maximum time in seconds
that the Solver will run before it stops, including problem setup time and time to

find the optimal solution. For problems with integer constraints, this is the total

time taken to solve all subproblems explored by the Branch & Bound method.

Leaving this option blank, the default, results in an unlimited max time setting.

The value for the Iterations option determines the maximum number of

iterations (“pivots” for the Simplex Solver in Excel Solver or major iterations

for the GRG Solver) that the Solver may perform on one problem. A new “Trial

Solution” is generated on each iteration; the most recent Trial Solution is

Frontline Solvers 2025 Q1 Reference Guide Page 222

reported on the Excel status bar. For problems with integer constraints, the

Iterations setting determines the maximum number of iterations for any one

subproblem. Leaving this option blank, the default, results in an unlimited

iterations setting.

Bear in mind that if the maximum time or maximum number of iterations is
exceeded, the Solver will stop and display a dialog like the one shown below:

You will have the option to stop at that point or to continue the solution process.

If you click on the Continue button, the time or iteration limit is removed, and

you will not be prompted again.

If you ever want to Stop Solve before it has found a solution, you can simply

press either the ESC key on your keyboard or (if using Analytic Solver Desktop

or Cloud) the pause button on the Analytic Solver Model task pane while the

Solver is running. If your model is large enough to take some time to

recalculate even once, you should hold down the ESC key for a second or two.

After a momentary delay, the dialog box shown below will appear, and you will

have the option to stop at that point or continue or restart the solution process.

Precision

VBA / SDK: Parameter Name "Precision", 0 < value < 1

The number entered here determines how closely the calculated values of the

constraint left hand sides must match the right hand sides in order for the

constraint to be satisfied. Recall from “Elements of Solver Models” in the
Analytic Solver User Guide chapter “Mastering Conventional Optimization

Concepts,” that a constraint is satisfied if the relation it represents is true within

a small tolerance; the Precision value is that tolerance. With the default setting

of 1.0E-6 (0.000001), a calculated left hand side of -1.0E-7 would satisfy a

constraint such as A1 >= 0.

Precision and Regular Constraints

Use caution in making this number much smaller, since the finite precision of
computer arithmetic virtually ensures that the values calculated by Microsoft

Excel and the Solver will differ from the expected or “true” values by a small

amount. On the other hand, setting the Precision to a much larger value would

Frontline Solvers 2025 Q1 Reference Guide Page 223

cause constraints to be satisfied too easily. If your constraints are not being

satisfied because the values you are calculating are very large (say in millions or

billions of dollars), consider adjusting your formulas and data to work in units of

millions, or checking the Use Automatic Scaling box instead of altering the

Precision setting. Generally, this setting should be kept in the range from 1.0E-6
(0.000001) to 1.0E-4 (0.0001).

Precision and Integer Constraints

Another use of Precision is determining whether an integer constraint, such as

A1:A5 = integer, A1:A5 = binary or A1:A5 = alldifferent, is satisfied. If the

difference between the decision variable’s value and the closest integer value is

less than the Precision setting, the variable value is treated as an integer.

Tolerance and Convergence

VBA / SDK: Parameter Names "IntTolerance", "Convergence", 0 <= value <= 1

The Tolerance option determines how close a “candidate” integer solution must

be to the true integer optimal solution before the Solver stops. This option is

described more fully in a later section focusing on options for integer

programming problems.

The Convergence option controls the stopping conditions used by the GRG

Solver and the Evolutionary Solver that lead to the message “Solver has

converged to the current solution.” It is described more fully in later sections

focusing on options for these Solver engines.

Use Automatic Scaling / Scaling

VBA / SDK: Parameter Name "Scaling", value 1/True or 0/False

When this option is set to True, the Solver will attempt to scale the values of the

objective and constraint functions internally in order to minimize the effects of a

poorly scaled model. A poorly scaled model is one that computes values of the

objective, constraints, or intermediate results that differ by several orders of

magnitude. Poorly scaled models may cause difficulty for both linear and

nonlinear solution algorithms, due to the effects of finite precision computer

arithmetic. For more information, see “Problems with Poorly Scaled Models” in

the chapter “Solver Result Messages,” and “The Scaling Report” in the chapter

“Solver Reports.”

If your model is nonlinear and you set Use Automatic Scaling/Scaling to True,

make sure that the initial values for the decision variables are “reasonable,” i.e.

of roughly the same magnitudes that you expect for those variables at the

optimal solution. The effectiveness of the Automatic Scaling option depends on

how well these starting values reflect the values encountered during the solution

process.

Assume Non-Negative / AssumeNonNeg

VBA: Parameter Name "AssumeNonneg", value 1/True or 0/False

SDK: Use Variable object NonNegative method or SolverVarNonNegative

function

When this option is set to True, any decision variables that are not given explicit

lower bounds via >=, binary, or alldifferent constraints in the Constraints list

box of the Solver Parameters dialog will be given a lower bound of zero when

Frontline Solvers 2025 Q1 Reference Guide Page 224

the problem is solved. This option has no effect for decision variables that do

have explicit >= constraints, even if those constraints allow the variables to

assume negative values.

Show Iteration

VBA: Parameter Name "StepThru", value 1/True or 0/False

SDK: Define an Evaluator for Eval_Type_Iteration

When this option is set to True in Analytic Solver Desktop, a dialog like the one

on the next page will appear on every iteration during the solution process:

This is the same dialog that appears when you press ESC at any time during the

solution process, but when the Show Iteration Results box is checked it appears

automatically on every iteration. When this dialog appears, the best values so

far for the decision variables appear on the worksheet, which is recalculated to

show the values of the objective function and the constraints. You may click the

Continue button to go on with the solution process, the Stop button to stop

immediately, or the Restart button to restart (and then continue) the solution

process. You may also click on the Save Scenario... button to save the current

decision variable values in a named scenario, which may be displayed later with

the Microsoft Excel Scenario Manager. (Excel has a limit of 32 cells for this

utility.) For more information on this dialog and the effect of the Restart button,

see the section “During the Solution Process” in the chapter “Solver Results
Messages.”

Bypass Solver Reports / Bypass Reports

VBA: Parameter Name "BypassReports", value 1/True or 0/False

SDK: Not Applicable

This option is a “Common Solver Option” and appears in the Engine Tab of the

Task Pane shown below for the LP/Quadratic Solver, SOCP Barrier Solver,

GRG Nonlinear Solver, Interval Global Solver, and Evolutionary Solver. If

using Analytic Solver, you can use it to save time during the solution process if

you do not need the reports for the current solution run. The reports are selected

from the Solver Results dialog at the end of the solution process; unless this box
is checked, the Solver always performs extra computations to prepare for the

possibility that you will select one or more reports from the Solver Results

dialog. When this box is checked, the extra computations are skipped and the

Reports – Optimization list will not contain any reports.

Even though report generation in Analytic Solver Desktop is very fast, the

Bypass Solver Reports option can make a real difference in your total solution

time, especially when you are solving larger models. It is also supported by

many optional plug-in Solver engines that can solve problems with millions of

variables and constraints. It is not unusual for the extra report-related

computations to take as much time as the entire solution process, especially if

Frontline Solvers 2025 Q1 Reference Guide Page 225

you have taken other steps (such as using the functions recognized for fast

problem setup) to ensure the best possible solution times.

Note: This option is not applicable in Analytic Solver Cloud as this information

is available regardless of this option setting.

LP/Quadratic Solver Options
If the LP/Quadratic Solver is selected from the Solver engine dropdown list in

Analytic Solver the following options are displayed.

The General section of this tab contains all of the Common Solver Options

discussed earlier except the Primal Tolerance/PrimalTolerance, Dual

Tolerance/DualTolerance, Presolve, and Derivatives options, which are specific

to the LP/Quadratic Solver. The Bypass Solver Reports option in Analytic

Solver Desktop is worth noting here, since it can have a large impact on solution

time. (This is not true in Analytic Solver Cloud.) Note that the default values

for Primal Tolerance/PrimalTolerance and Dual Tolerance/DualTolerance have

been chosen very carefully; the LP/Quadratic Solver is designed to solve the

vast majority of LP problems ‘out of the box’ with these default tolerances.

Analytic Solver Desktop Analytic Solver Cloud

Frontline Solvers 2025 Q1 Reference Guide Page 226

Use Classic Search

VBA / SDK: Parameter Name "ClassicSearch", value 1/True or 0/False

Classic Search uses the same search methods as previous releases for problems

with integer variables and quadratically constrained problems (QCPs). In our

universe of test models, the new (default) search methods yield faster solutions

in about 90% of cases – but in the 10% of cases where the new methods
yield slower solutions, switching to Classic Search will yield the same results

you were getting before.

Primal Tolerance / PrimalTolerance and Dual
Tolerance / DualTolerance

VBA / SDK: Parameter Names "PrimalTolerance", "DualTolerance", 0 < value <

1

The Primal Tolerance is the maximum amount by which the primal constraints

can be violated and still be considered feasible. The Dual Tolerance is the

maximum amount by which the dual constraints can be violated and still be

considered feasible. The default values of 1.0E-7 for both tolerances are

suitable for most problems.

Presolve

VBA / SDK: Parameter Name "Presolve", value 1/True or 0/False

When this option set to True (which is the default setting), the LP/Quadratic

Solver performs a Presolve step before applying the Primal or Dual Simplex

method. Presolving often reduces the size of an LP problem by detecting

singleton rows and columns, removing fixed variables and redundant

constraints, and tightening bounds.

Derivatives for the Quadratic Solver

When a quadratic programming (QP) problem – one with a quadratic objective

and all linear constraints – is solved with the LP/Quadratic Solver, the quadratic

Solver extension requires first or second partial derivatives of the objective
function at various points. In Analytic Solver, these derivatives may be

computed via automatic differentiation or via finite differencing.

When you are using the Interpreter (Interpreter = Automatic or PSI Interpreter

in Analytic Solver Desktop), automatic differentiation is used, exact derivative

values are computed, and the setting of the Derivatives choice is ignored. In

Analytic Solver Desktop, when Solve With = Excel Interpreter, the method used

for finite differencing is determined by the setting of the Derivatives choice.

Forward differencing uses the point from the previous iteration – where the

problem function values are already known – in conjunction with the current

point. Central differencing relies only on the current point and perturbs the

decision variables in opposite directions from that point. For QP problems, the
Central differencing choice yields essentially exact (rather than approximate)

derivative values, which can improve solution accuracy and reduce the total

number of iterations; however the initial computation of derivatives may take up

to twice as long as with Forward differencing. (Bear in mind that automatic

differentiation is much faster than either Forward or Central differencing.)

Frontline Solvers 2025 Q1 Reference Guide Page 227

Note: Since the Psi Interpreter is always used in Analytic Solver Cloud,

automatic differentiation is always used, exact derivative values are computed

and the setting of the Derivatives choice is ignored.

Options for Mixed-Integer Problems

Below the General section is an Integer section in the LP/Quadratic Solver

Options Engine tab which displays an extensive set of options for mixed-integer

linear programming problems. These options control the Branch and Cut

method for mixed-integer problems.

Max Subproblems/ MaxSubProblems

VBA / SDK: Parameter Name "MaxSubProblems", integer value > 0

The value for the Max Subproblems option places a limit on the number of

subproblems that may be explored by the Branch & Bound algorithm before the

Solver pauses and asks you whether to continue or stop the solution process.

Each subproblem is a “regular” Solver problem with additional bounds on the

variables.

In a problem with integer constraints, this limit should be used in preference to

the Iterations limit; the Iterations limit should be set high enough for each of the

individual subproblems solved during the Branch & Bound process. For

problems with many integer constraints, you may need to increase this limit

from its default value; any integer value up to 2,147,483,647 may be used.

Max Feasible (Integer) Solutions /
MaxFeasibleSols

VBA / SDK: Parameter Name "MaxIntegerSols", integer value > 0

The value for the Max Feasible Sols option places a limit on the number of

feasible integer solutions found by the Branch & Bound algorithm before the

Solver pauses and asks you whether to continue or stop the solution process.

Each feasible integer solution satisfies all of the constraints, including the

integer constraints; the Solver retains the integer solution with the best objective

value so far, called the “incumbent.”

It is entirely possible that, in the process of exploring various subproblems with

different bounds on the variables, the Branch & Bound algorithm may find the

same feasible integer solution (set of values for the decision variables) more

than once; the Max Feasible Solutions limit applies to the total number of
integer solutions found, not the number of “distinct” integer solutions.

Integer Tolerance / IntTolerance

VBA / SDK: Parameter Name "IntTolerance", 0 <= value <= 1

When you solve an integer programming problem, it often happens that the

Branch & Bound method will find a good solution fairly quickly but will require

a great deal of computing time to find (or verify that it has found) the optimal

integer solution. The Integer Tolerance setting may be used to tell the Solver to

stop if the best solution it has found so far is “close enough.”

The Branch & Bound process starts by finding the optimal solution without

considering the integer constraints (this is called the relaxation of the integer
programming problem). The objective value of the relaxation forms the initial

Frontline Solvers 2025 Q1 Reference Guide Page 228

“best bound” on the objective of the optimal integer solution, which can be no

better than this. During the optimization process, the Branch & Bound method

finds “candidate” integer solutions, and it keeps the best solution so far as the

“incumbent.” By eliminating alternatives as its proceeds, the B&B method also

tightens the “best bound” on how good the integer solution can be.

Each time the Solver finds a new incumbent – an improved all-integer solution –

it computes the maximum percentage difference between the objective of this

solution and the current best bound on the objective:

Objective of incumbent - Objective of best bound

--

Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less

than the Integer Tolerance, the Solver will stop and report the current integer

solution as the optimal result, with the message “Solver found an integer
solution within tolerance.” If you set the Integer Tolerance to zero, the Solver

will “prove optimality” by continuing to search until all alternatives have been

explored and the optimal integer solution has been found. This may take a great

deal of computing time.

Integer Cutoff / IntCutoff

VBA / SDK: Parameter Name "IntCutoff", -1E30 < value < +1E30

This option provides another way to save time in the solution of mixed-integer

programming problems. If you know the objective value of a feasible integer

solution to your problem – possibly from a previous run of the same or a very

similar problem – you can enter this objective value for the Integer Cutoff
option. This allows the Branch & Bound process to start with an “incumbent”

objective value (as discussed above under Integer Tolerance) and avoid the work

of solving subproblems whose objective can be no better than this value. If you

enter a value here, you must be sure that there is an integer solution with an

objective value at least this good: A value that is too large (for maximization

problems) or too small (for minimization) may cause the Solver to skip solving

the subproblem that would yield the optimal integer solution.

Preprocessing

VBA / SDK: Parameter Name "PreProcessing", 1 = Automatic, 2 = None, 3 =

Aggressive

Use this option to determine the extent of Preprocessing and Probing strategies
used by the LP/Quadratic Solver on LP/MIP (linear mixed-integer) problems.

Select from None, Aggressive, and Automatic (the default). These methods

consider the possible settings of certain integer variables and their implications

for fixing the values of other integer variables, tightening the bounds on

continuous variables, and in some cases, determining that the subproblem is

infeasible (so it is unnecessary to solve it at all). They can also scan the model

for constraints of the form x1 + x2 + … + xn = 1 where all of the variables xi are

binary integer variables. Such constraints often arise in practice, and are

sometimes called “special ordered sets.” In any feasible solution, exactly one of

the variables xi must be 1, and all the others must be 0; hence only n possible

permutations of values for the variables (rather than 2n) need be considered.

Frontline Solvers 2025 Q1 Reference Guide Page 229

Cuts & Heuristics

The LP/Quadratic Solver in Analytic Solver supports a wide range of cuts and

heuristics. Cuts and heuristics require more work on each subproblem, but they

can often lead more quickly to integer solutions and greatly reduce the number

of subproblems that must be explored.

Heuristics

VBA / SDK: Parameter Name "Heuristics", 1 = Automatic, 2 = None, 3 =

Aggressive

Use this option to determine the extent of Heuristic strategies used by the

LP/Quadratic Solver on LP/MIP (linear mixed-integer) problems. Select from

None, Aggressive, and Automatic (the default). A heuristic is a strategy that

often – but not always – will find a reasonably good “incumbent” or feasible
integer solution early in the search. Heuristics used by the LP/Quadratic Solver

include: Local Tree Search, Rounding Heuristic, Feasibility Pump, Greedy

Cover Heuristic and many others depending on the problem type and the setting

of this parameter.

Cuts

VBA / SDK: Parameter Name "Cuts", 1 = Automatic, 2 = None, 3 = Aggressive

Use this option to determine the extent of Cut Generation strategies used by the

LP/Quadratic Solver on LP/MIP (linear mixed-integer) problems. Select from

None, Aggressive, and Automatic (the default). A cut is an automatically

generated linear constraint for the problem, in addition to the constraints that

you specify. This constraint is constructed so that it “cuts off” some portion of

the feasible region of an LP subproblem, without eliminating any possible

integer solutions. Cuts used by the LP/Quadratic Solver include: Knapsack Cuts,

Gomory Cuts, Mixed Integer Rounding Cuts, Clique Cuts, Flow Cover Cuts,

and many others depending on the problem type and the setting of this

parameter.

Thread Mode

VBA / SDK: Parameter Name "Thread_Mode"

0 - Use branching, numberThreads at a time (default)

1 - Use deterministic, numberThreads at a time

2 - Use root cuts, numberThreads at a time

8 - Use heuristics, numberThreads at a time

9 - No Threads, use one thread at a time.

Determines how the threads are used when a mixed integer model is being

solved. If N equals the "Number of Threads", the collection of nodes will be

solved using the selected mode, N threads at a time.

Number of Threads

VBA / SDK: Parameter Name "numberThreads", Default value = number of

available system processors; 0 – Turns parallel processing off

The number of parallel threads of execution to be used when solving mixed-

integer problems. Enter an integer from 1 to the Number of available system

processors. The default is the number of system processors. A value of 0 turns

parallel processing off.

Frontline Solvers 2025 Q1 Reference Guide Page 230

Stochastic Decomposition Options

If using Analytic Solver Desktop, the Stochastic Decomposition section will

contain all of the options specific to the Stochastic Decomposition method

utilized in the Standard LP/Quadratic Solver engine. This functionality is

currently not supported in Analytic Solver Cloud.

 Stochastic Decomposition can be used to solve linear models with recourse

variables and uncertainty in the constraints only. (Model must contain at least

one constraint that does not include uncertainty.) To run Stochastic

Decomposition, set Solve Uncertain Models to Stochastic Decomposition on the

Task Pane Platform tab as shown in the screenshot below. Typically, Stochastic

Decomposition should only be used if the internal model created when
Deterministic Equivalent is selected for Solve Uncertain Models is so large that

the time and memory required to solve the model is impractical.

Tau

VBA / SDK: Parameter Name "StochTau", 1 <= integer value

As iterations proceed, the cut which was formed based on the incumbent vector
is periodically re-evaluated. If tau iterations have passed since the last update or

if the value of the incumbent is less than the objective value at a specific

iteration, the incumbent is reformed. This function will solve an additional

subproblem (based upon the incumbent and the most recent observation of

omega) add the dual solution to the data structures, and re-form the incumbent

cut (thus replacing it in the array of cuts).

Tolerance

VBA / SDK: Parameter Name "StochTol", 0 <= value <= 0.001

The tolerance setting is used to determine the stopping condition for the

Stochastic Decomposition method. A larger value will result in the Stochastic
Decomposition methods stopping more quickly, while a smaller value will force

the Stochastic Decomposition methods to run longer.

Compute Confidence Interval

VBA / SDK: Parameter Name "StochCI", 0/False 1/True

If this option is set to true, the stochastic decomposition methods will compute a

95% confidence interval for the objective function.

Objective Error

VBA / SDK: Parameter Name "StochErr", 0 <= value <= 1

Frontline Solvers 2025 Q1 Reference Guide Page 231

If Compute Confidence Interval is set to true, then the confidence interval for

the objective function will be accurate to within this value, with 95%

confidence.

Objective Improvement

VBA / SDK: Parameter Name "StochR", 0 <= value <= 1

This parameter sets the minimum amount of improvement which must be

observed in order to update the incumbent.

Compute Recourse Statistics

VBA / SDK: Parameter Name "StochComp", 0 <= value <= 1

If false, recourse variables for each trial will not be computed. Only “normal”

decision variable values will be available after Solver has found a solution. If

true, recourse variables will be computed for each trial which can be viewed by

clicking through each trial on the Trial to Display Controls on the Tools tab on

the Solver Task Pane.

After Solver has found a solution, a histogram may be obtained over all trials by

double clicking a cell containing a recourse variable or constraint.

SOCP Barrier Solver Options
When the SOCP Barrier Solver is selected from the Solver engine dropdown

list, the following options are displayed.

The General section contains all of the Common Solver Options discussed
earlier except the Precision option, plus the Gap Tolerance (GapTolerance), Step

Size Factor (StepSizeFactor), Feasibility Tolerance (FeasibilityTolerance)

options and the Search Direction (SearchDirection) option group, which are

specific to the SOCP Barrier Solver.

Analytic Solver Desktop Analytic Solver Cloud

Frontline Solvers 2025 Q1 Reference Guide Page 232

Gap Tolerance / GapTolerance

VBA / SDK: Parameter Name "GapTolerance", 0 < value < 1

The SOCP Barrier Solver uses a primal-dual method that computes new

objective values for the primal problem and the dual problem at each iteration.

When the gap or difference between these two objective values is less than the

Gap Tolerance, the SOCP Barrier Solver will stop and declare the current

solution optimal.

Step Size Factor / StepSizeFactor

VBA / SDK: Parameter Name "StepSizeFactor", 0 < value < .99

This parameter is the relative size (between 0 and 1) of the step that the SOCP

Barrier Solver may take towards the constraint boundary at each iteration.

Feasibility Tolerance / FeasiblityTolerance

VBA / SDK: Parameter Name "FeasibilityTolerance", 0 < value < 1

The SOCP Barrier Solver considers a solution feasible if the constraints are

satisfied to within this tolerance.

Search Direction / SearchDirection

VBA / SDK: Parameter Name "SearchDirection", value 1-Power Class, 2-Power

Class with Predictor-Corrector, 3-Dual Scaling, 4- Dual Scaling with Predictor-

Corrector

Frontline Solvers 2025 Q1 Reference Guide Page 233

The SOCP Barrier Solver offers four options for computing the search direction

on each iteration.

Power Class

This option uses the power class, which is a subclass of the commutative class

of search directions over symmetric cones with the property that the long-step

barrier algorithm using this class has polynomial complexity.

Power Class with Predictor-Corrector

This option uses the power class as described above, plus a predictor-corrector

term.

Dual Scaling

This option uses HKM (Helmberg, Kojima and Monteiro) dual scaling, a

Newton direction found from the linearization of a symmetrized version of the

optimality conditions.

Dual Scaling with Predictor-Corrector

This option uses HKM dual scaling, plus a predictor-corrector term.

Power Index

VBA / SDK: Parameter Name "PowerIndex", integer value >= 0

This parameter is used to select a specific search direction when the Search

Direction is computed via the Power Class or Power Class with Predictor-

Corrector methods.

Options for Mixed-Integer Problems

The SOCP Barrier Solver includes a set of options for mixed-integer linear

programming problems, as described in the major section “Options for Mixed-

Integer Problems” later in this chapter. These options control the Branch and

Bound method for mixed-integer problems, as described in that section.

GRG Nonlinear Solver Options
If the GRG Nonlinear Solver is selected, the Engine tab shown on the next page

is displayed. If the GRG Nonlinear Solver, the options tab will include an

additional option in the General section for Relax Bounds on the Variables.

The General section contains all of the Common Solver Options discussed

earlier, plus several options specific to the GRG Solver, which are described in

this section. The Global Optimization options group, with its Population Size

and Random Seed options, also appear in this dialog; these options are described

in the next section, “Multistart Search Options.”

The default choices for these options are suitable for the vast majority of

problems; although it generally won’t hurt to change these options, you should

first consider other alternatives such as improved scaling before attempting to

Frontline Solvers 2025 Q1 Reference Guide Page 234

fine-tune them. In some scientific and engineering applications, alternative

choices may improve the solution process.

 Analytic Solver Desktop Analytic Solver Cloud

Convergence

VBA / SDK: Parameter Name "Convergence", 0 <= value <= 1

As discussed in the chapter “Solver Results Messages,” the GRG Solver will

stop and display the message “Solver has converged to the current solution”

when the objective function value is changing very slowly for the last few

iterations or trial solutions. More precisely, the GRG Solver stops if the absolute

value of the relative change in the objective function is less than the value for
the Convergence option for the last 5 iterations. While the default value of 1.0E-

4 (0.0001) is suitable for most problems, it may be too large for some models,

causing the GRG Solver to stop prematurely when this test is satisfied, instead

of continuing for more Trial Solutions until the optimality (KKT) conditions are

satisfied.

If you are getting this message when you are seeking a locally optimal solution,

you can change the setting in the Convergence box to a smaller value such as

1.0E-5 or 1.0E-6; but you should also consider why it is that the objective

function is changing so slowly. Perhaps you can add constraints or use different

starting values for the variables, so that the Solver does not get “trapped” in a

region of slow improvement.

Recognize Linear Variables / RecognizeLinear

VBA / SDK: Parameter Name "RecognizeLinear", value 1/True or 0/False

Frontline Solvers 2025 Q1 Reference Guide Page 235

If using Analytic Solver Desktiop, setting this option to True activates an

“aggressive” strategy to speed the solution of nonlinear problems that may be

useful when the Polymorphic Spreadsheet Interpreter is not used (Solve With =

Excel Interpreter).

This option is not applicable in Analytic Solver Cloud because the Polymorphic
Spreadsheet Interpreter is always turned on.

As explained in the Analytic Solver User Guide chapter “Mastering

Conventional Optimization Concepts,” a Solver problem is nonlinear (and must

be solved with the GRG Solver engines) if the objective or any of the constraints

is a nonlinear function of even one decision variable. But in many such

problems, some of the variables occur linearly in the objective and all of the

constraints. Hence the partial derivatives of the problem functions with respect

to these variables are constant and need not be re-computed on each iteration.

If you set this option to True in Analytic Solver Desktop (and the Interpreter is

set to Excel Interpreter), the GRG Solver in Analytic Solver will look for
variables whose partial derivatives are not changing over several iterations, and

then will assume that these variables occur linearly, hence that their partial

derivatives remain constant. At the solution, the partial derivatives are

recomputed and compared to the assumed constant values; if any of these values

has changed, the Solver will display the message “The linearity conditions

required by this Solver engine are not satisfied.” If you receive this message,

you should set the Recognize Linear Variables option to False and re-solve the

problem.

If Interpreter is set to Automatic or Psi Interpreter, the GRG Solver in Analytic

Solver handles partial derivatives via automatic differentiation rather than finite

differencing. As a result, when the Psi Interpreter is used, which is the default
and is always in use in Analytic Solver Cloud, selecting this option will not save

any time. However, the GRG Solver in Analytic Solver overcomes this fact

because it, along with the optional plug-in Large-Scale SQP Solver and Knitro

Solver engines, are designed to take advantage of information provided by the

Psi Interpreter and will exploit partial linearity in the problem functions much

more effectively than the GRG Solver with the Recognize Linear Variables

option.

Note: This setting is not applicable in Analytic Solver Cloud as the Psi

Interpreter is always in use and, as a result, partial derivatives are calculated

using automatic differentiation.

Relax Bounds on Variables / Relax Bounds

VBA / SDK: Parameter Name "RelaxBounds", value 1-True or 0 – False

By default (and unlike the nonlinear GRG Solver bundled with Analytic Solver

Upgrade or Analytic Solver Learning), the GRG Solver within Analytic Solver

Comprehensive, Analytic Solver Optimization or Analytic Solver Cloud ensures

that any trial points evaluated during the solution process will not have values

that violate the bounds on the variables you specify, even by a small amount. If
your problem functions cannot be evaluated for values outside the variable

bounds, this default behavior will ensure that the solution process can continue.

However, at times this engine can make more rapid progress along a given

search direction by testing trial points with values slightly outside the bounds on

the variables. If you want to permit this to happen, set this parameter to true. If

you receive the Solver Result Message “Solver encountered an error value in a

target or constraint cell,” as a first step you should ensure that this option is set

to true.

Frontline Solvers 2025 Q1 Reference Guide Page 236

Derivatives and Other Nonlinear Options

The default values for the Estimates, Derivatives and Search options can be used

for most problems. If you’d like to change these options to improve

performance on your model, this section will provide some general background

on how they are used by the GRG Solvers. For more information, consult the

academic papers on the GRG method listed at the end of the Introduction.

On each major iteration, the GRG Solvers require values for the gradients of the

objective and constraints (i.e. the Jacobian matrix). The Derivatives option is

concerned with how these partial derivatives are computed.

The GRG (Generalized Reduced Gradient) solution algorithm proceeds by first

“reducing” the problem to an unconstrained optimization problem, by solving a

set of nonlinear equations for certain variables (the “basic” variables) in terms of

others (the “nonbasic” variables). Then a search direction (a vector in n-space,

where n is the number of nonbasic variables) is chosen along which an

improvement in the objective function will be sought. The Search option is

concerned with how this search direction is determined.

Once a search direction is chosen, a one-dimensional “line search” is carried out
along that direction, varying a step size in an effort to improve the reduced

objective. The initial estimates for values of the variables that are being varied

have a significant impact on the effectiveness of the search. The Estimates

option is concerned with how these estimates are obtained.

Estimates

VBA / SDK: Parameter Name "Estimates", value 1-Tangent or 2-Quadratic

This option determines the approach used to obtain initial estimates of the basic

variable values at the outset of each one-dimensional search. The Tangent

choice uses linear extrapolation from the line tangent to the reduced objective

function. The Quadratic choice extrapolates the minimum (or maximum) of a

quadratic fitted to the function at its current point. If the current reduced

objective is well modeled by a quadratic, then the Quadratic option can save

time by choosing a better initial point, which requires fewer subsequent steps in

each line search. If you have no special information about the behavior of this

function, the Tangent choice is “slower but surer.” Note: The Quadratic choice

here has no bearing on quadratic programming problems.

Derivatives

VBA / SDK: Parameter Name "Derivatives", value 1-Forward or 2-Central

On each major iteration, the GRG Solver requires values for the gradients of the

objective and constraints (i.e. the Jacobian matrix). In Analytic Solver Desktop

and Analytic Solver Cloud, these derivatives may be computed via automatic

differentiation or via finite differencing. In the Analytic Solver Upgrade if your

model has less than 200 variables, derivatives may be computed via automatic
differentiation or via finite differencing. If your model has greater than 200

variables, only finite differencing is available.

In Analytic Solver Desktop and Analytic Solver Cloud, when you are using the

Psi Interpreter (Solve With = PSI Interpreter), automatic differentiation is used,

highly accurate derivative values are computed, and the Derivatives setting is

ignored. In Analytic Solver Upgrade when solving a model with 200 decision

variables or less, this behavior is the same. However, when solving a model

containing over 200 variables, when Solve With = Excel Interpreter, the method

used for finite differencing is determined by the Derivatives setting.

Frontline Solvers 2025 Q1 Reference Guide Page 237

Forward differencing (the default choice) uses the point from the previous

iteration – where the problem function values are already known – in

conjunction with the current point. Central differencing relies only on the

current point, and perturbs the decision variables in opposite directions from that

point. This requires up to twice as much time on each iteration, but it may
result in a better choice of search direction when the derivatives are rapidly

changing, and hence fewer total iterations. (Bear in mind that automatic

differentiation is much faster than either Forward or Central differencing.)

Search

VBA / SDK: Parameter Name "SearchOption", value 1-Newton or 2-Conjugate

It would be expensive to determine a search direction using the pure form of
Newton’s method, by computing the Hessian matrix of second partial

derivatives of the problem functions. (In Analytic Solver Upgrade, this would

roughly square the number of worksheet recalculations required to solve the

problem.) Instead, a direction is chosen through an estimation method. The

default choice Newton uses a quasi-Newton (or BFGS) method, which

maintains an approximation to the Hessian matrix; this requires more storage

(an amount proportional to the square of the number of currently binding

constraints) but performs very well in practice. The alternative choice

Conjugate uses a conjugate gradient method, which does not require storage for

the Hessian matrix and still performs well in most cases. The choice you make

here is not crucial, since the GRG Solver is capable of switching automatically
between the quasi-Newton and conjugate gradient methods depending on the

available storage.

Options for Mixed-Integer Problems

The Integer section in the GRG Solver Engine view displays a set of options for

mixed-integer linear programming problems, as described in the major section

“Options for Mixed-Integer Problems” later in this chapter. These options

control the Branch and Bound method for mixed-integer problems, described in
that section.

Multistart Search Options
This section discusses the Global Optimization options group and the Population

Size and Random Seed options that appear in the Engine tab when the GRG

Solver engine is selected.

Frontline Solvers 2025 Q1 Reference Guide Page 238

Analytic Solver Desktop Analytic Solver Cloud

These options control the multistart methods for global optimization, which will

automatically run the GRG Solver (or certain field-installable Solver engines)

from a number of starting points in order to seek the globally optimal solution.

The multistart methods are described under “Global Optimization” in the

Frontline Solver User Guides chapter “Mastering Conventional Optimization

Concepts,” and their behavior and stopping rules are further described under

“GRG Solver with Multistart Methods” in the chapter “Solver Result Messages”
within this Guide.

Multistart Search / Multistart

VBA / SDK: Parameter Name "MultiStart", value 1/True or 0/False

If this option is set to True, the multistart methods are used to seek a globally

optimal solution. If this box is unchecked, the other options described in this

section are ignored. The multistart methods will generate candidate starting

points for the GRG Solver (with randomly selected values between the bounds

you specify for the variables), group them into “clusters” using a method called

multi-level single linkage, and then run the GRG Solver from a representative

point in each cluster. This process continues with successively smaller clusters

that are increasingly likely to capture each possible locally optimal solution.

Topographic Search / TopoSearch

VBA / SDK: Parameter Name "TopoSearch", value 1/True or 0/False

If this option (and the Multistart Search box) are set to True, the multistart
methods will make use of a “topographic” search method. This method uses the

objective value computed for the randomly sampled starting points to compute a

“topography” of overall “hills” and “valleys” in the search space, in an effort to

find better clusters and start the GRG Solvers from an improved point (already

in a “hill” or “valley”) in each cluster. Computing the topography takes extra

time, but on some problems this is more than offset by reduced time taken by the

GRG Solver on each subproblem.

Frontline Solvers 2025 Q1 Reference Guide Page 239

Require Bounds on Variables / RequireBounds

VBA / SDK: Parameter Name "RequireBounds", value 1/True or 0/False

This option is set to True by default, but it comes into play only when the

Multistart Search box is checked. The multistart methods generate candidate

starting points for the GRG Solver by randomly sampling values between the

bounds on the variables that you specify. If you do not specify both upper and
lower bounds on each of the decision variables, the multistart methods can still

be used, but because the random sample must be drawn from an “infinite” range

of values, this is unlikely to effectively cover the possible starting points (and

therefore have a good chance of finding all of the locally optimal solutions),

unless the GRG Solver is run on a great many subproblems, which will take a

very long time.

The tighter the bounds on the variables that you can specify, the better the

multistart methods are likely to perform. (This is also true of the Evolutionary

Solver.) Hence, this option is checked by default, so that you will be

automatically reminded to include both upper and lower bounds on all of the

variables whenever you select Multistart Search. If both the Multistart Search
and Require Bounds on Variables boxes are checked, but you have not defined

upper and lower bounds on all of the variables, Solver will stop with the result,

“Variable X does not have a finite upper and lower bound.”

When this message appears, you must either add both upper and lower bounds to

each variable by adding constraints in the Task Pane Model tab or by specifying

values for Decision Vars Lower and Decision Vars Upper on the Task Pane

Platform tab (or set Assume Non-Negative to True to add lower bounds on the

variables), or else uncheck the Require Bounds on Variables box, then click

Solve again to allow the Solver to proceed with the solution process.

Population Size / PopulationSize

VBA / SDK: Parameter Name "PopulationSize", integer value > 0

The multistart methods generate a number of candidate starting points for the

GRG Solver equal to the value that you enter in this box. This set of starting

points is referred to as a “population,” because it plays a role somewhat similar

to the population of candidate solutions maintained by the Evolutionary Solver.

The minimum population size is 10 points; if you supply a value less than 10 in

this box, or leave it blank, the multistart methods use a population size of 10

times the number of decision variables in the problem, but no more than 200.

Random Seed / RandomSeed

VBA / SDK: Parameter Name "RandomSeed", integer value > 0

The multistart methods use a process of random sampling to generate candidate
starting points for the GRG Solver. This process uses a random number

generator that is normally “seeded” using the value of the system clock – so the

random number sequence (and hence the generated candidate starting points)

will be different each time you click Solve. At times, however, you may wish to

ensure that the same candidate starting points are generated on several

successive runs – for example, in order to test different GRG Solver options on

each search for a locally optimal solution. To do this, enter an integer value into

this box; this value will then be used to “seed” the random number generator

each time you click Solve.

Frontline Solvers 2025 Q1 Reference Guide Page 240

Interval Global Solver Options
When the Interval Global Solver is selected from the Solver engine dropdown

list in the Task Pane the following list of options will be displayed.

The General section contains all of the Common Solver Options discussed

earlier except the Precision option, plus several options specific to the Interval

Global Solver, which are described in this section.

The default choices for these options are suitable for most problems, but you

should experiment with the Method options group to see which methods are

fastest on your problem. By default, the Interval Global Solver uses only “first

order” methods; significant speed gains may be achieved via use of the Second

Order and Linear Enclosure methods.

 Analytic Solver Desktop Analytic Solver Cloud

Accuracy

VBA / SDK: Parameter Name "Accuracy", 0 < value < 1

This option plays a role conceptually similar to the Precision option in the other

Solver engines. It is used as a tolerance in the Interval Global Solver to

determine whether a “box” has been reduced in size to approximately a “point

solution,” whether the “distance” between two intervals is sufficiently small, and

– in conjunction with the Resolution option below – whether a proposed solution
to a system of equations should be treated as distinct from all other known

solutions.

Frontline Solvers 2025 Q1 Reference Guide Page 241

Resolution

VBA / SDK: Parameter Name "Resolution", 0 < value < 100

When the Interval Global Solver is seeking all real solutions of a system of

nonlinear equations, the Accuracy and Resolution values are used to distinguish

one solution from another. A proposed new solution – a “box” consisting of

intervals enclosing the decision variables – is compared to all other known
solutions. It is considered the same as an existing solution if either the absolute

distance between intervals is less than or equal to the Accuracy value or the

relative distance between intervals (taking into account their magnitudes) is less

than or equal to the Resolution value, for all decision variables. If it is not the

same as any existing solution, the new point is accepted as a distinct solution.

Max Time w/o Improvement / MaxTimeNoImp

VBA / SDK: Parameter Name "MaxTimeNoImp", integer value > 0

The value for this option (measured in seconds) is the maximum time that the

Interval Global Solver will spend in its search without finding an “improved

global solution” (a feasible solution with an objective value better than the

currently best known solution). If this time limit is exceeded, the Solver will
stop and display the message “Solver cannot improve the current solution.” For

more information, see “Interval Global Solver Stopping Conditions” in the

chapter “Solver Results Messages.”

Absolute vs. Relative Stop / AbsRelStep

VBA / SDK: Parameter Name "AbsRelStop", value 1/True or 0/False

This option affects the test used to decide whether the globally optimal solution

has been found. As described in “Global Optimization” in the chapter “Solver

Models and Optimization,” the Interval Global Solver uses an Interval Branch &

Bound method that isolates locally optimal solutions and also updates a known

best bound on the globally optimal objective function value. The Solver stops
when it has found a feasible solution whose objective function value is very

close to this best known bound. If the Abs vs. Relative box is checked (the

default), the Solver compares the absolute difference between the objective

value and the best bound to the Accuracy value. If this box is unchecked, the

Solver compares the relative difference (dividing by the objective’s magnitude)

to the Accuracy value.

Assume Stationary / AssumeStationary

VBA / SDK: Parameter Name "AssumeStationary", value 1/True or 0/False

This option can be used to speed up the Interval Global Solver in situations

where you know that the globally optimal solution is a “stationary point” and

not a point where a decision variable is equal to its lower or upper bound. The
Solver can save a significant amount of time if it does not have to check for

possible solutions on the “edges of boxes” where a variable equals one of its

bounds. If the Assume Stationary box is checked, the Solver will skip such

checks for possible solutions. Of course, this means that if the true global

optimum is at a point where a decision variable equals a bound, the Solver will

probably “miss” this solution and return another point that is not the true global

optimum.

Frontline Solvers 2025 Q1 Reference Guide Page 242

Method Options Group / Method

The Method options group plays a critical role in determining the performance

of the Interval Global Solver. As described in “Global Optimization” in the

chapter “Solver Models and Optimization,” the Interval Branch & Bound

algorithm processes a list of “boxes” that consist of bounded intervals for each

decision variable, starting with a single box determined by the bounds that you

specify. On each iteration, it seeks lower and upper bounds for the objective and
the constraints in a given box that will allow it to discard all or a portion of the

box (narrowing the intervals for some of the variables), by proving that the box

can contain no feasible solutions, or that it can contain no objective function

values better than a known best bound on the globally optimal objective. Boxes

that cannot be discarded are subdivided into smaller boxes, and the process is

repeated. Eventually, the boxes that remain each enclose a locally optimal

solution, and the best of these is chosen as the globally optimal solution.

To obtain good bounds on function values in a box, the Interval Global Solver

uses a first-order approximation to the problem functions, using interval values

and interval gradients computed by the Interpreter. Two rather different first-

order approximations can be used: The “classic interval” or mean value form
and the linear enclosure form. With each form, different advanced methods can

be used, as discussed below. The “classic interval” form is the default, but it

pays to experiment with both forms to see which one performs best on your

model. In addition to these first-order approximations, the Solver always uses

local constraint propagation methods (also known as hull consistency methods)

that narrow intervals at each stage of evaluation of the problem functions.

Classic Interval vs. Linear Enclosure

VBA / SDK: Parameter Name "Method", value 1-Classic Interval or 2-Linear

Enclosure

The Classic Interval and Linear Enclosure options form a “radio button group,”

so that only one of these two options is selected. Classic Interval (the default)

uses methods described in the research literature for a number of years; Linear

Enclosure uses recently published methods that are implemented for the first

time, to Frontline Systems’ knowledge, in the Interval Global Solver.

When Classic Interval is selected, the Solver uses the mean value form (based

on the interval gradient) as a first-order approximation of the problem functions.
This form is especially useful in tests that enable the Solver to rapidly “shrink” a

box. With this form, second order methods can be used as described below, but

these are optional since they require evaluation of the interval Hessian.

When Linear Enclosure is selected, the Solver uses the linear enclosure form

as a first-order approximation of the problem functions. The linear enclosure

doesn’t use the interval gradient directly, but it computes similar information to

completely enclose the function within linearized boundaries. This form does

not readily lend itself to the classic interval second order methods, but because it

completely encloses the function, it can be used to enable the Solver to rapidly

discard many boxes.

Second Order

VBA / SDK: Parameter Name "SecondOrder", value 1/True or 0/False

When this box is checked (and Classic Interval is selected – otherwise it is

grayed out), the Interval Global Solver uses a variant of the Interval Newton

method (analogous to Newton’s method for real numbers, but operating over

Frontline Solvers 2025 Q1 Reference Guide Page 243

intervals), employing the Krawczyk operator at its key step, to rapidly find an

interval minimum for the objective and shrink or discard the current box, or to

rapidly determine whether a solution to a system of equations exists in the

current box. Use of the Krawczyk operator requires the interval Hessian, which

is computed by the Interpreter via reverse automatic differentiation.

LP Test

VBA / SDK: Parameter Name "LPTest", value 1/True or 0/False

When this box is checked (and Linear Enclosure is selected – otherwise it is

grayed out), the Solver internally creates a series of linear programming

problems, using the linear enclosures of the original problem’s constraints and

the bounds on the current box, and applies Phase I of the Simplex method to this
problem. If the Simplex method finds no feasible solutions, then the original

problem’s constraints also have no feasible solutions in the current box, and this

box or region can be discarded in the overall Interval Branch & Bound

algorithm.

LP Phase II

VBA / SDK: Parameter Name "LPPhaseII", value 1/True or 0/False

When this box is checked (and Linear Enclosure is selected – otherwise it is

grayed out), the Solver proceeds as just described for the LP Test option, but it

also uses Phase II of the Simplex method to seek an improved bound on the

objective function in the current box. If this improved bound is feasible in the

original problem, it is used to update the known best bound on the globally

optimal objective in the overall Interval Branch & Bound algorithm.

Evolutionary Solver Options
When the Evolutionary Solver is selected from the Solver engine dropdown list

the following options are displayed.

This General section contains all of the Common Solver Options discussed

earlier (the Convergence option has a special meaning for the Evolutionary
Solver, as discussed below), plus several options specific to the Evolutionary

Solver.

Frontline Solvers 2025 Q1 Reference Guide Page 244

 Analytic Solver Desktop Analytic Solver Cloud

As with the other Solver engines, the Max Time option determines the

maximum amount of time the Evolutionary Solver will run before displaying a

dialog box asking whether the user wants to continue. The Iterations option

rarely comes into play, because the Evolutionary Solver always uses the Max

Subproblems and Max Feasible Solutions options on the Limits tab, whether or

not the problem includes integer constraints. (The count of iterations is reset on

each new subproblem, so the Iterations limit normally is not reached.) The

Precision option plays the same role as it does in the other Solver engines –

governing how close a constraint value must be to its bound to be considered

satisfied, and how close to an exact integer value a variable must be to satisfy an
integer constraint. It also is used in computing the “penalty” applied to

infeasible solutions that are accepted into the population: A smaller Precision

value increases this penalty.

Convergence

VBA / SDK: Parameter Name "Convergence", 0 <= value <= 1

As discussed in the chapter “Solver Results Messages,” the Evolutionary Solver

will stop and display the message “Solver has converged to the current solution”

if nearly all members of the current population of solutions have very similar

“fitness” values. Since the population may include members representing

infeasible solutions, each “fitness” value is a combination of an objective
function value and a penalty for infeasibility. Since the population is initialized

with trial solutions that are largely chosen at random, the comparison begins

after the Solver has found a certain minimum number of improved solutions that

Frontline Solvers 2025 Q1 Reference Guide Page 245

were generated by the evolutionary process. The stopping condition is satisfied

if 99% of the population members all have fitness values that are within the

Convergence tolerance of each other.

If you believe that the message “Solver has converged to the current solution” is

appearing prematurely, you can make the Convergence tolerance smaller, but
you may also want to increase the Mutation Rate and/or the Population Size, in

order to increase the diversity of the population of trial solutions.

Population Size / PopulationSize

VBA / SDK: Parameter Name "PopulationSize", integer value > 0

As described in the Analytic Solver User Guide chapter “Mastering

Conventional Optimization Concepts,” the Evolutionary Solver maintains a

population of candidate solutions, rather than a “single best solution” so far,

throughout the solution process. This option sets the number of candidate

solutions in the population. The minimum population size is 10 members; if you

supply a value less than 10 for this option, or leave the option blank, the
Evolutionary Solver uses a population size of 10 times the number of decision

variables in the problem, but no more than 200.

The initial population consists of candidate solutions chosen largely at random,

but it always includes at least one instance of the starting values of the variables

(adjusted if necessary to satisfy the bounds on the variables), and it may include

more than one instance of the starting values, especially if the population is large

and the initial values represent a feasible solution.

A larger population size may allow for a more complete exploration of the

“search space” of possible solutions, especially if the mutation rate is high

enough to create diversity in the population. However, experience with genetic

and evolutionary algorithms reported in the research literature suggests that a
population need not be very large to be effective – many successful applications

have used a population of 70 to 100 members.

Mutation Rate / MutationRate

VBA / SDK: Parameter Name "MutationRate", 0 <= value <= 1

The Mutation Rate is the probability that some member of the population will be

mutated to create a new trial solution (which becomes a candidate for inclusion

in the population, depending on its fitness) during each “generation” or

subproblem considered by the evolutionary algorithm. In the Evolutionary

Solver, a subproblem consists of a possible mutation step, a crossover step, an

optional local search in the vicinity of a newly discovered “best” solution, and a
selection step where a relatively “unfit” member of the population is eliminated.

There are many possible ways to mutate a member of the population, and the

Evolutionary Solver actually employs five different mutation strategies,

including “permutation-preserving” mutation strategies for variables that are

members of an “alldifferent” group. The Mutation Rate is effectively

subdivided between these strategies, so increasing or decreasing the Mutation

Rate affects the probability that each of the strategies will be used during a given

“generation” or subproblem.

Random Seed / RandomSeed

VBA / SDK: Parameter Name "RandomSeed", integer value > 0

Frontline Solvers 2025 Q1 Reference Guide Page 246

The Evolutionary Solver makes extensive use of random sampling, to generate

trial points for the population of candidate solutions, to choose strategies for

mutation and crossover on each “generation,” and for many other purposes.

This process uses a random number generator that is normally “seeded” using

the value of the system clock – so the random number sequence (and hence trial
points and choices made by the Evolutionary Solver) will be different each time

you click Solve. Because of these random choices, the Evolutionary Solver will

normally find at least slightly different (and sometimes very different) solutions

on each run, even if you haven’t changed your model at all. At times, however,

you may wish to ensure that exactly the same trial points are generated, and the

same choices are made on several successive runs. To do this, enter a positive

integer value into this box; this value will then be used to “seed” the random

number generator each time you click Solve.

Require Bounds on Variables / RequireBounds

VBA / SDK: Parameter Name "RequireBounds", value 1/True or 0/False

If the option “Require Bounds on Variables” is set to True, and some of the
decision variables do not have upper or lower bounds specified under

Constraints in the Task Pane Model tab (or via the Assume Non-Negative

option) at the time you click Solve, the Solver will stop immediately with the

message “All variables must have both upper and lower bounds” – as illustrated

in the section “Multistart Search Options” earlier in this chapter. If this option is

not set to True, the Solver will not require upper and lower bounds on the

variables, but will attempt to solve the problem without them. Note that this box

is checked by default.

Bounds on the variables are especially important to the performance of the

Evolutionary Solver. For example, the initial population of candidate solutions

is created, in part, by selecting values at random from the ranges determined by
each variable’s lower and upper bounds. Bounds on the variables are also used

in the mutation process – where a change is made to a variable value in some

member of the existing population – and in several other ways in the

Evolutionary Solver. If you do not specify lower and upper bounds for all of the

variables in your problem, the Evolutionary Solver can still proceed, but the

almost-infinite range for these variables may significantly slow down the

solution process, and make it much harder to find “good” solutions. Hence, it

pays for you to determine realistic lower and upper bounds for the variables, and

enter them under Constraints in the Task Pane Model tab.

Local Search / LocalSearch

Analytic Solver Comprehensive, Analytic Solver Optimization
VBA / SDK: Parameter Name "LocalSearch", value 1-Randomized Local

Search, 2-Gradient Local Search, 3-SQP with Gradient Sampling, 4-Automatic

Choice

Analytic Solver Upgrade

VBA / SDK: Parameter Name "LocalSearch", value 1-Randomized Local

Search, 2-Gradient Local Search, 3-Deterministic Pattern Search, 4-Automatic

Choice

This option determines the local search strategy employed by the Evolutionary

Solver. As noted under the Mutation rate option, a “generation” or subproblem

in the Evolutionary Solver consists of a possible mutation step, a crossover step,
an optional local search in the vicinity of a newly discovered “best” solution,

Frontline Solvers 2025 Q1 Reference Guide Page 247

and a selection step where a relatively “unfit” member of the population is

eliminated. You have a choice of strategies for the local search step. You can

use Automatic Choice (the default), which selects an appropriate local search

strategy automatically based on characteristics of the problem functions.

Randomized Local Search

This local search strategy generates a small number of new trial points in the

vicinity of the just-discovered “best” solution, using a probability distribution

for each variable whose parameters are a function of the best and worst

members of the current population. (If the generated points do not satisfy all of

the constraints, a variety of strategies may be employed to transform them into

feasible solutions.) Improved points are accepted into the population.

Gradient Local Search

This local search strategy makes the assumption that the objective function –

even if non-smooth – can be approximated locally by a quadratic model. It uses

a classical quasi-Newton method to seek improved points, starting from the just-

discovered “best” solution and moving in the direction of the gradient of the

objective function. It uses a classical optimality test and a “slow progress” test

to decide when to halt the local search. An improved point, if found, is accepted

into the population.

If using Analytic Solver Comprehensive or Analytic Solver Optimization, the

third option for Local Search is SQP with Gradient Sampling.

SQP with Gradient Sampling
This local search strategy combines a sequential quadratic programming (SQP)

method with a gradient sampling algorithm to seek improved points; starting
from the just discovered, "best" solution for problems with a possible nonlinear

non-smooth objective function and/or constraints. This strategy requires

the gradients at smooth points enabling this method to effectively handle

problems with finitely many non-smooth points, however it comes with

some extra computational burden. Hence, the best use of the SQP with Gradient

Sampling method is recommended when high quality solutions are required for

highly nonlinear non-smooth problems but a fast solution time is not of

significant importance, or when other local search methods fail to find an

optimal solution.

If using Analytic Solver Upgrade, the third option for Local Search is

Deterministic Pattern Search.

Deterministic Pattern Search

This local search strategy uses a “pattern search” method to seek improved

points in the vicinity of the just-discovered “best” solution. The pattern search

method is deterministic – it does not make use of random sampling or choices –

but it also does not rely on gradient information, so it is effective for non-

smooth functions. It uses a “slow progress” test to decide when to halt the local

search. An improved point, if found, is accepted into the population.

Automatic Choice

This option allows the Solver to select the local search strategy automatically.

Solver uses diagnostic information from the Polymorphic Spreadsheet

Frontline Solvers 2025 Q1 Reference Guide Page 248

Interpreter to select a linear Gradient Local Search strategy if the problem has

smooth linear variables, or a nonlinear Gradient Local Search strategy if the

objective function has smooth nonlinear variables. When some or all variables

are non-smooth and gradient information is available from the Polymorphic

Spreadsheet Interpreter, the SQP with Gradient Sampling method is chosen. It
also makes limited use of the Randomized Local Search strategy to increase

diversity of the points found by the local search step.

Filtered Local Search

Solver applies two tests or “filters” to determine whether to perform a local

search each time a new point generated by the genetic algorithm methods is

accepted into the population. The “merit filter” requires that the objective value
of the new point be better than a certain threshold if it is to be used as a starting

point for a local search; the threshold is based on the best objective value found

so far, but is adjusted dynamically as the Solver proceeds. The “distance filter”

requires that the new point’s distance from any known locally optimal point

(found on a previous local search) be greater than the distance traveled when

that locally optimal point was found.

Thanks to its genetic algorithm methods, improved local search methods, and

the distance and merit filters, the Evolutionary Solver performs exceedingly well

on smooth global optimization problems, and on many non-smooth problems as

well.

The local search methods range from relatively “cheap” to “expensive” in terms
of the computing time expended in the local search step; they are listed roughly

in order of the computational effort they require. On some problems, the extra

computational effort will “pay off” in terms of improved solutions, but in other

problems, you will be better off using the “cheap” Randomized Local Search

method, thereby spending relatively more time on the “global search” carried

out by the Evolutionary Solver’s mutation and crossover operations.

In addition to the Local Search options, the Evolutionary Solver employs a set of

methods, corresponding to the four local search methods, to transform infeasible

solutions – generated through mutation and crossover – into feasible solutions in

new regions of the search space. These methods, which also vary from “cheap”

to “expensive,” are selected dynamically (and automatically) via a set of
heuristics. For problems in which a significant number of constraints are

smooth nonlinear or even linear, these methods can be highly effective. Dealing

with constraints is traditionally a weak point of genetic and evolutionary

algorithms, but the hybrid Evolutionary Solver is unusually strong in its ability

to deal with a combination of constraints and non-smooth functions.

If the Evolutionary Solver stops with the message “Solver encountered an

error computing derivatives,” and you are using Analytic Solver Desktop,

you should set Use Sparse Variables to True in the Platform task pane and

Solve again.

Fix Nonsmooth Variables / FixNonSmooth

VBA / SDK: Parameter Name "FixNonSmooth", value 1/True or 0/False

This option determines how non-smooth variable occurrences in the problem

will be handled during the local search step. In Analytic Solver Upgrade, this

option is ignored. If this box is checked, the non-smooth variables are fixed to

their current values (determined by genetic algorithm methods) when a

nonlinear Local Gradient or linear Local Gradient search is performed; only the

Frontline Solvers 2025 Q1 Reference Guide Page 249

smooth and linear variables are allowed to vary. If this box is unchecked, all of

the variables are allowed to vary.

Since gradients are undefined for non-smooth variables at certain points, fixing

these variables ensures that gradient values used in the local search process will

be valid. On the other hand, gradients are defined for non-smooth variables at
most points, and the search methods are often able to proceed in spite of some

invalid gradient values, so it often makes sense to vary all of the variables

during the search. Hence, this box is unchecked by default; you can experiment

with its setting on your model.

Global Search / GlobalSearch

VBA: Parameter Name "LegacyMode", value - 1/Genetic Algorithm or 0/Scatter

Search

SDK: Parameter Name "GlobalSearch", value - 1/Genetic Algorithm or

0/Scatter Search

If this option is set to Genetic Algorithm, then the Evolutionary Solver will use
methods from the literature on genetic algorithms (its traditional methods) to

solve the model. Otherwise, the Evolutionary Solver will use methods from the

literature on scatter search. On some models, the scatter search algorithm will

result in better answers in less time when compared to the genetic

algorithm. However, for other models, the genetic algorithm may be more

successful. Since the scatter search algorithm tends perform best, by a modest

margin, on the majority of models, it is the default choice. But we suggest you

try both algorithms with your model to see which works better for you.

Model Based Search / ModelBasedSearch

VBA / SDK: Parameter Name "ModelBasedSearch", 0-None, 1-CPU Based, 2 –

GPU Based

This option takes effect only when the Global Search option is set to Scatter

Search. When this option is set to “None”, the Scatter Search algorithm is used

without any Model Based Local Search. When this option is set to either “CPU

Based” or “GPU Based”, an internal model of the problem is created (using

radial basis functions) which closely fits the original problem in the search

region. The Evolutionary Solver then uses this internal model to evaluate many

points in parallel (either on the CPU or GPU - depending on the option setting)

rather than using Excel or the PSI Interpreter to evaluate each of these points

sequentially. Only the most promising of these points are evaluated against the

actual spreadsheet model. The most promising points from this evaluation are

added to the population of best solutions. This new search method typically
results in better solutions in less time when compared to using only the Scatter

Search algorithm.

Note for Users of Analytic Solver Desktop: Most new computers now contain

GPUs or Graphics Processing Units, either on custom chips (in most laptops) or

plug-in cards. These devices are typically used to quickly build and manipulate

display images for video games and other graphics. However, their ability to

perform floating point arithmetic in parallel can be harnessed for computational

purposes. Some GPU cards or chips contain 256, 512 or more special-purpose

processors; in comparison, the computer’s main CPU usually contains just 2 to 4

general-purpose processors If your computer includes a Nvidia or AMD

Radeon graphics card or chip, it would be worth your time to compare the
performance of both the CPU and GPU based approaches. You very well could

Frontline Solvers 2025 Q1 Reference Guide Page 250

find that the GPU based search results in a solution in significantly less time

than the CPU based search.

Feasibility Pump / FeasibilityPump

VBA / SDK: Parameter Name "FeasibilityPump", value 1/True or 0/False

The new Feasibility Pump methods for both continuous and integer variables

help the Evolutionary Solver find better solutions, faster than ever.This option

allows the Evolutionary Solver to search for a feasible solution and add it to the

initial population. Feasibility Pump uses a set of fast heuristic and exact methods

that seek a feasible solution, but not necessarily a high quality solution, when

finding a feasible solution may be as challenging as finding the optimal

solution.

Limits Section Options

Where the other Solver engines use the Branch & Bound method to solve

problems with integer constraints, subject to limits set in the Integer Options

dialog tab, the Evolutionary Solver handles integer constraints on its own, and is

subject to the limits set in this dialog tab. Unlike the other Solver engines, the

Evolutionary Solver always works on a series of subproblems, even if there are

no integer constraints in the model – so these options are always important for

the Evolutionary Solver.

Max Subproblems / MaxSubProblems

VBA / SDK: Parameter Name "MaxSubProblems", integer value > 0

The value for the Max Subproblems option places a limit on the number of

subproblems that may be explored by the evolutionary algorithm before the

Solver pauses and asks you whether to continue, stop or restart the solution

process. In the Evolutionary Solver, a subproblem consists of a possible

mutation step, a crossover step, an optional local search in the vicinity of a

newly discovered “best” point, and a selection step where a relatively “unfit”

member of the population is eliminated. During the solution process, the

number of subproblems considered so far is shown on the Excel status bar, along

with the objective of the best feasible solution (if any) found so far. If your

model is moderately large or complex, you may need to increase this limit from

its default value; any value up to 2,147,483,647 may be used.

Max Feasible Solutions / MaxFeasibleSols

VBA / SDK: Parameter Name "MaxIntegerSols", integer value > 0

The value for the Max Feasible Sols option places a limit on the number of

feasible solutions found by the evolutionary algorithm before the Solver pauses

and asks you whether to continue, stop or restart the solution process. A feasible

solution is any solution that satisfies all of the constraints, including any integer

constraints. As with the Max Subproblems option, if your model is moderately

large or complex, you may need to increase this limit; any value up to

2,147,483,647 may be used.

Tolerance / IntTolerance

VBA / SDK: Parameter Name "IntTolerance", 0 <= value <= 1

Frontline Solvers 2025 Q1 Reference Guide Page 251

This option works in conjunction with the Max Time without Improvement

option to limit the time the evolutionary algorithm spends without making any

significant progress. If the relative (i.e. percentage) improvement in the best

solution’s “fitness” is less than the Tolerance value for the number of seconds

for the Max Time without Improvement option, the Evolutionary Solver stops as
described below. Since the population may include members representing

infeasible solutions, the “fitness” value is a combination of an objective function

value and a penalty for infeasibility.

Max Time without Improvement /
MaxTimeNoImprove

VBA / SDK: Parameter Name "MaxTimeNoImp", integer value > 0

This option works in conjunction with the Tolerance option to limit the time the

evolutionary algorithm spends without making any significant progress. If the

relative (i.e. percentage) improvement in the best solution’s “fitness” is less than

the Tolerance value for the number of seconds in the Max Time without

Improvement option, the Evolutionary Solver stops and displays the Solver

Results dialog. The message is “Solver cannot improve the current solution,”

unless the evolutionary algorithm has discovered no feasible solutions at all, in
which case the message is “Solver could not find a feasible solution.” If you

believe that this stopping condition is being met prematurely, you can either

make the Tolerance value smaller (or even zero), or increase the number of

seconds allowed by the Max Time without Improvement option.

Integer Section of the Engine Tab Options
The four options below appear in the Integer section of the GRG Solver engine,

Inteval Solver, and SOCP Solver. When you click Engine tab, options for

mixed-integer programming problems are displayed.

 Analytic Solver Desktop Analytic Solver Cloud

Max Subproblems / MaxSubProblems

VBA / SDK: Parameter Name "MaxSubProblems", integer value > 0

The value for the Max Subproblems option places a limit on the number of

subproblems that may be explored by the algorithm before the Solver pauses and

asks you whether to continue, stop or restart the solution process. During the

solution process, the number of subproblems considered so far is shown on the

Excel status bar, along with the objective of the best feasible solution (if any)

found so far. If your model is moderately large or complex, you may need to
increase this limit from its default value; any value up to 2,147,483,647 may be

used.

Frontline Solvers 2025 Q1 Reference Guide Page 252

Note: A “Restart” button also appears in the dialog box where the Solver asks

you whether you want to continue or stop the solution process; but this button is

meaningful only for the GRG Nonlinear Solver, and it affects only restarting of

the current subproblem. The Branch & Bound algorithm is never restarted, as

this would simply mean discarding the progress that has been made so far.

In a problem with integer constraints, the Max Subproblems limit should be

used in preference to the Iterations limit; the Iterations limit should be set high

enough for each of the individual subproblems solved during the Branch &

Bound process. For problems with many integer constraints, you may need to

increase this limit from its default value; any integer value up to 2,147,483,647

may be used.

Max Feasible Solutions / MaxFeasibleSols

VBA / SDK: Parameter Name "MaxIntegerSols", integer value > 0

The value for the Max Feasible Sols option places a limit on the number of

feasible solutions found by the evolutionary algorithm before the Solver pauses
and asks you whether to continue, stop or restart the solution process. A feasible

solution is any solution that satisfies all of the constraints, including any integer

constraints. As with the Max Subproblems option, if your model is moderately

large or complex, you may need to increase this limit; any value up to

2,147,483,647 may be used.

Integer Tolerance / IntTolerance

VBA / SDK: Parameter Name "IntTolerance", 0 <= value <= 1

When you solve an integer programming problem, it often happens that the

Branch & Bound method will find a good solution fairly quickly, but will

require a great deal of computing time to find (or verify that it has found) the

optimal integer solution. The Integer Tolerance setting may be used to tell the
Solver to stop if the best solution it has found so far is “close enough.”

The Branch & Bound process starts by finding the optimal solution without

considering the integer constraints (this is called the relaxation of the integer

programming problem). The objective value of the relaxation forms the initial

“best bound” on the objective of the optimal integer solution, which can be no

better than this. During the optimization process, the Branch & Bound method

finds “candidate” integer solutions, and it keeps the best solution so far as the

“incumbent.” By eliminating alternatives as its proceeds, the B&B method also

tightens the “best bound” on how good the integer solution can be.

Each time the Solver finds a new incumbent – an improved all-integer solution –
it computes the maximum percentage difference between the objective of this

solution and the current best bound on the objective:

Objective of incumbent - Objective of best bound

--

Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less

than the Integer Tolerance, the Solver will stop and report the current integer

solution as the optimal result, with the message “Solver found an integer

solution within tolerance.” If you set the Integer Tolerance to zero, the Solver
will “prove optimality” by continuing to search until all alternatives have been

explored and the optimal integer solution has been found. This may take a great

deal of computing time.

Frontline Solvers 2025 Q1 Reference Guide Page 253

Integer Cutoff / IntCutoff

VBA / SDK: Parameter Name "IntCutoff", -1E30 < value < +1E30

This option provides another way to save time in the solution of mixed-integer

programming problems. If you know the objective value of a feasible integer

solution to your problem – possibly from a previous run of the same or a very

similar problem – you can enter this objective value for the Integer Cutoff
option. This allows the Branch & Bound process to start with an “incumbent”

objective value (as discussed above under Integer Tolerance) and avoid the work

of solving subproblems whose objective can be no better than this value. If you

enter a value here, you must be sure that there is an integer solution with an

objective value at least this good: A value that is too large (for maximization

problems) or too small (for minimization) may cause the Solver to skip solving

the subproblem that would yield the optimal integer solution.

The Current Problem and Engine Limits Sections
Each engine in Analytic Solver Desktop includes a Problem section which

displays statistics on the size of the current problem and the corresponding

Solver engine size limits, including the number of decision variables, number of

constraints, number of bounds on the variables, and number of integer variables.
These edit controls are “read-only” – the current problem sizes are computed

automatically, and the Solver engine size limits are obtained automatically from

both built-in and field-installable Solver engines.

When the LP/Quadratic Solver is selected from the Solver engine dropdown list

the following is displayed. The LP/Quadratic Solver supports linear and

quadratic programming problems of up to 8,000 variables, 8,000 constraints,

16,000 bounds, and 2,000 integer variables.

Loading, Saving and Merging Solver Models
On the Analytic Solver Desktop Ribbon there is a dropdown menu for Loading,

Saving, and Merging Models.

Optimization models may only be saved in Classic Format when using Analytic

Solver Cloud. Saving the model as an .lp file or using Psi functions is also not
supported in Analytic Solver Cloud.

Analytic Solver Desktop Analytic Solver Cloud

Frontline Solvers 2025 Q1 Reference Guide Page 254

The “current” Solver model defined for each worksheet is automatically saved

“behind the scenes” in that worksheet. So it is not necessary to use this feature

to keep track of a single Solver model – the last set of specifications you defined

will be saved automatically when the workbook is saved, and restored when it is

re-opened. But the Load Model... and Save Model... options can be used to save
more than one Solver model on the same worksheet, and to merge two models

into one.

Note: A model saved in classic format in Analytic Solver Desktop may not be

loaded in Analytic Solver Cloud, or vice-versa.

Saved Model Formats

The model specifications can be stored as formulas in two formats: The Classic

format, which is upward compatible from the standard Excel Solver, uses certain

built-in Excel functions and array formulas to store the model; it is not intended

for user modification. The Psi Function format, introduced in Version 7.0, uses

add-in functions such as PsiVar(), PsiCon(), PsiObj() and PsiOption() to store

the model; more information can be found in the next chapter “Psi Function
Reference.” Since it is a fully documented format, it may be used to “import”

models that are created manually or with other programs.

Analytic Solver Cloud supports saving/loading in Classic format only.

Competitive Products

A third alternative is available for users upgrading to the Analytic Solver

Desktop products, from certain competitive software products: If you click the

Load Model button and there’s no model defined for Analytic Solver in the

workbook, but there is a model defined for a recognized competitive software

product, the Solver will list this model and allow you to select it for loading.

When you click OK, the model is loaded and converted – it becomes the

“current” Solver model defined for the active worksheet, for Analytic Solver.

Saving A Model in LP Format

Starting in Analytic Solver Desktop V2015 the ability to save both linear or

quadratic models in LP or MPS Format was introduced and in Analytic Solver

Desktop V2016-R2, the ability to save linear, quadratic and nonsmooth models

in JSON format was introduced. After you diagnose or solve a model (by

clicking Optimize on the ribbon or the Analyze/Solve icon on the task pane),

click Load/Save -- Save Model in the Tools section on the ribbon, then select

Output File for Format. (If you select this option without solving or analyzing

the model first, you’ll receive an error instructing you to do so first.)

Frontline Solvers 2025 Q1 Reference Guide Page 255

Click OK, a Save As dialog will open.

Select the file type and the location for the output file to be saved. Afterwards,

open the file to reveal the Excel model written in LP, MPS, or JSON Format.

LP and MPS formats are available only for LP (linear programming) and QP

(quadratic programming) models with or without integer constraints; they

cannot represent nonlinear, non-smooth, or stochastic optimization models. In

LP format, the objective and each constraint always appears as a sum of decision

variables multiplied by constant coefficients, which are computed when your

model is analyzed. This is based on, but may not "look the same" as your Excel

formulas. For example, if you have a constraint A1 <= 100, X1:X4 are decision

variables, X5 = 0, and your model has formulas:

A1: =2*B1

B1: =SUM(X1:X5)-C1

C1: =4*X1+ 0.5*X3

The constraint A1 <= 100 will appear as:

c0: -6 x1 + 2 x2 + 1 x3 + 2 x4 <= 100

As an example please see below for the output from the Product Mix example

file in lp format.

 \ Solver Optimization Model

 Maximize

 obj : + 75 x1 + 50 x2 + 35 x3

 Subject To

 c0 : + 1 x1 + 1 x2 <= 450

 c1 : + 1 x1 <= 250

 c2 : + 2 x1 + 2 x2 + 1 x3 <= 800

 c3 : + 1 x1 + 1 x2 <= 450

 c4 : + 2 x1 + 1 x2 + 1 x3 <= 600

 Bounds

 x1 >= 0
 x2 >= 0

 x3 >= 0

 Binary

Frontline Solvers 2025 Q1 Reference Guide Page 256

 General

 End

MPS files are column-oriented and all model components are named. See
below for the same Product Mix model, this time saved in MPS format.

NAME Solver Optimization Model

OBJSENSE

 MAX

ROWS

 L c0

 L c1

 L c2

 L c3

 L c4

 N obj

COLUMNS

 x1 c0 1 c1 1

 x1 c2 2 c3 1

 x1 c4 2 obj 75

 x2 c0 1 c2 2

 x2 c3 1 c4 1

 x2 obj 50

 x3 c2 1 c4 1

 x3 obj 35

RHS

 RHS1 c0 450 c1 250

 RHS1 c2 800 c3 450

 RHS1 c4 600

BOUNDS

ENDATA

Files saved with the extension .json are written using the RASON Modeling

Language. Here's the same Product Mix Example, as saved in the .json format.

For more information on this language, see either the Frontline Solvers or

RASON Modeling Language User Guides.

Frontline Solvers 2025 Q1 Reference Guide Page 257

{

 comment: "This model has been generated by Psi

from an Excel model",

variables: {

 "c14:e14": { value: 0, lower: 0, comment:

"Number_to_build" }

},

data: {

 "c18:e18": { value: [[1, 1, 0]] },

 "c19:e19": { value: [[1, 0, 0]] },

 "c20:e20": { value: [[2, 2, 1]] },

 "c21:e21": { value: [[1, 1, 0]] },

 "c22:e22": { value: [[2, 1, 1]] },

 "c24:e24": { value: [[75, 50, 35]] }

},

constraints: {

 "g18": { formula:

"SUMPRODUCT(C18:E18,C14:E14)", upper: 450 },

 "g19": { formula:

"SUMPRODUCT(C19:E19,C14:E14)", upper: 250 },

 "g20": { formula:

"SUMPRODUCT(C20:E20,C14:E14)", upper: 800 },

 "g21": { formula:

"SUMPRODUCT(C21:E21,C14:E14)", upper: 450 },

 "g22": { formula:

"SUMPRODUCT(C22:E22,C14:E14)", upper: 600 }

},

objective: {

 "g24": { formula:

"SUMPRODUCT(C24:E24,C14:E14)", type: "max" }

}

}

From here, using just three lines of code, you can easily load any of these three

files types into the Solver SDK via the prob.load() function. This method

allows the User to maintain the data and the model in Excel while solving the

model with the SDK. (For more information along with an example on loading

and solving models from these formats with the SDK, please see the Solver

SDK User Guide section, "Loading and Solving Excel Models" in the chapter,

"Designing Your Application".)

Saving a Stochastic Model in LP or MPS Format

When saving a transformed stochastic LP model, the transformed model is

saved to either LP or MPS format, depending on the user's selection. Analytic

Solver will return the following dialog once the LP or MPS file has been

Frontline Solvers 2025 Q1 Reference Guide Page 258

successfully saved. Note the warning that the saved model has been

transformed from the original model and contains more variables and constraints

than the original model contained.

It is not possible to save the original stochastic LP model in LP or MPS format
as the original formulation is not linear by definition of a stochastic optimization

model. The original model can, however, be saved to the worksheet using the

Classic format. (See above for more information on saving a model to the

worksheet using the Classic format.)

Model Names

When you use Psi functions to save a model in Analytic Solver Desktop, you
can include an argument in each Psi function call that gives a name such as

“MyModel” to a set of model specifications. When you do this, the formula

cells containing Psi functions need not be contiguous on the spreadsheet; they

are associated via the model name. When you click the Load Model button, the

Solver offers you a choice of available models:

The “current” Solver model also has a name, which is the same as the worksheet

name. You can choose any of the named models, or you can choose Select a

range and load a set of Classic format (not Psi function format) specifications

from a contiguous cell range.

Using Multiple Solver Models

It is possible – and often useful – to define more than one Solver model based on

the same worksheet formulas. An example of this is provided in the “Portfolio

of Securities” (Sharpe tab) worksheet in the
StockPortfolioOptimization(Opt).xlsx workbook that is installed along with

Analytic Solver (Help – Examples). This worksheet defines a portfolio

optimization model, where the Solver must determine what percentage of

available funds to invest in four different stocks (A, B, C and D) and Treasury

bills. The worksheet formulas calculate the portfolio rate of return, and the

portfolio risk as measured by the statistical variance of returns. There are two

possible approaches to solving this model: (1) Find the maximum rate of return,

subject to an upper limit on the portfolio’s risk, or (2) Find the minimum risk

(variance), subject to a lower limit on the portfolio’s return.

Frontline Solvers 2025 Q1 Reference Guide Page 259

The “current” Solver problem on this worksheet is the one that maximizes

return, subject to a constraint on portfolio risk. But both Solver problems

(“Maximize Return” and “Minimize Risk”) have been set up and their

specifications saved (in Classic format) on the right of this worksheet, starting at

cell T19. If you click on Save/Load Model on the ribbon, select cells T19:T24,
and click OK, you’ll load the specifications for the problem that minimizes risk

subject to a constraint on return.

Merging Solver Models

In the standard Microsoft Excel Solver and earlier versions of the Premium

Solver products, loading a model’s specifications through Load Model... causes

any existing specifications for the “current” Solver model to be erased. You are

prompted before this happens with an alert box asking if you want to reset the

previous solver cell selections.

In recent versions of the Analytic Solver and its sub-set products, you have

another choice: You can merge the model specifications being loaded with the

current model specifications. Where the specifications necessarily overlap – as
in the selection of the objective (and the “maximize” or “minimize” setting) and

in the settings of Solver options – the newly loaded specifications take

precedence. But the variable cell selections and the constraint left hand sides,

relations and right hand sides being loaded are merged into the current model.

You are prompted to choose between replacing the current model specifications

and merging in the new specifications:

Merging model specifications can be quite useful, for it allows you to build and

test smaller, simple Solver models and then combine them into a larger model.

Suppose, for example, that you wanted to create a planning model for a

manufacturing firm that would take into account both the mix of products being

built and the routes along which they were being shipped. You might create two

models on one worksheet, one based on the Product Mix example and the other

based on the Shipping Routes example in SOLVSAMP.XLS, and test them

individually. Then you could combine them with the Merge function, and test

the production-distribution model as a whole.

Frontline Solvers 2025 Q1 Reference Guide Page 260

PSI Function Reference

Using PSI Functions
This chapter provides summary information on Analytic Solver’s PSI functions
that you can use in Excel formulas to create optimization and Monte Carlo

simulation models

You use Psi Optimization functions to define decision variables, constraints,

the objective function, and any engine option.

You use PSI Distribution functions to define the properties of uncertain

variables, either via an analytic probability distribution and its parameters, or via

a pre-generated SIP or SLURP with the PsiSip(), PsiTSSip() and PsiSlurp()

functions.

You use PSI Property functions to modify the properties of analytic probability

distributions, by shifting or truncating their domains, or by correlating one
distribution with another.

You use PSI Statistics functions to obtain results of the simulation, such as

statistics, frequency data, or raw trial data, for uncertain functions. You use the

PsiOutput() function to mark cells that calculate values for uncertain functions.

When you run multiple simulations at once, you can use the PsiSimParam()

function to specify a list of values for a cell, one per simulation, where the value

is held constant for all trials in a simulation.

Analytic Solver Comprehensive includes Psi Classification and Psi Prediction

functions to score new classification and prediction data without the need to

click the Score icon on the Data Science ribbon and also Psi Forecasting
functions to predict new data points in a time series dataset.

Note: When entering Psi functions manually in Analytic Solver Cloud or Data

Science Cloud (formerly Data Mining Cloud) apps, the taskpane must be

refreshed before running an optimization, simulation, or parameter analysis

report.

Using PSI Optimization Functions

If “Use Psi Functions” is set to true in the Analytic Solver Desktop Task Pane

Platform tab, then Psi Optimization functions can be used to define variables,

constraints, the objective function, set engine options, and monitor or set values

during multiple optimizations or sensitivity analysis. If adding a model to a

worksheet other than the ActiveSheet, “Use Psi Functions” must be set to true
on both the ActiveSheet and the worksheet that will hold the model.

These function are not supported in Analytic Solver Cloud.

Frontline Solvers 2025 Q1 Reference Guide Page 261

PsiCalcParam

PsiCalcParam(values_or_lower, upper, base_case)

PsiCalcParam provides a list of different values that a variable should have in

different calculations. Pass the lower limit for the parameter or alternatively, a

list of values or a cell range, for the Values_or_lower argument and the upper

limit for the parameter for the optional Upper argument. The argument,

base_case, will be used when no specific calculation is indicated, i.e. if running

a simulation or sensitivity parameters analysis on a model where PsiCalcParam

exists.

PsiCalcParam accepts non-numeric values when the first argument is an array

and the second argument is missing.

All elements of PsiCalcParam must be of the same data type, i.e. only strings,
only Booleans, only numbers, etc. Otherwise the error, “All elements of

PsiCalcParam must have the same type.”, will be returned.

Note: In Desktop Analytic Solver, the "current" calculation number is always

displayed on the Tools tab of the Solver Task Pane and the returned value of

PsiCalcParam reflects that calculation number. As a result, it is not possible to

"see" the basecase value in action unless another type of parameter analysis is

being run, i.e. a simulation parameter analysis or a sensitivity parameter

analysis.

Use the Tools tab to cycle through the results on the worksheet. For a

description of this function in use, please see the example file, Calculation

Parameter Example, by clicking Help – Example Files – Decision Table and
Decision Tree Examples on the Analytic Solver ribbon.

PsiCalcValue

PsiCalcValue(output_cell_address, paramldx)

This function defines an observation output for a given formula cell.

PsiCalcValue considers only the observation outputs in a pure workbook

recalculation.

output_cell_address: Cell address containing the PsiDecTable() function.

paramldx: Cell address or integer value for the Calculation Parameter index.

Use this function in conjunction with PsiDecTable() when using a version of

Excel that does not support Dynamic Arrays (V2016 or earlier).

See the Calculation Parameter Example at Help – Examples – Decision Table

and Decision Tree Example – Calculation Parameter Example to see this

function in use.

PsiCon

PsiCon(LHS, relation, RHS, active, chance type,

chance measure, comment, model name)

PsiCon adds one or more constraints to the optimization model. LHS is a cell or

contiguous range of cells that contain the left hand side(s) of the constraint(s).

Pass the relation, in quotes, of the constraint as the 2nd argument: “<=” (less

than or equal to), “=” (equal to), “>=” (greater than or equal to), “int” (integer),

“bin” (binary), “dif” (alldifferent), “soc” (cone), “src” (rotated cone), or “sem”

Frontline Solvers 2025 Q1 Reference Guide Page 262

(semicontinuous). RHS is a cell or contiguous range of cells that contain the

right hand side(s) of the constraint(s). Passing true for the fourth argument,

active, selects the constraint in the Task Pane Model tab for inclusion in the

active model. Passing false for this argument unchecks the constraint which

removes the constraint from the active model. If this argument is not passed,
then true will be passed by default. Pass integer values for the chance type: 0

(normal), 2 (VaR), 3 (CVaR), or 4 (USet). Pass a value from 0 to 1 for the

chance measure. A comment may be added to the constraint (surrounded by

quotes) which will appear under “Comment” in the Variable Property Window.

(To view the Property Window simply highlight the variable or range of

variables in the Task Pane Model tab. The Property Window will appear at the

bottom of the task pane.) You may pass a model or sheet name, in quotes, for

the last argument, model name, to indicate to ASP what model or worksheet the

constraint(s) belong(s).

PsiCurrentOpt

PsiCurrentOpt()

PsiCurrentOpt returns the index (1, 2, 3, etc.) of the current optimization, when

multiple optimizations are being run.

PsiDualLower

PsiDualLower (cell, [optimization])

PsiDualLower displays the dual lower value for the referenced constraint or

decision variable in an optimization model.

• cell is the Excel reference for the constraint or decision variable

• optimization (optional) is the optimization index if running multiple

optimizations, i.e. "2" would indicate the 2nd optimization.

If deploying your Excel model to the Rason Server (Deploy Model– Excel

Model), enter this function in a blank cell on the spreadsheet to receive the dual
lower value, for either a constraint or decision variable, in the Rason results.

PsiDualUpper

PsiDualUpper (cell, [optimization])

PsiDualUpper displays the dual upper value for the referenced constraint or

decision variable in an optimization model.

• cell is the Excel reference for the constraint or decision variable

• optimization (optional) is the optimization index if running multiple

optimizations, i.e. "2" would indicate the 2nd optimization.

If deploying your Excel model to the Rason Server (Deploy Model– Excel

Model), enter this function in a blank cell on the spreadsheet to receive the dual

upper value, for either a constraint or decision variable, in the Rason results.

PsiDualValue

PsiDualValue (cell, [optimization], [upper])

Frontline Solvers 2025 Q1 Reference Guide Page 263

PsiDualValue displays the dual value for the referenced constraint or decision

variable in an optimization model.

• cell is the Excel reference for the constraint or decision variable

• optimization (optional) is the optimization index if running multiple
optimizations, i.e. "2" would indicate the 2nd optimization.

• upper (optional) is a boolean argument that determines the dual value

returned. For example, if the value of cell A1 = 100 and a constraint exists

that A1:D1 <=300, the dual value will be 0 because the constraint is not

binding.

If, however, the constraints A1 >=100 and A1 <= 100 exist, multiple dual

values will be returned. The upper argument determines which dual value

to display in the cell.

If the two constraints exist, one being the upper bound of A1 (A1 <= 100)

and one being the lower bound of A1 (A1 >= 100):

• and upper is not provided, this function returns the dual value of

the lower bound constraint (A1 >= 100).

• and upper is "false" the dual value of the lower bound constraint

(A1 >= 100) is returned.

• and upper is "true", the dual value of the upper bound constraint

(A1 <= 100) is returned.

• If only one nonzero dual value is found, that dual value is

displayed, no matter if upper is set to true or false.

For more information on Analytic Solver's Sensitivity Report, see the Analytic
Solver User Guide.

If deploying your Excel model to the Rason Server (Deploy Model– Excel

Model), enter this function in a blank cell on the spreadsheet to receive either

the upper or lower dual value, for either a constraint or decision variable, in the

Rason results.

PsiEngine

PsiEngine(engine name, model name)

PsiEngine selects the engine for the optimization model. Pass the name of the

Engine, in quotes, as the first argument, Engine Name: Standard GRG

Nonlinear, Standard LP/QP Quadratic, Standard Evolutionary, Standard Interval

Global, or Standard SOCP Barrier. You may pass a model or sheet name, in

quotes, for the last argument, model name, to indicate to ASP what model or

worksheet the engine selection belongs.

PsiFinalValue

PsiFinalValue (cell, [optimization])

PsiFinalValue displays the final value for the referenced constraint or decision

variable in an optimization model.

• cell is the Excel reference for the constraint or decision variable

• optimization (optional) is the optimization index if running multiple

optimizations, i.e. "2" would indicate the 2nd optimization.

Frontline Solvers 2025 Q1 Reference Guide Page 264

If deploying your Excel model to the Rason Server (Deploy Model– Excel

Model), enter this function in a blank cell on the spreadsheet to receive the final

value, for either a constraint or decision variable, in the Rason results.

PsiInitialValue

PsiInitialValue (cell, [optimization])

PsiInitialValue displays the initial value for the referenced constraint or decision

variable in an optimization model.

• cell is the Excel reference for the constraint or decision variable

• optimization (optional) is the optimization index if running multiple

optimizations, i.e. "2" would indicate the 2nd optimization.

If deploying your Excel model to the Rason server (Deploy Model– Excel

Model), enter this function in a blank cell on the spreadsheet to receive the

initial value, for either a constraint or decision variable, in the Rason results.

PsiInput

PsiInput(cell_or_name)

PsiInput marks a cell as input, which can be used when solving the workbook
using the Solver SDK.

PsiModel

PsiModel(option name, value, model name)

PsiModel sets any Model option, or any option that appears on the Task Pane

Model tab. Pass the name of the option as the first argument, Option Name.

Pass the value of the option for Value. You may pass a model or sheet name, in
quotes, for the last argument, model name, to indicate to ASP what model or

worksheet the option setting belongs. Note: Only model options pertaining to

optimization can be set using PsiModel().

PsiModelDesc

PsiModelDesc(cell_or_name)

The argument cell_or_name can either be a cell holding a brief description of
the problem or a descriptive string. If the model is deployed to Frontline’s

RASON server using the Deploy Model button on the ribbon, this string will

appear for the “modelDescription” property in the RASON model. For more

Frontline Solvers 2025 Q1 Reference Guide Page 265

information on Frontline’s RASON modeling language embedded in JSON and

the RASON Rest API, see www.RASON.com.

Example:

PsiModelDesc(A1) where A1 contains: 'A description of the problem.

PsiModelDesc(A description of the problem)

PsiObj

PsiObj(objective cell, sense, valueof, chancetype,

chance measure, comment, model name)

PsiObj adds an objective cell to the optimization model. Pass the cell address of

the objective cell as the first argument, Objective Cell. For the Sense argument,

pass “min” for a minimization, “max” for a maximization” and “ValueOf” if

using the ValueOf property. If using ValueOf, pass the numerical value as the

next argument, i.e. 1000. Set the type of objective for the ChanceType, Normal,
Expected VaR, CVaR, or USet. If the objective includes uncertainty, set the

Chance Measure in the next argument. Pass integer values for the chance type:

0 (Normal), 1 (Expected), 2 (VaR), 3 (CVaR), or 4 (USet). Pass a value from 0

to 1 for the chance measure. A comment may be added to the objective

(surrounded by quotes) which will appear under “Comment” in the Variable

Property Window. (To view the Property Window simply highlight the variable

or range of variables in the Task Pane Model tab. The Property Window will

appear at the bottom of the task pane.) You may pass a model or sheet name, in

quotes, for the last argument, model name, to indicate to ASP what model or

worksheet the objective belongs.

PsiOption

PsiOption(option name, value, model name)

PsiOption sets an option for the optimization engine. Pass the name of the

option as the first argument, Option Name. Pass the value of the option for

Value. You may pass a model or sheet name, in quotes, for the last argument,

model name, to indicate to ASP what model or worksheet the option setting

belongs.

PsiOptParam

PsiOptParam(values_or_lower, upper, base_case)

PsiOptParam provides a list of different values that a variable should have in

different optimizations. Pass the lower limit for the parameter or alternatively, a

list of values or a cell range, for the Values_or_lower argument and the upper

limit for the parameter for the optional Upper argument. The argument,

base_case, will be used when no specific optimization is indicated, i.e. if
running a simulation or sensitivity parameters analysis on a model where

PsiOptParam exists.

Note: In Desktop Analytic Solver, the "current" optimization number is always

displayed on the Analytic Solver ribbon, in the Tools section, and the returned

value of PsiOptParam reflects that optimization number. As a result, it is not

possible to "see" the basecase value in action unless another type of parameter

analysis is being run, i.e. a simulation parameter analysis or a sensitivity

parameter analysis.

http://www.rason.com/

Frontline Solvers 2025 Q1 Reference Guide Page 266

For a description of this function in use, please see the chapter, Getting Results:

Optimization in the Frontline Solver’s User Guide.

PsiOptStatus

PsiOptStatus()

PsiOptStatus displays the status of optimization as returned by the running

engine. For a complete list of final results returned by the Analytic Solver,

please see the chapter Solver Results Messages.

PsiOptValue

PsiOptValue(cell_or_name, optimization, model)

PsiOptValue returns the specific value for a cell or function of an optimization.

Pass the cell address or defined name of the desired cell for the first argument,

Cell_or_name. Pass the optimization number for the second argument,

Optimization, if multiple optimizations are being run. Pass the Sheet name for

the model argument, when running multiple optimizations on multiple

worksheets (within the same workbook) when the same cell is used for more

than one optimization and the Excel Interpreter is used. (This argument is not

supported when the PSI Interpreter is in use.) For example, if cell Sheet1!A1 is
used in the optimization model in Sheet1 and also the optimization model in

Sheet2, =PsiOptValue(Sheet1!A1,2,”Sheet1”) will return the value of cell

Sheet1!A1 for the 2nd optimization on Sheet1. Similarly,

=PsiOptValue(Sheet1!A1, 3, “Sheet2”) will return the value of cell Sheet1!A1

for the 3rd optimization on Sheet2.

PsiSenParam

PsiSenParam(values_or_lower, upper)

PsiSenParam provides a list of different values that a variable should have

during sensitivity analysis. Pass the lower limit for the parameter or

alternatively, a list of values or a cell range, for the Values_or_lower argument

and the upper limit for the parameter for the optional Upper argument. For a

description of this function, please see the chapter, Examples: Parameters and

Sensitivity Analysis.

PsiSenValue

PsiSenValue(cell_or_name)

PsiSenValue returns the specific value for a cell or function of a sensitivity

analysis. For a description of this function, please see the chapter, Examples:

Parameters and Sensitivity Analysis.

PsiSlackValue

PsiSlackValue (cell, [optimization], [upper])

PsiSlackValue displays the slack value for the referenced constraint or decision

variable in an optimization model.

• cell is the Excel reference for the constraint or decision variable

Frontline Solvers 2025 Q1 Reference Guide Page 267

• optimization (optional) is the optimization index if running multiple

optimizations, i.e. "2" would indicate the 2nd optimization.

• upper (optional) is a boolean argument that determines the slack value

returned. For example, if the value of cell A1 = 100 and a constraint exists

that A1:D1 <=300, the slack value will be 0 because the constraint is not
binding.

If, however, the constraints A1 >=100 and A1 <= 100 exist, multiple slack

values will be returned. The upper argument determines which slack value

to display in the cell.

If the two constraints exist, one being the upper bound of A1 (A1 <= 100)

and one being the lower bound of A1 (A1 >= 100):

• and upper is not provided, this function returns the slack value of

the lower bound constraint (A1 >= 100).

• and upper is "false" the slack value of the lower bound constraint
(A1 >= 100) is returned.

• and upper is "true", the slack value of the upper bound constraint

(A1 <= 100) is returned.

• If only one nonzero slack value is found, that slack value is

displayed, no matter if upper is set to true or false.

For more information on Analytic Solver's Sensitivity Report, see the Analytic

Solver User Guide.

If deploying your Excel model to the Rason Server (Deploy Model– Excel

Model), enter this function in a blank cell on the spreadsheet to receive the slack
valu,e for either a constraint or decision variable, in the Rason results.

PsiVar

PsiVar(cell range, type, active, comment, model name)

PsiVar adds one or more cells to the decision variables in the optimization

model. The cell range must be a single cell or a range of contiguous cells.

Setting the type argument to “1” will add the cell or cell range as a “normal”
variable while a “2” will add the cell or cell range as a “recourse” variable. If

this argument is not passed, the cell(s) will be added as “normal” variable(s).

Passing true for the third argument, active, selects the cell or cell range in the

Task Pane Model tab for inclusion in the active model. Passing false for this

argument unchecks the cell or cell range in the Task Pane Model tab which

removes the variables from the active model. If this argument is not passed,

then true will be passed by default. A comment may be added to the variable

(surrounded by quotes) which will appear under “Comment” in the Variable

Property Window. (To view the Property Window simply highlight the variable

or range of variables in the Task Pane Model tab. The Property Window will

appear at the bottom of the task pane.) You may pass a model or sheet name, in

quotes, for the last argument, model name, to indicate to ASP what model or
worksheet the variable(s) belong(s).

Using PSI Distribution Functions

The PSI Distribution functions are used to define the ‘nature of the uncertainty’

assumed by uncertain variables. They can be broadly classified into four

groups:

Frontline Solvers 2025 Q1 Reference Guide Page 268

• Continuous analytic distributions such as PsiUniform() and PsiNormal()

• Discrete analytic distributions such as PsiBinomial() and PsiGeometric()

• Custom distributions such as PsiCumul() and PsiGeneral()

• Special distributions such as PsiCertified(), PsiSip(), PsiTSSip() and

PsiSlurp()

On each trial of a simulation, Risk Solver Engine draws a random sample value

from each PSI Distribution function you use. PsiSip(), PsiTSSip() and

PsiSlurp() operate differently: On each trial, Analytic Solver draws the next

sequential value listed in the SIP, TSSip (time series SIP) or SLURP for that

uncertain variable. Analytic Solver uses these sample values to calculate your

model and its uncertain functions

The sample values drawn for PSI Distribution functions other than PsiSip(),

PsiTSSip() and PsiSlurp() depend on the type of distribution function, the

parameters of the distribution (for example, mean and variance for the
PsiNormal distribution), and the property functions that you pass as additional

arguments to the distribution function call, which can shift, truncate, or lock the

distribution, or correlate its sample values with samples drawn for other

uncertain variables.

To learn more about the analytic probability distributions below, you can consult

standard reference texts on probability, statistics, and Monte Carlo simulation,

such as Simulation Modeling and Analysis, 4th Ed. by Averill Law, Statistical

Distributions, 3rd Ed. by Merran Evans, Nicholas Hastings and Brian Peacock,

Univariate Discrete Distributions, 3rd Ed. by Norman Johnson, Adrienne Kemp

and Samuel Kotz, or Continuous Univariate Distributions, Vol. 1 & 2 , 2nd Ed.

by Norman Johnson, Samuel Kotz and N. Balakrishnan.

Using PSI Property Functions

PSI Property functions should be entered only as additional arguments of

analytic and custom PSI Distribution functions. They modify the behavior of

the PSI Distribution function in which they appear.

For example, PsiNormal (0, 1) specifies a Normal distribution with mean 0 and

standard deviation 1: Sample values drawn from this distribution could be any

number from ‘minus infinity’ to ‘plus infinity’ (though sample values near 0 are

more likely to be drawn). If you write PsiNormal (0, 1, PsiTruncate (-10, 10))

the distribution is ‘truncated’ so that sample values always lie within the range

from -10 to +10.

You can specify more than one PSI Property function as an argument to a PSI

Distribution function, and they can appear in any order after the required

arguments. For example, PsiBeta (1, 2, PsiTruncate (-10, 10), PsiShift(3),

PsiCorrDepen("MyCorr", 0.5)) specifies a Beta distribution with shape

parameters 1 and 2, truncated to a range from -10 to +10, shifted right by 3, and

correlated with the uncertain variable whose definition contains PsiCorrIndep

("MyCorr"), with rank correlation coefficient 0.5.

Using PSI Statistics Functions

PSI Statistics functions can appear in any cell formula, but their first argument

must be an uncertain function – that is, a cell containing a formula that depends

on (or is itself) a cell containing a PSI Distribution function. For example, cell

Frontline Solvers 2025 Q1 Reference Guide Page 269

A1 might contain =PsiMean (B1), where cell B1 contains =2*C1 and cell C1

contains PsiUniform (0,1).

During a simulation of 1,000 trials, 1,000 random sample values will be drawn

for cell C1 and used to compute cell B1. Hence, you can think of cells C1 and

B1 each ‘containing’ an array of 1,000 values. But cell A1 will contain one
value, which is the average or mean of the 1,000 values computed for cell B1.

When you write =PsiMean (B1), you designate B1 as an uncertain function, i.e.

a cell whose calculated values should be monitored by Risk Solver during a

simulation. If cell B2 contained =3*C1, but no PSI Statistics function depends

(directly or indirectly) on cell B2, Risk Solver will not monitor the values of B2

during a simulation.

You can designate a cell such as B2 as an uncertain function without calculating

a statistic for it by writing =PsiOutput(B2) in some cell of the model or by

simply selecting cell B2 and clicking the Results button on the ribbon. You can

also write the formula in cell B2 as =3*C1+PsiOutput() to cause Risk Solver to
monitor the values of B2 during a simulation.

PSI Statistics functions can include two property functions: PsiTruncate or

PsiTruncateP. If included in the PSI Statistic signature, both properties will

truncate the output trials accordingly, so that the statistic is computed on the

truncated subset of trials. For example,

A1 = PsiNormal(0,1)

B1 = PsiMean(A1,,,,PsiTruncate(-1,1,1))

While A1 is simultaneously an input and output function, PsiMean will only

pertain to the output trials. The given trials will be truncated at -1 to the left and

1 on the right. All trials less than -1 and greater than 1 will not participate in the
statistical calculation.

Note: The values returned from a PSI Statistic function will only reflect the

range set with a PsiTruncate or a PsiTruncateP property function entered in the

statistics function itself. Simulation results as shown in simulation graphs and

reports will not impact the values returned by the PSI Statistic function.

Accessing Statistics from Different Simulations

Each PSI Statistic function accepts an optional simulation index as its last

argument. If you are performing one simulation at a time (on each change to the

spreadsheet, or each VBA call to Problem.Solver.Simulate), you can omit this

argument; its default value is 1, which refers to the first (and only) simulation.

If you are performing multiple simulations at a time, you can use this argument

to select the simulation for which you want the statistic. For example, if you are

performing three simulations as a time, you could write =PsiMean(B1,1) in cell

A1, =PsiMean(B1,2) in cell A2, and =PsiMean(B1,3) in cell A3, to compute

and display the mean value of cell B1 for each of the three simulations.

PsiOutput() and Uncertain Function Objects

If you are programming Analytic Solver in VBA (Analytic Solver Desktop

only), you can use the PsiOutput() function to group uncertain functions in a

contiguous cell range together, so they appear as one Function object in the

VBA object model.

If you don’t use PsiOutput(), each cell that appears as the first argument of a PSI

Statistics function call will appear in the object model as a separate Function
object, a member of the Problem’s Functions collection. For example, if cells

Frontline Solvers 2025 Q1 Reference Guide Page 270

B1:B10 contain formulas that depend on the uncertain variables in your model,

cell A1 contains PsiMean (B1), A2 contains PsiMean (B2), and so on, there will

be ten Function objects in the Functions collection, each representing one

uncertain function cell.

It is often convenient to group contiguous uncertain function cells together, so
they appear as one Function object in the Problem’s Functions collection. For

example, you can specify that one Function object myFcn should represent cells

B1:B10 above, then access various statistics for all ten cells by subscripting this

Function object, for example as myFcn.Statistics.Mean(i) for i = 1 to 10.

To do this, you can either add +PsiOutput() to the formula in each cell in the

range B1:B10, or simply highlight cells B1:B10 and click the Results button on

the Ribbon, or you can write a formula =PsiOutput(B1:B10) in a separate cell.

Using PsiOutput() in this way overrides the single-cell grouping implied by

other PSI Statistics function calls, and causes the uncertain function cells to be

grouped together in the object model.

Continuous Analytic Distributions

PsiBeta

PsiBeta (1,2,...)

PsiBeta (α1,α2) is a flexible distribution for modeling probabilities based on

Bayesian statistics. This distribution is appropriate for modeling the random

behavior of percentages and proportions. The Beta distribution can be used as an

approximation in the absence of specific distribution information. Typical uses

include modeling time to complete a task in project networks and Bayesian

Statistics.

The Beta distribution can take on a variety of shapes depending on the values of

the two parameters α1 and α2. The Beta distribution with α1 = α2 = 1 is the

Uniform (0,1) distribution. The Beta distribution with α1 = 1, α2 = 2 is the Left

Triangular distribution. The beta distribution with α1 = 2, α2 = 1 is the Right

Triangular distribution. A random variable X is defined by PsiBeta (α1,α2) if and

only if 1 – X is defined by Beta (α2,α1).

Parameters

𝛼1, 𝛼2 > 0

Range of Function Values

[0, ∞)

Probability Density Function

𝑓(𝑥) = {
𝑥𝛼1−1(1 − 𝑥)𝛼2−1

𝐵(𝛼1, 𝛼2)
if 𝑥 ∈ (0,1)

0 otherwise

𝐵(𝛼1, 𝛼2) is the Beta function

𝐵(𝛼1, 𝛼2) = ∫ 𝑡
1

0

𝛼1−1

(1 − 𝑡)𝛼2−1𝑑𝑡

Cumulative Distribution Function

𝐹(𝑥) =
𝐵𝑥(𝛼1, 𝛼2)

𝐵(𝛼1, 𝛼2)

Frontline Solvers 2025 Q1 Reference Guide Page 271

𝐵𝑥(𝛼1, 𝛼2) is the Incomplete Beta Function
𝐵(𝛼1, 𝛼2) is the Beta Function

Mean

𝛼1
𝛼1 + 𝛼2

Variance

𝛼1𝛼2
(𝛼1 + 𝛼2)

2(𝛼1 + 𝛼2 + 1)

Skewness

2(𝛼2 − 𝛼1)

𝛼1 + 𝛼2 + 2
√
𝛼1 + 𝛼2 + 1

𝛼1𝛼2

Kurtosis

3(𝛼1 + 𝛼2 + 1)[2(𝛼1 + 𝛼2)
2 + 𝛼1𝛼2(𝛼1 + 𝛼2 − 6)]

𝛼1𝛼2(𝛼1 + 𝛼2 + 2)(𝛼1 + 𝛼2 + 3)

Median

Not applicable

Mode

𝛼1 − 1

𝛼1 + 𝛼2 − 2
 if 𝛼1 > 1, 𝛼2 > 1

0 and 1 if 𝛼1 < 1,𝛼2 < 1
0 if (𝛼1 < 1,𝛼2 ≥ 1) or if (𝛼1 = 1, 𝛼2 > 1)
1 if (𝛼1 ≥ 1,𝛼2 < 1) or if (𝛼1 > 1, 𝛼2 = 1)
does not uniquely exist if 𝛼1 = 𝛼2 = 1

PsiBetaGen

PsiBetaGen (1,2,a,b,...)

PsiBetaGen (α1,α2,a,b) is a rescaled and relocated Beta distribution, with lower
and upper bounds given respectively by a and b. The shape parameters α1,α2

play the same role as in the PsiBeta function. If X is a Beta random variable

with support in [0,1], then a + (b – a) X is a Beta random variable with support

in [a,b].

Alternate Formulation: PsiBetaGenAlt

PsiBetaGenAlt is the PsiBetaGen distribution defined through alternative

arguments. Four parameters are required and all must be chosen from the

following list: percentile1, percentile2, percentile3, percentile4, shape1, shape2,

min or max. Note: Alternate Formulation distributions are not supported in

Analytic Solver Cloud app.

Parameters

𝛼1, 𝛼2 > 0
𝑎 < 𝑏

Range of Function Values

[𝑎, 𝑏]

Frontline Solvers 2025 Q1 Reference Guide Page 272

Probability Density Function

𝑓(𝑥) =
(𝑥 − 𝑎)𝛼1−1(𝑏 − 𝑥)𝛼2−1

𝐵(𝛼1, 𝛼2)(𝑏 − 𝑎)
𝛼1+𝛼2−1

𝐵(𝛼1, 𝛼2) is the Beta Function

Cumulative Distribution Function

𝐹(𝑥) =
𝐵𝑧(𝛼1, 𝛼2)

𝐵(𝛼1, 𝛼2)
, 𝑧 =

𝑥 − 𝑎

𝑏 − 𝑎

𝐵𝑥(𝛼1, 𝛼2) is the Incomplete Beta Function
𝐵(𝛼1, 𝛼2) is the Beta Function

Mean

𝑎 +
𝛼1

𝛼1 + 𝛼2
(𝑏 − 𝑎)

Variance

𝛼1𝛼2
(𝛼1 + 𝛼2)

2(𝛼1 + 𝛼2 + 1)
(𝑏 − 𝑎)2

Skewness

2(𝛼2 − 𝛼1)

𝛼1 + 𝛼2 + 2
√
𝛼1 + 𝛼2 + 1

𝛼1𝛼2

Kurtosis

3(𝛼1 + 𝛼2 + 1)[2(𝛼1 + 𝛼2)
2 + 𝛼1𝛼2(𝛼1 + 𝛼2 − 6)]

𝛼1𝛼2(𝛼1 + 𝛼2 + 2)(𝛼1 + 𝛼2 + 3)

Median

Not applicable

Mode

𝑎 +
𝛼1 − 1

𝛼1 + 𝛼2 − 2
(𝑏 − 𝑎) if 𝛼1 > 1,𝛼2 > 1

𝑎 and 𝑏 if 𝛼1 < 1, 𝛼2 < 1
𝑎 if (𝛼1 < 1, 𝛼2 ≥ 1) or if (𝛼1 = 1, 𝛼2 > 1)
𝑏 if (𝛼1 ≥ 1, 𝛼2 < 1) or if (𝛼1 > 1,𝛼2 = 1)
does not uniquely exist if 𝛼1 = 𝛼2 = 1

PsiBetaSubj

PsiBetaSubj (a,c,μ,b,...)

PsiBetaSubj is a flexible distribution like PsiBetaGen, but with parameters you

choose for the minimum (a), most likely (c), mean (µ) and maximum (b) values.

These parameters are used to compute the shape parameters α1,α2 used in the

PsiBeta function.

Parameters

𝑎 < 𝜇 < 𝑏
𝑎 < 𝑐 < 𝑏

𝜇 >
𝑎 + 𝑏

2
 if 𝑐 > 𝜇

Frontline Solvers 2025 Q1 Reference Guide Page 273

𝜇 <
𝑎 + 𝑏

2
 if 𝑐 < 𝜇

𝜇 =
𝑎 + 𝑏

2
 if c=𝜇

The shape parameters 𝛼1, 𝛼2 can be determined using

𝛼2 = 𝛼1
𝑏 − 𝜇

𝜇 − 𝑎

𝛼1 =
2(𝜇 − 𝑎) (

𝑎 + 𝑏
2

− 𝑐)

(𝜇 − 𝑐)(𝑏 − 𝑎)

Range of Function Values

[𝑎, 𝑏]

Probability Density Function

𝑓(𝑥) =
(𝑥 − 𝑎)𝛼1−1(𝑏 − 𝑥)𝛼2−1

𝐵(𝛼1, 𝛼2)(𝑏 − 𝑎)
𝛼1+𝛼2−1

𝐵(𝛼1, 𝛼2) is the Beta Function

Cumulative Distribution Function

𝐹(𝑥) =
𝐵𝑧(𝛼1, 𝛼2)

𝐵(𝛼1, 𝛼2)
, 𝑧 =

𝑥 − 𝑎

𝑏 − 𝑎

𝐵𝑥(𝛼1, 𝛼2) is the Incomplete Beta Function
𝐵(𝛼1, 𝛼2) is the Beta Function

Mean

𝜇

Variance

(𝜇 − 𝑎)(𝑏 − 𝜇)(𝜇 − 𝑐)

𝑎 + 𝑏 + 𝜇 − 3𝑐

Skewness

(𝑎 + 𝑏 − 2𝜇)

|𝜇 +
𝑎 + 𝑏
2 − 2𝑐|

√
(𝜇 − 𝑐)(𝑎 + 𝑏 + 𝜇 − 3𝑐)

(𝜇 − 𝑎)(𝑏 − 𝜇)

Kurtosis

3(𝛼1 + 𝛼2 + 1)[2(𝛼1 + 𝛼2)
2 + 𝛼1𝛼2(𝛼1 + 𝛼2 − 6)]

𝛼1𝛼2(𝛼1 + 𝛼2 + 2)(𝛼1 + 𝛼2 + 3)

Median

Not applicable

Mode

𝑐

PsiBurr12

PsiBurr12 (loc, scale, shape1, shape2)

PsiBurr12 is a continuous probability distribution for a non-negative random

variable. This distribution uses four parameters: a location parameter, loc, scale

Frontline Solvers 2025 Q1 Reference Guide Page 274

parameter, scale, and shape parameters shape1 and shape2. This distribution is

typically used to model household income.

Parameters

Loc (γ) > 0, scale(β) > 0, shape1(α1) > 0, shape2 (α2) > 0

Function Values

[0, ∞)

Mean

λ + βq1 for α1α2 > 1

Variance

Β2[q2-q1
2] for α1α2 > 2

Skewness

𝑞3−3𝑞1𝑞2+2𝑞1
3

(𝑞2− 𝑞1
2)
3
2

 for α1α2 > 3

Kurtosis

𝑞4−4𝑞1𝑞3+6𝑞1
2𝑞2−3𝑞1

4

(𝑞2−𝑞1
2)
2 for α1α2 > 4

Mode

𝛾 + 𝛽 (
𝛼1−1

𝛼1𝛼2+1
)

1

𝛼2 α2 > 1

𝛾 α2 ≤ 1

PsiCauchy

PsiCauchy (loc, λ,...)

PsiCauchy (λ) is a distribution with a central peak, with very heavy tails and no

finite moments; it has no moments such as mean, variance, etc. defined, but its
mode and median are both equal to zero. The ratio of two independent standard

Normal random variables is a Cauchy distribution with parameter λ = 1.

Enter a scale value greater than 0 for the first argument, loc. This value

determines the height or the peak in the distribution.

Alternate Formulation: PsiCauchyAlt

PsiCauchyAlt is the PsiCauchy distribution defined through alternative

arguments. Two percentiles are required. Note: Alternate Formulation

distributions are not supported in Analytic Solver Cloud app.

Parameters

𝜆 > 0, loc > 0

Range of Function Values

(−∞,∞)

Probability Density Function

𝑓(𝑥) =
1

𝜋𝜆 [1 + (
𝑥
𝜆)

2
]

Frontline Solvers 2025 Q1 Reference Guide Page 275

Cumulative Distribution Function

𝐹(𝑥) =
1

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑥

𝜆
) +

1

2

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

0

Mode

0

PsiChiSquare

PsiChiSquare (df,...)

PsiChiSquare (df) is a distribution with a finite lower bound of zero, and an
infinite upper bound. It is usually used in statistical significance tests.

The Chi Square distribution is a special case of the Gamma distribution. A Chi

Square random variable with parameter df = 2 is the same as an Exponential

random variable with mean 0.5. As the parameter df approaches infinity, the Chi

Square distribution tends to a Normal distribution.

Alternate Formulation: PsiChiSquareAlt

PsiChiSquareAlt is the PsiChiSquare distribution defined through alternative

arguments. One parameter is required which must be chosen from the following

list: percentile or var. Note: Alternate Formulation distributions are not

supported in Analytic Solver Cloud app.

Parameters

𝑑𝑓 > 0, integer

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
1

2
𝑑𝑓
2 𝛤 (

𝑑𝑓
2
)
𝑥
(
𝑑𝑓
2
)−1𝑒

−𝑥
2

𝛤(𝑎) is the Gamma Function,

𝛤(𝑎) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
∞

0

Frontline Solvers 2025 Q1 Reference Guide Page 276

Cumulative Distribution Function

𝐹(𝑥) =
𝛾 (
𝑑𝑓
2 ,

𝑥
2
)

𝛤 (
𝑑𝑓
2
)

𝛤(𝑎) is the Gamma Function,
𝛾(𝑎, 𝑏) is the Incomplete Gamma Function

Mean

𝑑𝑓

Variance

2𝑑𝑓

Skewness

√
8

𝑑𝑓

Kurtosis

12

𝑑𝑓
+ 3

Median

𝑑𝑓 −
2

3

Mode

{
(𝑑𝑓 − 2) if 𝑑𝑓 ≥ 2
0 if 𝑑𝑓 = 1

PsiDagum

PsiDagum (loc, scale, shape1, shape2)

PsiDagum is a continuous probability distribution for a non-negative random

variable. This distribution uses four parameters: a location parameter, loc (x),

scale parameter, scale (b), and shape parameters scale1(p) and scale2 (a). This

distribution is mostly associated with the study of income distribution and

actuarial statistics.

Parameters

loc (γ), scale(β) > 0, shape1(α1) > 0, shape2 (α2) > 0

Range of Function Values

(0, ∞)

Probability Distribution Function

𝑓(𝑥) =
𝛼1𝛼2

𝛽

𝑧∝1∝2−1

(1+𝑧𝑎1)∝2+1
 where z ≡

𝑥−𝑦

𝛽

Cumulative Distribution Function

F(x) = (1+𝑧−∝1)-α2 where z ≡
𝑥−𝑦

𝛽

Mean

Frontline Solvers 2025 Q1 Reference Guide Page 277

γ +βq1 for α1 >1

Variance

 Β2[q2-q1
2] for α1 > 2

Skewness

𝑞3−3𝑞1𝑞2+2𝑞1
3

(𝑞2− 𝑞1
2)
3
2

 for α2 > 3

Kurtosis

𝑞4−4𝑞1𝑞3+6𝑞1
2𝑞2−3𝑞1

4

(𝑞2−𝑞1
2)
2 for α1 > 4

Mode

𝛾 + 𝛽 (
𝛼1𝛼2−1

𝛼1+1
)

1

𝛼1 α1α2 > 1

𝛾 α1α2 ≤ 1

PsiDblTriang

PsiDblTriang (min, likely, max, p)

PsiDblTriang is a continuous probability distribution with minimum, likely, and
maximum values, along with the probability p of a value falling between min

and likely. PsiDblTriang allows additional probability information as compared

with the standard triangular distribution, PsiTriangular. PsiDblTraing joins two

PsiTriangular distributions, the first from min to likely and the second from

likely to max. Probability p is used to guarantee that the two parts of the

distribution are normalized and the total area under the density curve is equal to

1.

Frontline Solvers 2025 Q1 Reference Guide Page 278

Parameters

min < likely < max, 0 <p < 1

Range of Function Values

(𝑚𝑖𝑛,𝑚𝑎𝑥)

Probability Distribution Function

𝑓(𝑥) =
2𝑝(𝑥−𝑚𝑖𝑛)

(𝑙𝑖𝑘𝑒𝑙𝑦−𝑚𝑖𝑛)2
 where min ≤ x ≤ likely

𝑓(𝑥) =
2(1−𝑝)(𝑚𝑎𝑥−𝑥)

(𝑚𝑎𝑥−𝑙𝑖𝑘𝑒𝑙𝑦)2
 where likely ≤ x ≤ max

Cumulative Distribution Function

𝐹(𝑥) =
𝑝(𝑥−𝑚𝑖𝑛)2

(𝑙𝑖𝑘𝑒𝑙𝑦−𝑚𝑖𝑛)2
 where min ≤ x ≤ likely

𝑓(𝑥) = 1 −
(1−𝑝)(𝑚𝑎𝑥−𝑥)2

(𝑚𝑎𝑥−𝑙𝑖𝑘𝑒𝑙𝑦)2
 where likely ≤ x ≤ max

Mean

(𝑝)(min)+2(𝑙𝑖𝑘𝑒𝑙𝑦)+(1−𝑝)(𝑚𝑎𝑥)

3

Variance

N/A

Skewness

 N/A

Kurtosis

N/A

Mode

𝑙𝑖𝑘𝑒𝑙𝑦

PsiErf

PsiErf (h,...)

PsiErf is a distribution based on the “error function” ERF(x). Its shape is closely

related to the Normal distribution.

Alternate Formulation: PsiErfAlt

PsiErfAlt is the PsiErf distribution defined through alternative arguments. One

parameter is required which must be chosen from the following list: percentile
and var. Note: Alternate Formulation distributions are not supported in Analytic

Solver Cloud app.

Parameters

ℎ > 0

Range of Function Values

(−∞,∞)

Probability Density Function

𝑓(𝑥) =
ℎ

√𝜋
𝑒−(ℎ𝑥)

2

Frontline Solvers 2025 Q1 Reference Guide Page 279

Cumulative Distribution Function

𝐹(𝑥) = 𝛷(√2ℎ𝑥)

𝛷(𝑣) is the Error Function

𝛷(𝑣) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑣

0

Mean

0

Variance

1

2ℎ
2

Skewness

0

Kurtosis

3

Median

0

Mode

0

PsiErlang

PsiErlang (k,β,...)

PsiErlang (k,β) is a distribution with a finite lower bound, closely related to the

Gamma and Exponential distributions. It has applications in reliability and

queuing models. When the parameter k = 1, the Erlang distribution is the same

as an Exponential distribution.

Parameters

𝑘, 𝛽 > 0
𝑘 integer

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
𝑥𝑘−1𝑒

−(
𝑥
𝛽
)

𝛽𝑘(𝑘 − 1)!

Cumulative Distribution Function

𝐹(𝑥) =
𝛾 (𝑘,

𝑥
𝛽
)

(𝑘 − 1)!

𝛾(𝑥, 𝑦) is the Incomplete Gamma Function

Mean

𝑘𝛽

Frontline Solvers 2025 Q1 Reference Guide Page 280

Variance

𝑘𝛽2

Skewness

2

√𝑘

Kurtosis

3 +
6

𝑘

Median

Not defined

Mode

𝛽(𝑘 − 1)

PsiExponential

PsiExponential (β,...)

PsiExponential (β) is a distribution with a finite lower bound and rapidly
decreasing values. It can be used to represent time between random occurrences

in queuing and reliability engineering applications.

The minimum of a set of independent exponential random variables is also an

exponentially distributed random variable.

Alternate Formulation: PsiExponentialAlt

PsiExponentialAlt is the PsiExponential distribution defined through alternative

arguments. One parameter is required which must be chosen from the following

list: percentile or var. Note: Alternate Formulation distributions are not

supported in Analytic Solver Cloud app.

Parameters

𝛽 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
1

𝛽
𝑒
−𝑥
𝛽

Cumulative Distribution Function

𝐹(𝑥) = {1 − 𝑒
−𝑥
𝛽 if 𝑥 ≥ 0

0 otherwise

Mean

𝛽

Variance

𝛽2

Frontline Solvers 2025 Q1 Reference Guide Page 281

Skewness

2

Kurtosis

9

Median

𝛽 𝑙𝑛(2)

Mode

0

PsiFatigueLife

PsiFatigueLife (loc, scale, shape)

Also known as the Birnbaum-Saunders distribution, the PsiFatigueLife

distribution is used to model failure times, i.e. model crack propagation and the

failure of materials over time.

Alternate Formulation: PsiFatigueLifeAlt

PsiFatigueLifeAlt is the PsiFatigueLife distribution defined through

alternative arguments. Three parameters are required and can be either "loc",

"scale", "shape" or a value between 0 and 1 to specify a percentile. The
possible combinations are 3 percentiles, 2 percentiles and 1 real parameter or

1 percentile and 2 real parameters.

Examples:

=PsiFatigueLifeAlt(5%, 1.5, 50%, 2.5, 95%, 4.5)

returns a FatigueLife distribution with 5th percentile 1.5, 50th percentile 2.5

and 95th percentile 4.5.

=PsiFatigueLifeAlt(5%, 1.5, 50%, 2.5, "loc", 0.5)

returns a FatigueLife distribution with 5th percentile 1.5, 50th percentile 2.5

and loc parameter, 0.5.

=PsiFatigueLifeAlt("loc", 0.5, 5%, 1.5, 50%, 2.5)

returns a FatigueLife distribution with loc parameter 0.5, 5th percentile 1.5,

and 50th percentile 2.5.

Note: Alternate Formulation distributions are not supported in Analytic

Solver Cloud app.

Parameters

loc, scale (β) > 0, shape (α) > 0

Range of Function Values

(loc, ∞)

Probability Density Function

Frontline Solvers 2025 Q1 Reference Guide Page 282

where z ≡
𝑥−𝑦

𝛽
 and Ф is the cumulative distriobution function of the standard

normal distribution.

Cumulative Distribution Function

where z ≡
𝑥−𝑦

𝛽
 and Ф is the cumulative distriobution function of the standard

normal distribution.

Mean

𝛾 + 𝛽 (1 +
𝛼2

2
)

Variance

(𝛼𝛽)2 (1+
5𝛼2

4
)

Skewness

44𝛼3+24𝛼

(5𝛼2 +4)
3
2

Kurtosis

Mode

No Analytic Formula

PsiFDist

PsiFDist (df1, df2)

The PsiFDist distribution is an F distribution with two degrees of freedom, df1
and df2. Typically, this distribution is associated with statistical hypothesis

testing, specifically when determining if two population variances are equal.

Parameters

df1 > 0 and integer, df2 > 0 and integer

Range of Function Values

(0, ∞)

Probability Density Function

Frontline Solvers 2025 Q1 Reference Guide Page 283

Cumulative Distribution Function

where β is the Beta function and I is the Regularized Incomplete Beta Function.

Mean

𝑣2

𝑣2−2
 for v2 > 2

Variance

2𝑣2
2(𝑣1+𝑣2−2)

𝑣1(𝑣2−2)
2(𝑣2−4)

 for v2 > 4

Skewness

(2𝑣1+ 𝑣2+2)

(𝑣2−6)
√

8(𝑣2−4)

𝑣1(𝑣1+𝑣2−2)
 for v2 > 6

Kurtosis

3 + 12 [
(𝑣2−2)

2(𝑣2−4)+𝑣1(𝑣1+ 𝑣2−2)(5𝑣2−22)

𝑣1(𝑣2−6)(𝑣2−8)(𝑣1+ 𝑣2−2)
] for v2 > 8

Mode

𝑣2(𝑣1−2)

𝑣1(𝑣2+2)
 for v1 > 2

0 𝑓𝑜𝑟 𝑣1 ≤ 2

PsiFrechet

PsiFrechet (loc, scale, shape)

The PsiFrechet distribution is used to model extreme events. This distribution is

used commonly in hydrology to model peak annual rainfall and damn overflow.

Alternate Formulation: PsiFrechetAlt

PsiFrechetAlt is the PsiFrechet distribution defined through alternative

arguments. Three parameters are required and can be either "loc", "scale",

"shape" or a value between 0 and 1 to specify a percentile. The possible

combinations are 3 percentiles, 2 percentiles and 1 real parameter or 1

percentile and 2 real parameters.

Examples:

=PsiFrechetAlt(5%, 1.5, 50%, 2.5, 95%, 4.5)

returns a Frechet distribution with 5th percentile 1.5, 50th percentile 2.5 and

95th percentile 4.5.

=PsiFrechetAlt(5%, 1.5, 50%, 2.5, "loc", 0.5)

returns a Frechet distribution with 5th percentile 1.5, 50th percentile 2.5 and loc
parameter, 0.5.

=PsiFrechetAlt("loc", 0.5, 5%, 1.5, 50%, 2.5)

returns a Frechet distribution with loc parameter 0.5, 5th percentile 1.5, and

50th percentile 2.5.

Frontline Solvers 2025 Q1 Reference Guide Page 284

Note: Alternate Formulation distributions are not supported in Analytic Solver

Cloud app.

Parameters

loc (λ) , scale (β) > 0, shape (α) > 0

Range of Function Values

(0, ∞)

Probability Density Function

𝑓(𝑥) =
∝

𝛽
𝑧−(1+𝛼)𝑒𝑥𝑝[−𝑧−𝛼] where z ≡

𝑥−𝑦

𝛽

Cumulative Distribution Function

𝐹(𝑥) = 𝑒𝑥𝑝[−𝑧−∝] where z ≡
𝑥−𝑦

𝛽

Mean

γ +β𝑞1 for α1 > 1

Variance

𝛽[𝑞2 − 𝑞1
2] for α2 > 2

Skewness

(𝑞3+3𝑞1𝑞2+2𝑞1
3)

(𝑞2−𝑞1
2)
3
2

 for α1 > 3

Kurtosis

𝑞4−4𝑞1𝑞3+6𝑞1

2𝑞2−3𝑞1
4

(𝑞2−𝑞1
2)

 for α1 > 4

Mode

𝜸 + 𝜷(
𝜶

𝟏+𝜶
)

𝟏

𝜶𝟏

PsiGamma

PsiGamma (,β,...)

PsiGamma (α,β) is a flexible distribution with a finite lower bound and

decreasing values. PsiExponential, PsiErlang, and PsiChiSquare are special

cases of PsiGamma, as explained below. The Gamma distribution is often used

to model the time between events that occur with a constant average rate.

When α = 1, the Gamma distribution is the same as an Exponential distribution.

If the parameter α is integer, then the Gamma distribution is the same as the
Erlang distribution. The Gamma distribution with α = a/2, β = 2 is the same as a

Chi Square distribution with parameter a (a degrees of freedom).

If X1, X2, …Xm are independent random variables with Xi ~ PsiGamma (αi,β),

then their sum also has a Gamma distribution with parameters (α1 + α2 + …+ αm

,β). Additionally, the Gamma distribution approaches a normal distribution with

the same mean and standard deviation as the parameter α approaches infinity.

Alternate Formulation: PsiGammaAlt

PsiGammaAlt is the PsiGamma distribution defined through alternative

arguments. Two parameters are required and both must be chosen from the

following list: percentile1, percentile2, mean, var, shape or scale. Note:

Frontline Solvers 2025 Q1 Reference Guide Page 285

Alternate Formulation distributions are not supported in Analytic Solver Cloud

app.

Parameters

𝛼, 𝛽 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) = {
𝛽 𝑥−𝛼 𝛼−1𝑒

−𝑥
𝛽

𝛤(𝛼)
 if 𝑥 > 0

0 otherwise

𝛤(𝛼) is the Gamma Function

Cumulative Distribution Function

𝐹(𝑥) =
𝛾 (𝛼,

𝑥
𝛽
)

𝛤(𝛼)

𝛾(𝑎, 𝑏) is the Incomplete Gamma Function

Mean

𝛽𝛼

Variance

𝛽2𝛼

Skewness

2

√𝛼

Kurtosis

6

𝛼
+ 3

Median

Not defined

Mode

{𝛽
(1 − 𝛼) if 𝛼 ≥ 1
0 otherwise

PsiHypSecant

PsiHypSecant (loc, scale)

The PsiHypSecant distribution is similar to the normal distribution, but has a

larger kurtosis resulting in a sharper peak.

Alternate Formulation: PsiHypSecantAlt

PsiHypSecantAlt is the PsiHypSecant distribution defined through alternative

arguments. Two parameters are required and both must be used in the following

combinations: two different percentiles, percentile and loc or percentile and

scale. Note: Alternate Formulation distributions are not supported in Analytic
Solver Cloud app.

Frontline Solvers 2025 Q1 Reference Guide Page 286

Parameters

loc (λ) , scale (β) > 0

Range of Function Values

(-∞, ∞)

Probability Density Function

𝑓(𝑥) =
1

2𝛽
𝑠𝑒𝑐ℎ [

𝜋

2
𝑧] where z ≡

𝑥−𝑦

𝛽

Cumulative Distribution Function

𝐹(𝑥) =
2

𝜋
𝑡𝑎𝑛−1 [𝑒

𝜋𝑧

2] where z ≡
𝑥−𝑦

𝛽

Mean

γ

Variance

𝛽2

Skewness

0

Kurtosis

 5

Mode

𝜸

PsiInvNormal

PsiInvNormal (μ,λ,...)

PsiInvNormal (µ,λ) is a distribution with a finite lower bound, where it is zero.

The Inverse Normal distribution is used to model Brownian motion and other
diffusion processes. As the parameter λ tends to infinity, the Inverse Normal

distribution approaches a Normal distribution.

Alternate Formulation: PsiInvNormalAlt

PsiInvNormalAlt is the PsiInvNormal distribution defined through alternative

arguments. Two parameters are required and both must be chosen from the

following list: two different percentiles, mean, var or scale. Note: Alternate

Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

𝜇, 𝜆 > 0

Range of Function Values

(0,∞)

Probability Density Function

𝑓(𝑥) = √
𝜆

2𝜋𝑥3
[𝑒
(
−𝜆(𝑥−𝜇)2

2𝑥𝜇2
)
]

Frontline Solvers 2025 Q1 Reference Guide Page 287

Cumulative Distribution Function

𝐹(𝑥) = 𝛷(√
𝜆

𝑥
(
𝑥

𝜇
− 1)) + 𝑒

(
2𝜆
𝜇
)
𝛷(−√

𝜆

𝑥
(
𝑥

𝜇
+ 1))

𝛷(𝑧) is the Error Function

Mean

𝜇

Variance

𝜇3

𝜆

Skewness

3√
𝜇

𝜆

Kurtosis

15
𝜇

𝜆
+ 3

Median

Not defined

Mode

𝜇 {(1 +
9𝜇2

4𝜆2
)

1
2

−
3𝜇

2𝜆
}

PsiJohnsonSB

PsiJohnsonSB (shape1, shape2, min, max)

The PsiJohnsonSB distribution is a bounded distribution with shape parameters

shape1 and shape2 and boundary parameters min and max.

Parameters

shape1(α1), shape2 (α2) > 0 , max(b) > min (a)

Range of Function Values

[a, 𝑏]

Probability Density Function

𝒇(𝒙) =
𝜶𝟐(𝒃−𝒂)

√𝟐𝝅(𝒙−𝒂)(𝒃−𝒙)
× 𝒆

−𝟏

𝟐
[𝜶𝟏+𝜶𝟐𝒍𝒏(

𝒙−𝒂

𝒃−𝒙
)]

Cumulative Distribution Function

𝐹(𝑥) = Φ [𝛼1+ 𝛼2𝑙𝑛 (
𝑥−𝑎

𝑏−𝑥
)] where

Φ 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑃𝑠𝑖𝑁𝑜𝑟𝑚𝑎𝑙(0,1)).

Mean

N/A

Frontline Solvers 2025 Q1 Reference Guide Page 288

Variance

N/A

Skewness

N/A

Kurtosis

N/A

Mode

No Closed Form

PsiJohnsonSU

PsiJohnsonSU (shape1, shape2, loc, scale)

The PsiJohnsonSU distribution is an unbounded distribution with shape

parameters shape1 and shape2, location parameter loc and scale parameter,

scale.

Parameters

shape1(α1), shape2 (α2) > 0 , loc, scale (β) > 0

Range of Function Values

(-∞, ∞)

Probability Density Function

𝒇(𝒙) =
𝜶𝟐

𝜷√𝟐𝝅(𝟏+𝒛𝟐)
× 𝒆

−𝟏

𝟐
[𝜶𝟏+𝜶𝟐𝒔𝒊𝒏𝒉

−𝟐(𝒛)]
𝟐

Cumulative Distribution Function

𝐹(𝑥) = Φ[𝛼1+ 𝛼2𝑠𝑖𝑛ℎ
−1(𝑧)] where

Φ 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑃𝑠𝑖𝑁𝑜𝑟𝑚𝑎𝑙(0,1)).

Mean

𝛾 − 𝛽√𝜃 sinh (𝑟)

Variance

𝛽2

2
 (𝜃 − 1)(𝜃 𝑐𝑜𝑠ℎ(2𝑟) + 1)

Skewness

−1

4
√𝜃(0−1)2[𝜃(𝜃+2)𝑠𝑖𝑛ℎ(3𝑟)+3𝑠𝑖𝑛ℎ(𝑟)]

[
1

2
(𝜃−1)(𝜃𝑐𝑜𝑠ℎ(2𝑟)+1)]

3
2

Kurtosis

1

8
(𝜃−1)2[𝜃2(𝜃4+2𝜃3+3𝜃2−3)𝑐𝑜𝑠ℎ(4𝑟)+4𝜃2(𝜃+2)𝑐𝑜𝑠ℎ(2𝑟)+3(2𝜃+1)]

[
1

2
(𝜃−1)(𝜃𝑐𝑜𝑠ℎ(2𝑟)+1)]

2

Mode

No Closed Form

Frontline Solvers 2025 Q1 Reference Guide Page 289

PsiKumaraswamy

PsiKumaraswamy (shape1,shape2, min, max)

PsiKumaraswamy is a bounded distribution using the defined min and max

parameters. This distribution may be used as a simpler mathematical

replacement for thePsiBetaGen distribution.

Parameters

shape1(α1) > 0, shape2(α2) > 0, min < max

Range of Function Values

(min, max)

Probability Density Function

𝑓(𝑥) =
𝛼1𝛼2

(𝑚𝑎𝑥−𝑚𝑖𝑛)
𝑧𝛼1−1(1 − 𝑧𝛼1)𝛼2−1 where 𝑧 ≡

𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛

Cumulative Distribution Function

F(x) = 1-(1-𝐹(𝑥) = 1 − (1 − 𝑧∝1)∝2 where 𝑧 ≡
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛

Mean

𝑚𝑖𝑛 + (max− min)𝑞1

Variance

𝛽2[𝑞2 − 𝑞1
2]

Skewness

𝑞3−3𝑞1𝑞2+2𝑞1
3

(𝑞2−𝑞1
2)
3
2

Kurtosis

𝑞4−4𝑞1𝑞3+6𝑞1
2𝑞2− 3𝑞1

4

(𝑞2−𝑞1
2)
2

Mode

min+ (max− min) [
𝛼1−1

𝛼1𝛼2−1
]

1

𝛼1 for 𝛼1 > 1,𝛼2 > 1

min for 𝛼1 < 1, 𝛼2 ≥ 1 𝑜𝑟 𝛼1 = 1,𝛼2 > 1

max for 𝛼1 > 1, 𝛼2 ≤ 1 𝑜𝑟 𝛼1 = 1,𝛼2 < 1

not defined for 𝛼1 < 1, 𝛼2 < 1 𝑜𝑟 𝛼1 = 1,𝛼2 = 1

PsiLaplace

PsiLaplace (loc, β,...)

PsiLaplace (β) is an unbounded, fat-tailed distribution that describes the
difference between two independent exponentials. If a random variable X has a

Laplace distribution, then |X| has an Exponential distribution.

Enter a scale value greater than 0 for the first argument, loc. This value

determines the scale or range of the distribution.

Alternate Formulation: PsiLaplaceAlt

Frontline Solvers 2025 Q1 Reference Guide Page 290

PsiLaplaceAlt is the PsiLaplace distribution defined through alternative

arguments. Two parameters are required and both must be chosen from the

following list: two different percentiles or the standard deviation. Note:

Alternate Formulation distributions are not supported in Analytic Solver Cloud

app.

Parameters

𝛽 > 0, loc > 0

Range of Function Values

(−∞,∞)

Probability Density Function

𝑓(𝑥) =
𝑒
−(
|𝑥|
𝛽
)

2𝛽

Cumulative Distribution Function

𝐹(𝑥) = {
1 −

1

2
𝑒
−𝑥
𝛽 if 𝑥 ≥ 0

1

2
𝑒
𝑥
𝛽 otherwise

Mean

0

Variance

2𝛽2

Skewness

0

Kurtosis

3

Median

0

Mode

0

PsiLevy

PsiLevy (loc,scale)

PsiLevy is a continuous distribution with a location, loc, and a scale parameter,

scale.

Alternate Formulation: PsiLevyAlt

PsiLevyAlt is the PsiLevy distribution defined through alternative arguments.

Two parameters are required. The following combinations may be used: two

different percentiles, percentile and loc or percentile and scale. Note: Alternate
Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

loc (a), scale (c) > 0

Frontline Solvers 2025 Q1 Reference Guide Page 291

Range of Function Values

(loc, ∞)

Probability Density Function

𝑓(𝑥) = √
𝑐

2𝜋

𝑒

𝑐
2(𝑥−𝜇)

(𝑥−𝜇)
3
2

 where erf is the Error Function.

Cumulative Distribution Function

F(x) = 1−𝑒𝑟𝑓 (√
𝑐

2(𝑥−𝜇)
) where erf is the Error Function

Mean

 Does not exist.

Variance

Does not exist.

Skewness

Does not exist.

Kurtosis

Does not exist.

Mode

𝜇 +
𝑐

3

PsiLogistic

PsiLogistic (μ,s,...)

PsiLogistic (µ,s) is an unbounded distribution, symmetric around its mean, with

broader tails than the Normal distribution. The Logistic distribution is often

used to model growth processes.

Alternate Formulation: PsiLogisticAlt

PsiLogisticAlt is the PsiLogistic distribution defined through alternative

arguments. Two parameters are required and both must be chosen from the

following list: 2 different percentiles, mean, var or scale. Note: Alternate

Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

𝜇
𝑠 > 0

Range of Function Values

(−∞,∞)

Probability Density Function

𝑓(𝑥) =
𝑒
−(𝑥−𝜇)

𝑠

𝑠 (1 + 𝑒
−(𝑥−𝜇)

𝑠)
2

Frontline Solvers 2025 Q1 Reference Guide Page 292

Cumulative Distribution Function

𝐹(𝑥) =
1

1 + 𝑒
−(𝑥−𝜇)

𝑠

Mean

𝜇

Variance

𝜋2𝑠2

3

Skewness

0

Kurtosis

6/5

Median

𝜇

Mode

𝜇

PsiLogLogistic

PsiLogLogistic (γ,β,,...)

PsiLogLogistic (γ,β,α) is a distribution with a finite lower bound. The natural
log of PsiLogLogistic is a Logistic random variable. The Log-Logistic

distribution can be used to model the time to perform a job or task.

Alternate Formulation: PsiLogLogisticAlt

PsiLogLogisticAlt is the PsiLogLogistic distribution defined through alternative

arguments. Three parameters are required and all must be chosen from the

following list: 3 different parameters, loc, scale or shape. Note: Alternate

Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

𝛽, 𝛼 > 0
𝛾

Range of Function Values

𝛾,∞)

Probability Density Function

𝑓(𝑥) =
𝛼 (
𝑥 − 𝛾
𝛽

)
𝛼−1

𝛽 [1 + (
𝑥 − 𝛾
𝛽

)
𝛼

]
2

Cumulative Distribution Function

𝐹(𝑥) =
1

1 + (
𝛽

𝑥 − 𝛾
)
𝛼

Frontline Solvers 2025 Q1 Reference Guide Page 293

Mean

𝛽𝜋 𝑐𝑜𝑠 𝑒 𝑐 (
𝜋
𝛼)

𝛼
+ 𝛾 for 𝛼 > 1

Variance

𝛽2𝜋 [2 𝑐𝑜𝑠 𝑒 𝑐 (
2𝜋
𝛼) −

𝜋
𝛼 𝑐𝑜𝑠 𝑒 𝑐

2 (
𝜋
𝛼)
]

𝛼
 for 𝛼 > 2

Skewness

[3cosec (
3𝜋
𝛼) −

6𝜋
𝛼 𝑐𝑜𝑠 𝑒 𝑐 (

2𝜋
𝛼)𝑐𝑜𝑠 𝑒 𝑐 (

𝜋
𝛼) +

2𝜋2

𝛼2
𝑐𝑜𝑠 𝑒 𝑐3 (

𝜋
𝛼)
]

(√
𝜋
𝛼)
[2 𝑐𝑜𝑠 𝑒 𝑐 (

2𝜋
𝛼) −

𝜋
𝛼 𝑐𝑜𝑠 𝑒 𝑐

2 (
𝜋
𝛼)
]

3
2

 for 𝛼 > 3

Kurtosis

Not defined

Median

Not defined

Mode

{𝛾 + 𝛽 [
𝛼 − 1

𝛼 + 1
]

1
𝛼
 for 𝛼 > 1

0 otherwise

PsiLogNormal

PsiLogNormal (μ,σ,...)

PsiLogNormal (µ,σ) is a distribution with a finite lower bound and has mean µ
and standard deviation σ. The LogNormal distribution can be used to model

quantities that are products of many small independent variables. The natural

log of PsiLogNormal is a Normal random variable.

Alternate Formulation: PsiLogNormalAlt

PsiLogNormalAlt is the PsiLogNormal distribution defined through alternative

arguments. Two parameters are required and both must be used in the following

combinations: 2 different percentiles, percentile and mean or percentile and

standard deviation. Note: Alternate Formulation distributions are not supported

in Analytic Solver Cloud app.

Parameters

𝜇, 𝜎 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
𝑒
−
1
2
(
𝑙𝑛 𝑥−𝜇′

𝜎′
)

2

𝑥√2𝜋𝜎′

Frontline Solvers 2025 Q1 Reference Guide Page 294

𝜎 ′ = √𝑙𝑛 (1 +
𝜎2

𝜇2
) , 𝜇′ = 𝑙𝑛(

𝜇2

√𝜇2 + 𝜎2
)

Cumulative Distribution Function

𝐹(𝑥) = 𝛷 (
𝑙𝑛 𝑥 − 𝜇′

𝜎 ′
)

𝛷(𝑎) is the Error Function

Mean

𝜇

Variance

𝜎2

Skewness

𝜎3

𝜇3
+
3𝜎

𝜇

Kurtosis

6(1 +
𝜎

𝜇
)
4

+ 2(1+
𝜎

𝜇
)
3

+ 3(1 +
𝜎

𝜇
)
2

− 3

Median

𝜇2

√𝜇2 + 𝜎2

Mode

𝜇4

(𝜎2 + 𝜇2)
3
2

PsiLogNorm2

PsiLogNorm2 (μ,σ,...)

PsiLogNorm2 (µ,σ) is a distribution with a finite lower bound. It can be used to
model quantities that are products of many small independent variables. The

natural log of PsiLogNorm2 is a Normal random variable. In contrast to

PsiLogNormal(), the parameters µ and σ of PsiLogNorm2() are the mean and

standard deviation of the corresponding Normal distribution.

Parameters

𝜇
𝜎 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
𝑒−

1
2
(
𝑙𝑛 𝑥−𝜇
𝜎

)
2

𝑥√2𝜋𝜎

Frontline Solvers 2025 Q1 Reference Guide Page 295

Cumulative Distribution Function

𝐹(𝑥) = 𝛷 (
𝑙𝑛 𝑥 − 𝜇

𝜎
)

𝛷(𝑎) is the Error Function

Mean

𝑒𝜇+
𝜎2

2

Variance

(𝑒𝜎
2
− 1)𝑒2𝜇+𝜎

2

Skewness

(𝑒𝜎
2
+ 2)√𝑒𝜎

2
− 1

Kurtosis

6𝑒4𝜎
2
+ 2𝑒3𝜎

2
+ 3𝑒2𝜎

2
− 3

Median

𝑒𝜇

Mode

𝑒𝜇−𝜎
2

PsiMakeInput

PsiMakeInput (freq,expr,[deduct,limit,]...)

PsiMakeInput() computes a generalized compounding of an arbitrary
expression. Specifically, PsiMakeInput compounds the expr argument, freq

number of times. For example, for the function, PsiMakeInput(100,

PsiNormal(0,1)); PsiNormal(0,1) will be compounded 100 times.

Note that distribution compounding using PsiMakeInput() produces a more

general case then distribution compounding using Analytic Solver’s

PsiCompound(). (See the PsiCompound() entry in this chapter for more

information on this function.) For example, PsiNormal(0,1, PsiCompound(100))

is similar to PsiMakeInput(100, PsiNormal(0,1)). Both compute the same trials,

but only the former is a true distribution. The latter is considered an uncertain

input, because the expr expression, in this case PsiNormal(0,1), could be more

general then a single distribution. For instance, take the example,
=PsiMakeInput(100, PsiNormal(0,1) + 2 * B1 where B1 contains a new formula

or distribution. The entire expression, PsiNormal(0,1) + 2 * B1, will be

compounded 100 times.

Argument Descriptions:

Freq: Enter a number or expression for the frequency of compounding. Enter 1

for no compounding.

Note:

1. If a fractional value is passed directly or indirectly (by using a

formula) or a continuous distribution is passed to this
argument, the result will be rounded down to the nearest

integer.

Frontline Solvers 2025 Q1 Reference Guide Page 296

2. If a discrete distribution is passed to this argument, the

frequency distribution must be formulated in such a way that

the trial values generated by the distribution must be greater

than 1. If not, trial values < 1 will be set equal to 1.

Expr: A Psi Distribution function or a cell containing a Psi Distribution
function.

Deduct: (Optional) Enter a number to be deduced during compounding.

Note: The value passed to the deduction argument is subtracted from

every term of the compound sum which results in a shift of the

compound distribution by -N * deduction.

Limit: (Optional) Enter a number as a limit during compounding.

Note: If a trial value is larger than a specified limit, then the trial value

is reset to the limit.

This function was introduced to coincide with the release of the Convert @Risk
feature which automatically converts @Risk functions to Psi functions. (For

more information on this new functionality, see Convert @Risk Functions

within the “Using the Ribbon and Task Pane” chapter that appears at the

beginning of this guide.)

The two functions RiskCompound and RiskMakeInput are converted into

PsiMakeInput. Note: RiskMakeInput is a case of RiskCompound when freq =

1.

PsiMaxExtreme

PsiMaxExtreme (m,s,...)

PsiMaxExtreme (m,s) is the positively skewed form of the Extreme Value

distribution, which is the limiting distribution of a very large collection of

random observations.

Alternate Formulation: PsiMaxExtremeAlt

PsiMaxExtremeAlt is the PsiMaxExtreme defined through alternative

arguments. Two parameters are required and both must be chosen from the

following list: 2 different percentiles, mean, var, mode or scale. Note: Alternate
Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

𝑚
𝑠 > 0

Range of Function Values

(−∞,∞)

Probability Density Function

𝑓(𝑥) =
𝑧

𝑠
𝑒−𝑧 , 𝑧 = 𝑒

−(𝑥−𝑚)
𝑠

Cumulative Distribution Function

Not defined

Mean

Not defined

Frontline Solvers 2025 Q1 Reference Guide Page 297

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

PsiMetalog

PsiMetalog(min, max, coefficients)

A general meta-log distribution is defined in models through PsiMetalog(). This

function has as arguments a vector of coefficients (coefficients) and optionally

lower (min) and upper (max) bounds. The metalog distribution family is

designed to be determined from historical data, without requiring a distribution

fitting process. They are computed from a set of historical data pairs {y, x},

where y is a cumulative probability and x is the correspondent percentile. The

coefficients argument is either a range or an array of 2 to 10 numerical elements.

There are 3 optional cases for this distribution:

• Both min and max are missing which results in an unbounded distribution

PsiMetalog(, , {33, 3.7, -2.4, 5.7, 10.1})

• Only min exists which results in a semi-bounded distribution

PsiMetalog(0, , {33, 3.7, -2.4, 5.7, 10.1})

• Both min and max exist which results in a bounded distribution

PsiMetalog(0, 55, {33, 3.7, -2.4, 5.7, 10.1})

Note: An exclusive bounding using only the max argument is not supported.

The min and max arguments are true lower and upper bounds not to be confused

with lower truncate and upper truncate. Optional standard property functions

may be used with this distribution, i.e. PsiTruncate, PsiShift, PsiCorrelate, etc.

The distribution may also be compounded.

Analytic moments are available only for unbounded distributions. Kurtosis is

not computed for more than 5 coefficients.

Note: When deploying an uncertain variable defined using PsiMetalog(), no

additional distribution properties (i.e. PsiTruncate, PsiCensor, etc.) will be

exported except PsiSeed().

Parameters

min, max, coefficients

Range of Function Values

(−∞,∞)

Frontline Solvers 2025 Q1 Reference Guide Page 298

5-Term Quantile Function (Inverse CDF)

𝑀5 (𝑦) ≔ (𝑎1 + log [
𝑦

1−𝑦
]𝑎2 + (

−1

2
+ 𝑦) log [

𝑦

1−𝑦
]𝑎3 + (

−1

2
+ 𝑦)𝑎4 + (

−1

2
+ 𝑦)

2
𝑎5)

See the website, http://metalogdistributions.com/, for more information.

2-Term Metalog Moments

𝑢1,2
′ : = 𝑎1 mean (first moment) of 2 term metalog

𝑢2,2 ∶=
1

3
𝜋2𝑎2

2 variance (2nd central moment) of 2 term metalog

𝑢3,2 ∶= 0 skewness (3rd central moment) of 2 term metalog

𝑢4,2 ∶=
7

15
𝜋4𝑎2

4 kurtosis (4th central moment) of 2 term metalog

See the website, http://metalogdistributions.com/, for more information.

3-Term Metalog Moments

𝑢1,3
′ : = 𝑢1,2

′ +
𝑎3

2
 mean (first moment) of 3 term metalog

𝑢2,3 ∶= 𝑢2,2 +
𝑎3
2

12
+

1

36
𝜋2𝑎3

2 variance (2nd central moment) of 3 term metalog

𝑢3,3 ∶= 𝑢3,2 + 𝜋
2𝑎2

2𝑎3 +
1

24
 𝜋2𝑎3

3 skewness (3rd central moment) of 3 term metalog

kurtosis (4th central moment) of 3 term metalog

𝑢4,3 ∶= 𝑢4,2 +
3

2
𝜋2𝑎2

2𝑎3
2 +

7

30
𝜋4𝑎2

2𝑎3
2 +

𝑎3
4

80
+

1

24
𝜋2𝑎3

4 +
7𝜋4𝑎3

4

1200

See the website, http://metalogdistributions.com/, for more information.

PsiMetalogFit

PsiMetalogfit(num_coef, x_values, y_values)

PsiMetalogFit() computes 2 to 10 coefficients for PsiMetalog by fitting m pairs

representing a CDF. Enter this function as an array formula.

In Analytic Solver Cloud, PsiMetalogFit() returns a Dynamic Array. To use this

function in the Cloud, you need only enter the Psi function in one cell as a

normal function, i.e., not as a control array. The contents of the Dynamic Array

will "spill" down the column. If a nonblank cell is "blocking" the contents of

the Dynamic Array, PsiMetalogFit() will return #SPILL until such time as the

blockage is removed. When used in the Cloud apps, the first argument,
numCoef, is a scalar, the number of coefficients to produce.

Example: The formula PsiMetalogFit(5, A2:E2, A1:E1) is array entered into

cells A3:E3 where the Y values are contained in cells A1:E1 and the X_values

are contained in cells A2:E2 column. This function computes 5 coefficients by

fitting 5 pairs. Note: User must enter the function as an array formula in a

http://metalogdistributions.com/
http://metalogdistributions.com/
http://metalogdistributions.com/
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

Frontline Solvers 2025 Q1 Reference Guide Page 299

horizontal or vertical range-vector with num_coef cells (in order to see all

requested coefficients).

A1 = 0.010, A2 = 10

B1 = 0.100, B2 = 22

C1 = 0.500, C2 = 33

D1 = 0.900, D2 = 43

E1 = 0.990, E2 = 50

Parameters

num_coef, x_values, y_values

Range of Function Values

(−∞,∞)

PsiMetalogSPT

PsiMetalogSPT(min, max, quantiles, probability)

This distribution is constructed by a symmetric-percentile triplet (SPT). The

cumulative probabilities are {prob, 0.5, 1-prob}, where 0 < prob < 0.5. The

corresponding quantile set is a 3-element array/range of quantiles. The optional

min and max arguments have the same meaning of lower and upper bounds as in

the PsiMegalog. This distribution can be truncated, shifted, correlated,
compounded etc. through the use of property functions.

There are 3 optional cases for this distribution:

• Both min and max are missing which results in an unbounded distribution

PsiMetalogSPT(, , {35, 50, 75}, 0.1)

• Only min exists which results in a semi-bounded distribution

PsiMetalogSPT(0, , {35, 50, 75}, 0.1) semi-bounded

• Both min and max exist which results in a bounded distribution

PsiMetalogSPT(0, 100, {35, 50, 75}, 0.1)

Note: Analytic moments are available only for unbounded distributions.

Kurtosis is always computed.

Parameters

min, max, quantiles, prob

Range of Function Values

(−∞,∞)

Metalog Quantile Function where n = 3

Mlogit(y) = (bl+bu eM(y)) / (1+eM(y)) for 0 < y < 1

= bl for y = 0

=bu for y = 1

Metalog PDF

mlogit(y) = m(y) (1+eM(y))2/((bu-bl)eM(y)) for 0 < y < 1

 = 0 for y = 0 or y = 1

Frontline Solvers 2025 Q1 Reference Guide Page 300

where bl and bu are user-specified lower and upper bounds respectively and

M(y) = a1 + a2 ln((
𝑦

1− 𝑦
) + 𝑎3(𝑦 − 0.5) ln (

𝑦

1 − 𝑦
))

m(y) =
1

[
𝑎2

𝑦(1 − 𝑦)
+ 𝑎3(

𝑦 − 0.5
𝑦(1 − 𝑦)

+ 𝑙𝑛 (
𝑦

1 − 𝑦
)]

The constants (a1, a2, a3) can be calculated directly from SPT input parameters:

𝑎1 = ln(𝛾0.5)

𝑎2 =
1

2
[ln
1 − 𝛼

𝛼
]
−1

𝑙𝑛 [
𝛾1−𝛼
𝛾0.5
2]

𝑎3 = [(1 − 2α)ln (
1 − 𝛼

𝛼
)]
−1

ln (
𝛾1−𝛼𝛾𝛼
𝛾0.5
2)

𝑤ℎ𝑒𝑟𝑒 𝑦𝛼 =
𝑞𝛼 − 𝑏𝑙
𝑏𝑢 − 𝑞𝛼

, 𝑦0.5 =
𝑞𝛼0.5 − 𝑏𝑙
𝑏𝑢 − 𝑞0.5

, 𝑦1−𝛼 =
𝑞1−𝛼 − 𝑏𝑙
𝑏𝑢 − 𝑞1−𝛼

The feasibility requirement is given by:

[𝑏𝑙 + 𝑏𝑢𝛾𝛼
1−𝑘𝛼𝛾1−𝛼

𝑘𝛼][1 + 𝛾𝛼
1−𝑘𝛼𝛾1−𝛼

𝑘𝛼]
−1
< 𝑞0.5 < [𝑏𝑙 + 𝑏𝑢𝛾𝛼

𝑘𝛼𝛾1−𝛼
1−𝑘𝛼][1 + 𝛾𝛼

𝑘𝛼𝛾1−𝛼
1−𝑘𝛼]

−1

where 𝑘𝛼 =
1

2
[1 − 1.66711 (

1

2
− 𝛼)]

See the website, http://metalogdistributions.com/, for more information.

PsiMinExtreme

PsiMinExtreme (m,s,...)

PsiMinExtreme is the negatively skewed form of the Extreme Value

distribution, which is the limiting distribution of a very large collection of

random observations.

Alternate Formulation: PsiMinExtremeAlt

PsiMinExtremeAlt is the PsiMinExtreme distribution defined through

alternative arguments. Two parameters are required and both must be chosen

from the following list: 2 different percentiles, mean, var, mode or scale. Note:

Alternate Formulation distributions are not supported in Analytic Solver Cloud

app.

Parameters

𝑚
𝑠 > 0

Range of Function Values

(−∞,∞)

Probability Density Function

𝑓(𝑥) =
𝑧

𝑠
𝑒−𝑧 , 𝑧 = 𝑒

(𝑥−𝑚)
𝑠

Cumulative Distribution Function

Not defined

http://metalogdistributions.com/

Frontline Solvers 2025 Q1 Reference Guide Page 301

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

PsiMomentFit

PsiMomentFit (mean,stdev,skew,kurtosis,...)

PsiMomentFit is a distribution from the the Johnson system fitted to the entered

statistical moments. The resultant distribution is either a JohnsonSU,

JohnsonSB, lognormal, or normal distribution. The standard deviation

(stdev) must be positive. The kurtosis value must be > 1.

Examples:

• PsiMomentFit(10, 20, 4, 41) returns a distribution from the

Johnson family with mean 10, standard deviation 20, skewness 4 and

kurtosis 41.

• PsiMomentFit(A1, A2, A3, A4) returns a distribution from the

Johnson family using parameters from cells A1:A4.

Parameters

mean

standard deviation > 0

skewness

kurtosis > 1

Range of Function Values

(−∞,∞)

Frontline Solvers 2025 Q1 Reference Guide Page 302

Probability Density Function and Cumulative Distribution Function

See distribution functions for the specific Johnson system distribution:

PsiJohnsonSU, PsiJohnsonSB, PsiLogNormal and PsiNormal.

Mean

µ

Variance

σ2

Skewness

s

Kurtosis

k

Mode

No closed form

PsiMyerson

PsiMyerson (a,b,c,t,...)

PsiMyerson (a,b,c,t) is a generalized LogNormal/Normal distribution, specified

using the bottom percentile (a), 50th percentile (b), top percentile (c) and

optional tail percentage parameter (t). This distribution is bounded on the side of
the narrower percentile range; when both the bottom and top percentile ranges

are equal, then this distribution is unbounded.

If the t parameter (tail percentage) is present then the a and c parameters (bottom

and top percentiles) are used to construct a distribution PDF in such a way that

the left and right tails (remaining equal) sum up to the desired t parameter value.

The top percentile is always symmetric to the bottom percentile. For example, if

the bottom percentile equals the 20th percentile, the top percentile will be equal

to the 80th percentile.

The default option for parameter t is 0.50 which means that the left tail and the

right tail each equal 0.25. As a result, parameter a (bottom percentile) is the 25th
percentile and parameter c (top percentile) is the 75th percentile.

This distribution, developed by Dr. Roger Myerson, is used to model random

variables when the only information available is the percentile values, and

optionally, a tail percentage parameter indicating the probability of values being

within the specified percentiles. If the specified percentiles are equidistant

(measured by the parameter b’ below), then the Myerson distribution is equiva-

lent to a Normal distribution. When the 50th percentile is equal to the geometric

mean of the top and bottom percentiles, then the Myerson distribution is

equivalent to the LogNormal distribution.

Parameters

𝑎 < 𝑐 < 𝑏
𝑡 ∈ (0,1)
If 𝑡 is omitted, it is given a default value of 0.5

Range of Function Values

𝐿𝐵,𝑈𝐵)
where,

Frontline Solvers 2025 Q1 Reference Guide Page 303

𝐿𝐵 = −∞, 𝑈𝐵 = ∞ if 𝑏′ = 1

𝐿𝐵 = 𝑐 −
(𝑏 − 𝑐)

𝑏′ − 1
, 𝑈𝐵 = ∞ if 𝑏′ > 1

𝐿𝐵 = −∞, 𝑈𝐵 = 𝑐 −
(𝑏 − 𝑐)

𝑏′ − 1
 if 𝑏′ < 1

and,

𝑏′ =
𝑏 − 𝑐

𝑐 − 𝑎

Probability Density Function

If 𝑏′ ≠ 1,

𝑓(𝑥) =

𝑧
(1−

𝑡
2
)
(𝑏′ − 1)

((𝑏 − 𝑐) + (𝑥 − 𝑐)(𝑏′ − 1)) 𝑙𝑛(𝑏′)
𝑓𝑁(0,1)(𝑞)

where
𝑓𝑁(0,1)(𝑞) is the PDF of the Standard Normal distribution,

q = Z
(1-

𝑡
2
)
{
𝑙𝑛 (

(𝑥 − 𝑐)(𝑏′ − 1)
(𝑏 − 𝑐)

+ 1)

𝑙𝑛(𝑏′)
}

If 𝑏′ = 1,

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
(−
(𝑥−𝜇)2

2𝜎2
)

where
𝜇 = 𝑐

𝜎 =
(𝑏 − 𝑐)

𝑍
(1−

𝑡
2
)

and
𝑍𝑥 = CDFInverse of the Standard Normal distribution at x

Cumulative Distribution Function

If 𝑏′ ≠ 1,

𝐹(𝑥) = 𝐹𝑁(0,1)(𝑞) =
1

2
(𝛷 (

𝑞

√2
) + 1)

where
𝐹𝑁(0,1)(𝑞) is the CDF of the Standard Normal distribution

𝛷(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0

 is the Error function

q = Z
(1-

𝑡
2
)
{
𝑙𝑛 (

(𝑥 − 𝑐)(𝑏′ − 1)
(𝑏 − 𝑐)

+ 1)

𝑙𝑛(𝑏′)
}

If 𝑏′ = 1,

𝐹(𝑥) =
1

2
[1 + 𝑒𝑟𝑓 (

𝑥 − 𝜇

𝜎√2
)]

where
𝑒𝑟𝑓(𝑦) is the Error Function, and
𝜇 = 𝑐

𝜎 =
(𝑏 − 𝑐)

𝑍
(1−

𝑡
2
)

and
𝑍𝑥 = CDFInverse of the Standard Normal distribution at x

Frontline Solvers 2025 Q1 Reference Guide Page 304

Mean

No closed form

Variance

No closed form

Skewness

No closed form

Kurtosis

No closed form

Median

No closed form

Mode

No closed form

PsiNormal

PsiNormal (μ,σ,...)

PsiNormal (µ,σ) is an unbounded, symmetric distribution with the familiar bell

curve, also called a Gaussian distribution. The Normal distribution is widely

used in many different kinds of applications. A normal distribution with mean

zero and standard deviation one is called a Standard normal distribution.

The sum of independent random variables of any shape tends to the Normal

distribution.

Alternate Formulation: PsiNormalAlt

PsiNormalAlt is the PsiNormal distribution defined through alternative

arguments. Two parameters are required and must be used in the following

combinations: 2 different percentiles, percentile and mean or percentile and

standard deviation. Note: Alternate Formulation distributions are not supported

in Analytic Solver Cloud app.

Parameters

𝜇
𝜎 > 0

Range of Function Values

(−∞,∞)

Probability Density Function

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
(−
(𝑥−𝜇)2

2𝜎2
)

Cumulative Distribution Function

𝐹(𝑥) =
1

2
[1 + 𝑒𝑟𝑓 (

𝑥 − 𝜇

𝜎√2
)]

𝑒𝑟𝑓(𝑦) is the Error Function

Mean

𝜇

Frontline Solvers 2025 Q1 Reference Guide Page 305

Variance

𝜎2

Skewness

0

Kurtosis

0

Median

𝜇

Mode

𝜇

PsiNormalSkew

PsiNormalSkew(a,b,c,...)

PsiNormalSkew (a,b,c) is a generalized Normal distribution with lower bound a,

upper bound b, and skew value c. Lower and upper bound values describe +/-

3rd standard deviation. The skew value c can take on values between (but not

including) -1 and 1. While the Normal distribution is symmetric, the Normal

Skew distribution is skewed either to the left with a positive skew parameter or

to the right with a negative skew parameter.

Both the Myerson distribution (described above) and the PsiNormalSkew

distribution have recently emerged in practice. Both distributions are

generalizations of the Normal distribution but rather than using the mean and

standard deviation as arguments, these distributions are calculated using an

upper and lower bound along with either likely and tail arguments (such as with

the Myerson distribution) or a skew argument (such as with the NormalSkew

distribution). When the skew argument is equidistant from the upper and lower

bounds, the NormalSkew distribution equals the Myerson distribution.

In the PsiNormalSkew distribution, the lower and upper bounds are exactly the

same as in the Myerson distribution. The tail argument is missing in the Normal

Skew distribution as it remains at the constant value of 0.002699796146511.

Parameters

a < b

-1< c <1

If c is omitted, it is given a default value of 0. In this case, the PsiNormalSkew

distribution will equal the PsiMyerson distribution.

Range of Function Values

[𝐿𝐵, 𝑈𝐵]
𝑤ℎ𝑒𝑟𝑒,
𝐿𝐵 = −∞,𝑈𝐵 = ∞𝑖𝑓𝑏′ = 1

𝐿𝐵 = 𝑑 −
(𝑏 − 𝑑)

𝑏′ − 1
, 𝑈𝐵 = ∞𝑖𝑓𝑏′ > 1

𝐿𝐵 = −∞,𝑈𝐵 = 𝑑 −
(𝑏 − 𝑑)

𝑏′ − 1
𝑖𝑓𝑏′ < 1

𝑤ℎ𝑒𝑟𝑒

Frontline Solvers 2025 Q1 Reference Guide Page 306

𝑏′ =
𝑏 − 𝑑

𝑑 − 𝑎

𝑎𝑛𝑑

𝑑 = 𝑎 + (𝑐 + 1) ∗
(𝑏 − 1)

2

(The “d” parameter here equals the “c” parameter in the PsiMyerson

distribution.

Probability Density Function

𝐼𝑓𝑏′ ≠ 1,

𝑓(𝑥) =

𝑧
(1−

𝑡
2
)
(𝑏′ − 1)

((𝑏 − 𝑑) + (𝑥−𝑑) (𝑏′−1)) 𝑙𝑛(𝑏′)
𝑓𝑁(0,1)(𝑞)

where 𝑓𝑁(0,1)(𝑞) 𝐼𝑓𝑏′ = 1, is the PDF of the Standard Normal distribution.

𝑞 =𝑍
(1−

𝑡
2
)
{
𝑙𝑛 (

(𝑥 − 𝑑)(𝑏′ − 1)
(𝑏 − 𝑑)

+ 1)

𝑙𝑛(𝑏′)
}

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
(
(𝜒−𝜇)2

2𝜎2
)

𝑤ℎ𝑒𝑟𝑒
𝜇 = 𝑑

𝜎 =
(𝑏 − 𝑑)

𝑍
(1−

𝑡
2
)

𝑑 = 𝑎 + (𝑐 + 1) ∗
(𝑏 − 1)

2

(The “d” parameter here equals the “c” parameter in the PsyMyerson

distribution.)

Zx = CDF Inverse of the Normal distribution at x.

Cumulative Distribution Function

If 𝑏′ ≠ 1,

𝐹(𝑥) = 𝐹𝑁(0,1)(𝑞) =
1

2
(𝛷 (

𝑞

√2
) + 1)

where
𝐹𝑁(0,1)(𝑞) is the CDF of the Standard Normal distribution

𝛷(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0

 is the Error function

q = Z
(1-
𝑡
2
)
{
𝑙𝑛 (

(𝑥 − 𝑑)(𝑏′ − 1)
(𝑏 − 𝑑)

+ 1)

𝑙𝑛(𝑏′)
}

If 𝑏′ = 1,

𝐹(𝑥) =
1

2
[1 + 𝑒𝑟𝑓 (

𝑥 − 𝜇

𝜎√2
)]

where
𝑒𝑟𝑓(𝑦) is the Error Function, and
𝜇 = 𝑑

Frontline Solvers 2025 Q1 Reference Guide Page 307

𝜎 =
(𝑏 − 𝑑)

𝑍
(1−

𝑡
2
)

𝑑 = 𝑎 + (𝑐 + 1) ∗
(𝑏 − 1)

2

(The “d” parameter here equals the “c” parameter in the PsiMyerson

distribution.)

Zx = CDF Inverse of the Normal distribution at x.

Mean

No closed form

Variance

No closed form

Skewness

No closed form

Kurtosis

No closed form

Median

No closed form

Mode

No closed form

PsiPareto

PsiPareto (θ,a,...)

PsiPareto (θ,a) is a distribution with a finite lower bound a, and shape parameter

θ. The Pareto distribution can be used to describe or model wealth distribution,

sizes of particles, etc. It is the exponential of an Exponential random variable.

Alternate Formulation: PsiParetoAlt

PsiParetoAlt is the PsiPareto distribution defined through alternative arguments.

Two parameters are required which must be chosen from the following: 2

different percentiles, shape or scale. Note: Alternate Formulation distributions

are not supported in Analytic Solver Cloud app.

Parameters

𝜃, 𝑎 > 0

Range of Function Values

𝑎,∞)

Probability Density Function

𝑓(𝑥) =
𝜃𝑎𝜃

𝑥𝜃+1

Cumulative Distribution Function

𝐹(𝑥) = 1 − (
𝑎

𝑥
)
𝜃

Frontline Solvers 2025 Q1 Reference Guide Page 308

Mean

𝑎𝜃

𝜃 − 1
 for 𝜃 > 1

Variance

𝜃𝑎2

(𝜃 − 1)2(𝜃 − 2)
 for 𝜃 > 2

Skewness

2(𝜃 + 1)

(𝜃 − 3)
√
(𝜃 − 2)

𝜃
 for 𝜃 > 3

Kurtosis

3(𝜃 − 2)(3𝜃2 + 𝜃 + 2)

𝜃(𝜃 − 3)(𝜃 − 4)
 for 𝜃 > 4

Median

𝑎2
1
𝜃

Mode

𝑎

PsiPareto2

PsiPareto2 (b,q,...)

PsiPareto2 is an alternate form of the Pareto distribution with a finite lower
bound of 0, and a shape parameter q. Like PsiPareto (θ,a), it can be used to

describe or model wealth distribution, sizes of particles, etc. It is the

exponential of an Exponential random variable.

Alternate Formulation: PsiPareto2Alt

PsiPareto2Alt is the PsiPareto2 distribution defined through alternative

arguments. Two parameters are required and both must be chosen from the

following list: 2 different percentiles, scale or shape. Note: Alternate

Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

𝑏, 𝑞 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
𝑞𝑏𝑞

(𝑥 + 𝑏)𝑞+1

Cumulative Distribution Function

𝐹(𝑥) = 1 − (
𝑏

𝑥 + 𝑏
)
𝑞

Frontline Solvers 2025 Q1 Reference Guide Page 309

Mean

𝑏

𝑞 − 1
 for q > 1

Variance

𝑞𝑏2

(𝑞 − 1)2(𝑞 − 2)
 for q > 2

Skewness

2(𝑞 + 1)

(𝑞 − 3)
√
(𝑞 − 2)

𝑞
 for q > 3

Kurtosis

Not defined

Median

𝑏

𝑞
2
1
𝑞

Mode

0

PsiPearson5

PsiPearson5 (,β,...)

PsiPearson5 (α,β) is a distribution with a lower bound of 0, and density similar

to that of the LogNormal distribution. The Pearson5 distribution is sometimes

called the Inverse Gamma distribution. It can be used to model time delays
when these can possibly take on unbounded (or very large) values.

Alternate Formulation: PsiPearson5Alt

PsiPearson5Alt is the PsiPearson5 distribution defined through alternative

arguments. Two parameters are required and both must be chosen from the

following list: two different percentiles, shape or scale. Note: Alternate

Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

𝛼, 𝛽 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
𝑥−(𝛼+1)𝑒−

𝛽
𝑥

𝛽−𝛼𝛤(𝛼)

Cumulative Distribution Function

𝐹(𝑥) = 1 − 𝐹𝐺 (
1

𝑥
)

𝐹𝐺(𝑦) is the Distribution function of a Gamma (𝛼,
1

𝛽
)

random variable

Frontline Solvers 2025 Q1 Reference Guide Page 310

Mean

𝛽

𝛼 − 1
 for 𝛼 > 1

Variance

𝛽2

(𝛼 − 1)2(𝛼 − 2)
 for 𝛼 > 2

Skewness

4√𝛼 − 2

𝛼 − 3
 for 𝛼 > 3

Kurtosis

3(𝛼 + 5)(𝛼 − 2)

(𝛼 − 3)(𝛼 − 4)
 for 𝛼 > 4

Median

Not defined

Mode

𝛽

𝛼 + 1

PsiPearson6

PsiPearson6 (1,2,β,...)

PsiPearson6 (α1, α2, β) is a distribution with a lower bound of 0, and a mode just

beyond the lower bound. The Pearson6 distribution is sometimes called the

Beta distribution of the second kind.

If X1 ~ Gamma (α1,β) and X2 ~ Gamma (α2,1) are independent random

variables, then X1/X2 has a Pearson6 distribution. If X is a random variable

with a Pearson6 (α1,α2,1) distribution, then X/(1+X) has a Beta (α1, α2)
distribution.

Alternate Formulation: PsiPerson6Alt

PsiPearson6Alt is the PsiPearson6 distribution defined through alternative

arguments. Two parameters are required and both must be chosen from the

following list: 2 different percentiles, shape or scale. Note: Alternate

Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

𝛼1, 𝛼2, 𝛽 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
(
𝑥
𝛽
)
𝛼1−1

𝛽𝐵(𝛼1, 𝛼2) [1 + (
𝑥
𝛽
)]
𝛼1+𝛼2

𝐵(𝛼1, 𝛼2) is the Beta function

Frontline Solvers 2025 Q1 Reference Guide Page 311

Cumulative Distribution Function

𝐹(𝑥) = 𝐹𝐵 (
𝑥

𝑥 + 𝛽
)

𝐹𝐵(𝑦) is the Distribution function of a Beta (𝛼`1, 𝛼2)
random variable

Mean

𝛽𝛼1
𝛼2 − 1

 for 𝛼2 > 1

Variance

𝛽2𝛼1(𝛼1 + 𝛼2−1)

(𝛼2 − 1)
2(𝛼2 − 2)

 for 𝛼2 > 2

Skewness

√
𝛼2 − 2

𝛼1(𝛼1 + 𝛼2 − 1)
(
4𝛼1 + 2𝛼2 − 2

𝛼2 − 3
) for 𝛼2 > 3

Kurtosis

3(𝛼2 − 2)

(𝛼2 − 3)(𝛼2 − 4)
[
2(𝛼2 − 1)

2 + 𝛼1(𝛼1 + 𝛼2 − 1)(𝛼2 + 5)

𝛼1(𝛼1 + 𝛼2 − 1)
] for 𝛼2 > 4

Median

Not defined

Mode

{
𝛽(𝛼1 − 1)

𝛼2 + 1
 if 𝛼1 ≥ 1

0 otherwise

PsiPert

PsiPert (a,c,b,...)

PsiPert (a,c,b) is a form of the Beta distribution, often used to estimate project

completion times in the Program Evaluation and Review Technique, where a is

the minimum time, b is the maximum time, and c is the most likely time. These
parameters are used to compute the shape parameters α1,α2 used in the PsiBeta

function, as shown below.

Alternate Formulation: PsiPertAlt

PsiPertAlt is the PsiPert distribution defined through alternative arguments.

Three parameters are required which must be chosen from the following list: 3

different percentiles, mean, var, min, likely or max. Note: Alternate

Formulation distributions are not supported in Analytic Solver Cloud app.

Parameters

𝑎 < 𝑐 < 𝑏
The shape parameters 𝛼1, 𝛼2 can be defined as

𝛼1 =
−5𝑎 + 𝑏 + 4𝑐

6(𝑏 − 𝑎)

𝛼2 =
−𝑎 + 5𝑏 − 4𝑐

6(𝑏 − 𝑎)

Frontline Solvers 2025 Q1 Reference Guide Page 312

Range of Function Values

[𝑎, 𝑏]

Probability Density Function

𝑓(𝑥) =
(𝑥 − 𝑎)𝛼1−1(𝑏 − 𝑥)𝛼2−1

𝐵(𝛼1, 𝛼2)(𝑏 − 𝑎)
𝛼1+𝛼2−1

𝐵(𝛼1, 𝛼2) is the Beta function

Cumulative Distribution Function

𝐹(𝑥) =
𝐵
(
𝑥−𝑎
𝑏−𝑎

)
(𝛼1, 𝛼2)

𝐵(𝛼1, 𝛼2)

𝐵(𝛼1, 𝛼2) is the Beta function
𝐵𝑥(𝛼1, 𝛼2) is the Incomplete Beta function

Mean

𝑎 + 𝑏 + 4𝑐

6

Variance

(𝑏 − 𝑎)2𝛼1𝛼2
252

Skewness

𝑎 + 𝑏 − 4𝑐

(𝑏 − 𝑎)
√

7

𝛼1𝛼2

Kurtosis

3(𝛼1 + 𝛼2 + 1)[2(𝛼1 + 𝛼2)
2 + 𝛼1𝛼2(𝛼1 + 𝛼2 − 6)]

𝛼1𝛼2(𝛼1 + 𝛼2 + 3)(𝛼1 + 𝛼2 + 2)

Median

Not defined

Mode

𝑐

PsiRayleigh

PsiRayleigh (β,...)

PsiRayleigh (β) is a distribution with a finite lower bound of 0, a special case of

a Weibull distribution. The Rayleigh distribution can be used to model

component lifetimes.

If X is a random variable with Rayleigh distribution with parameter β = 1, then

X2 has a Chi Square distribution with parameter 2 (two degrees of freedom). If

X and Y are independent normally distributed random variables with mean zero

and variance σ2, then (X2+Y2)1/2 has a Rayleigh distribution with parameter σ.

Thus, a Rayleigh distribution may be used to model the length of a two-dimen-

sional vector whose components are independent and normally distributed.

Alternate Formulation: PsiRayleighAlt

Frontline Solvers 2025 Q1 Reference Guide Page 313

PsiRayleighAlt is the PsiRayleigh distribution defined through alternative

arguments. One parameters is required and must be chosen from the following

list: percentile, var or mean. Note: Alternate Formulation distributions are not

supported in Analytic Solver Cloud app.

Parameters

𝛽 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) =
𝑥𝑒

(
−𝑥2

2𝛽2
)

𝛽2

Cumulative Distribution Function

𝐹(𝑥) = 1 − 𝑒
(
−𝑥2

2𝛽2
)

Mean

𝛽√
𝜋

2

Variance

(4 − 𝜋)𝛽2

2

Skewness

2√𝜋(𝜋 − 3)

(4 − 𝜋)
3
2

Kurtosis

−3𝜋2 + 32

(4 − 𝜋)2

Median

𝛽√𝑙𝑛(4)

Mode

𝛽

PsiReciprocal

PsiReciprocal (min, max)

PsiReciprocal is a bounded continuous distribution with min and max

parameters. This distribution is typically used in numerical analysis, Bayesian

statistics and analysis of noise.

Parameters

Min < max

Frontline Solvers 2025 Q1 Reference Guide Page 314

Range of Function Values

[min, 𝑚𝑎𝑥]

Probability Density Function

𝑓(𝑥) =
1

𝑥[ln(𝑚𝑎𝑥)−ln(𝑚𝑖𝑛)]

Cumulative Distribution Function

F(x) =
ln(𝑥)−ln (𝑚𝑖𝑛)

ln (𝑚𝑎𝑥)−ln(𝑚𝑖𝑛)

Mean

𝑞1

Variance

𝑞1 − 𝑞1
2

Skewness

𝑞3−3𝑞1𝑞2+2𝑞1
3

(𝑞2 − 𝑞1
2)
3
2

Kurtosis

𝑞4−4𝑞1𝑞3+6𝑞1
2𝑞2−3𝑞1

4

(𝑞2 − 𝑞1
2)
3
2

Mode

𝑚𝑖𝑛

PsiStudent

PsiStudent (df,…)

PsiStudent (df) is an unbounded distribution, symmetric about zero, with a shape

similar to that of a Standard Normal distribution, and it approaches the Standard

Normal distribution as the degrees of freedom (parameter df) increases. It is

also known as the t-distribution, or Student’s t-distribution.

The Student or t-distribution frequently arises when estimating the mean of a

normally distributed population when the sample size is small. It is also used
when the population variance is unknown, and is estimated from a small sample.

Alternate Formulation: PsiStudentAlt

PsiStudentAlt is the PsiStudent distribution defined through alternative

arguments. One percentile parameter is required. Note: Alternate Formulation

distributions are not supported in Analytic Solver Cloud app.

Parameters

𝑑𝑓 > 0, integer

Range of Function Values

(−∞,∞)

Frontline Solvers 2025 Q1 Reference Guide Page 315

Probability Density Function

𝑓(𝑥) =
𝛤 (
𝑑𝑓 + 1
2

)

√𝜋𝑑𝑓𝛤 (
𝑑𝑓
2
)
(

𝑑𝑓

𝑥2 + 𝑑𝑓
)

𝑑𝑓+1
2

𝛤(𝑥) is the Gamma function

Cumulative Distribution Function

𝐹(𝑥) =

1 + 𝐵
(

𝑥2

𝑥2+𝑑𝑓
)
(
1
2
,
𝑑𝑓
2
)

2

𝐵𝑎(𝑥, 𝑦) is the Incomplete Beta function

Mean

0 if df > 1
undefined if df = 1

Variance

𝑑𝑓

𝑑𝑓 − 2
 if 𝑑𝑓 > 2

Skewness

0 if 𝑑𝑓 > 3

Kurtosis

3𝑑𝑓 − 6

𝑑𝑓 − 4
 if 𝑑𝑓 > 4

Median

0

Mode

0

PsiTriangGen

PsiTriangGen (ap,m,br,p,r…)

PsiTriangGen (ap,m,br,p,r…) is a Triangular distribution where the lower and

upper bounds are not given as fixed values, but are specified using percentiles.

This distribution is usually used to create rough models in situations where little

or no data is available. The distribution has a most likely value of m, the p

(lower) percentile value is ap, and the r (upper) percentile value is br. Given

these values, a PsiTriangGen (ap,m,br,p,r…) distribution corresponds to a

PsiTriangular (a,c,b) distribution with values for the bounds (a and b), and the

most likely value (c) computed as shown below.

Parameters

𝑝, 𝑟 ∈ (0,1)
𝑝 < 𝑟
𝑎𝑝 < 𝑏𝑟

𝑎𝑝 ≤ 𝑚 ≤ 𝑏𝑟

𝐼𝑓 𝑎𝑝 = 𝑚, 𝑡ℎ𝑒𝑛 𝑝 𝑚𝑢𝑠𝑡 = 0

Frontline Solvers 2025 Q1 Reference Guide Page 316

𝐼𝑓 𝑚 = 𝑏𝑟 , 𝑡ℎ𝑒𝑛 𝑟 𝑚𝑢𝑠𝑡 = 1

The parameters of the Triangular distribution are defined as

𝑎 =

𝑎𝑝 −𝑚√
𝑝
𝑞

1 −√
𝑝
𝑞

𝑐 = 𝑚

𝑏 =
𝑏𝑟 −𝑚√

1− 𝑟
1 − 𝑞

1 −√
1 − 𝑟
1 − 𝑞

Here 𝑞 is a solution to the following equation

𝑞 =

(𝑚 − 𝑎𝑝) (1 −√
1 − 𝑟
1 − 𝑞)

(𝑏𝑟 −𝑚)(1 −√
𝑝
𝑞
) + (𝑚− 𝑎𝑝) (1 − √

1 − 𝑟
1− 𝑞)

Range of Function Values

[𝑎, 𝑏]

Probability Density Function

𝑓(𝑥) =

{

 2(𝑥 − 𝑎)

(𝑐 − 𝑎)(𝑏 − 𝑎)
 if 𝑎 ≤ 𝑥 ≤ 𝑐

2(𝑏 − 𝑥)

(𝑏 − 𝑐)(𝑏 − 𝑎)
 if 𝑐 ≤ 𝑥 ≤ 𝑏

Cumulative Distribution Function

𝐹(𝑥) =

{

 (𝑥 − 𝑎)2

(𝑐 − 𝑎)(𝑏 − 𝑎)
 if 𝑎 ≤ 𝑥 ≤ 𝑐

1 −
(𝑏 − 𝑥)2

(𝑏 − 𝑐)(𝑏 − 𝑎)
 if 𝑐 ≤ 𝑥 ≤ 𝑏

Mean

𝑎 + 𝑏 + 𝑐

3

Variance

𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐

18

Skewness

√2(𝑎 + 𝑏 − 2𝑐)(2𝑎 − 𝑏 − 𝑐)(𝑎 − 2𝑏 + 𝑐)

5(𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐)
3
2

Kurtosis

12/5

Frontline Solvers 2025 Q1 Reference Guide Page 317

Median

{

𝑎 +√

(𝑏 − 𝑎)(𝑐 − 𝑎)

2
 if 𝑐 ≥

𝑏 − 𝑎

2

𝑏 − √
(𝑏 − 𝑎)(𝑏 − 𝑐)

2
 otherwise

Mode

𝑐

PsiTriangular

PsiTriangular (a,c,b,...)

PsiTriangular (a,c,b) is a distribution with lower bound a, upper bound b, and

most likely value c. This distribution is usually used to create rough models in

situations where little or no data is available. If the parameter c = b, then the

distribution is also known as a Right Triangular distribution. If the parameter c

= a, then the distribution is also known as a Left Triangular distribution. If X1

and X2 are independent Uniform (0,1) random variables, then (X1+X2)/2 has a

Triangular (0,0.5,1) distribution.

Alternate Formulation: PsiTriangularAlt

The alternative parameters are combinations of the native arguments (min,

likely, max) plus percentiles, i.e. =PsiTriangularAlt(min, percentile1,
percentile2), PsiTriangularAlt(percentile1, likely, percentile2), etc. Note:

Alternate Formulation distributions are not supported in Analytic Solver Cloud

app.

Parameters

𝑎 ≤ 𝑐 ≤ 𝑏
𝑎 < 𝑏

Range of Function Values

[𝑎, 𝑏]

Probability Density Function

𝑓(𝑥) =

{

 2(𝑥 − 𝑎)

(𝑐 − 𝑎)(𝑏 − 𝑎)
 if 𝑎 ≤ 𝑥 ≤ 𝑐

2(𝑏 − 𝑥)

(𝑏 − 𝑐)(𝑏 − 𝑎)
 if 𝑐 ≤ 𝑥 ≤ 𝑏

Cumulative Distribution Function

𝐹(𝑥) =

{

 (𝑥 − 𝑎)2

(𝑐 − 𝑎)(𝑏 − 𝑎)
 if 𝑎 ≤ 𝑥 ≤ 𝑐

1 −
(𝑏 − 𝑥)2

(𝑏 − 𝑐)(𝑏 − 𝑎)
 if 𝑐 ≤ 𝑥 ≤ 𝑏

Mean

𝑎 + 𝑏 + 𝑐

3

Frontline Solvers 2025 Q1 Reference Guide Page 318

Variance

𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐

18

Skewness

√2(𝑎 + 𝑏 − 2𝑐)(2𝑎 − 𝑏 − 𝑐)(𝑎 − 2𝑏 + 𝑐)

5(𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐)
3
2

Kurtosis

12/5

Median

{

𝑎 +√

(𝑏 − 𝑎)(𝑐 − 𝑎)

2
 if 𝑐 ≥

𝑏 − 𝑎

2

𝑏 − √
(𝑏 − 𝑎)(𝑏 − 𝑐)

2
 otherwise

Mode

𝑐

PsiUniform

PsiUniform (a,b,...)

PsiUniform (a,b) is a flat, bounded distribution with lower bound a and upper

bound b. It is used to represent a random variable that is equally likely to take

on any value between a lower and upper bound. A Uniform (0,1) distribution is
also known as a Standard Uniform distribution, and is used to generate many

other random variables. If X is a random variable with a Standard Uniform

distribution, then a + (b – a)X has a Uniform (a,b) distribution, and (1 – X) has a

Standard Uniform distribution.

Alternate Formulation: PsiUniformAlt

The alternative parameters are combinations of the native arguments (lower and

upper) plus percentiles, i.e. =PsiUniformAlt(lower, percentile1),

PsiUniformAlt(percentile1, upper) or PsiUniformAlt(percentile1, percentile2).

Note: Alternate Formulation distributions are not supported in Analytic Solver

Cloud app.

Parameters

𝑎 < 𝑏

Range of Function Values

[𝑎, 𝑏]

Probability Density Function

𝑓(𝑥) = {
1

𝑏 − 𝑎
 if 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise

Frontline Solvers 2025 Q1 Reference Guide Page 319

Cumulative Distribution Function

𝐹(𝑥) = {

0 if 𝑥 < 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
 if 𝑎 ≤ 𝑥 ≤ 𝑏

1 if 𝑥 > 𝑏

Mean

𝑎 + 𝑏

2

Variance

(𝑏 − 𝑎)2

12

Skewness

0

Kurtosis

9/5

Median

𝑎 + 𝑏

2

Mode

Any value in [a,b]

PsiVary

PsiVary (base,min,max,[range_type],[dist_name],…)

PsiVary (base, min, max, range_type, dist_name) can be used to specify a

PsiTriangular (triang), PsiPert (pert), PsiUniform (uniform), PsiTriangGen (trianggen)

or PsiNormalAlt (normal) distribution using a range defined by the min and max

arguments which surround the base argument. There is no benefit to defining one of

these functions using PsiVary. Note: This distribution was added for compliance with

the @Risk Convert feature.

A distribution defined using PsiVary will be equivalent to the distribution defined in the

"normal” way (i.e. using the Psi functions PsiTriangular, PsiPert, PsiUniform,

PsiTriangGen or PsiNormalAlt) after a simulation has been completed. If a simulation

has not yet been performed, PsiVary will return the value entered for the base argument

while the PsiTriangular, PsiPert, PsiUniform, PsiTriangGen and PsiNormalAlt
functions will return a random value from the respective distribution. Note: This

distribution was added for compliance with the @Risk Convert feature.

base: The value entered for base will be displayed before a simulation has been

performed.

min: Enter the lower bound for triang, pert or uniform distributions. If entering a trigen

or normal distribution, enter the 1st percentile value.

max: Enter the upper bound for triang, pert or uniform distributions. If entering a trigen

or normal distribution, enter the 99th percentile value.

min <= base <= max

Frontline Solvers 2025 Q1 Reference Guide Page 320

range_type: Optional: This is the method used to specify the range. Enter 0 (default)

for -/+ percentage from the base argument, 1 for -/+ actual change from base and 2 for

min and max as the actual lower and upper bounds.

dist_name: This argument must be one of the following: “triang” (default), “pert”,

“uniform”, “trigen”, or “normal”.

Note: All arguments may be entered as a value, a cell reference or an expression.

Example: PsiVary(100, 95, 110, 2, “triang”) is equivalent to PsiTriangular(95, 100,

110)

Parameters: See PsiTriangular, PsiPert, PsiUniform, PsiTriangGen or PsiNormalAlt

for definitions of each distribution’s parameters.

PsiWeibull

PsiWeibull (,β,...)

PsiWeibull (α,β) is a distribution with a finite lower bound of 0. The Weibull

distribution is quite flexible and can be used to model weather patterns, material

strength, processing and delivery times, and in a variety of reliability

engineering applications.

If X is a random variable with Weibull (1,β) distribution, then it also has the

Exponential (β) distribution. In fact, a random variable X ~Weibull (α,β) if and

only if Xα ~ Exponential (βα). Also, if X is a random variable with Weibull (2,β)

distribution, then it also has the Rayleigh (β) distribution.

Alternate Formulation: PsiWeibullAlt

PsiWeibullAlt is the PsiBetaGen distribution defined through alternative
arguments. One percentile parameter is required. Note: Alternate Formulation

distributions are not supported in Analytic Solver Cloud app.

Parameters

𝛼, 𝛽 > 0

Range of Function Values

0,∞)

Probability Density Function

𝑓(𝑥) = 𝛼𝛽−𝛼𝑥𝛼−1𝑒
−(
𝑥
𝛽
)
𝛼

Cumulative Distribution Function

𝐹(𝑥) = 1 − 𝑒
−(
𝑥
𝛽
)
𝛼

Mean

𝛽

𝛼
𝛤 (
1

𝛼
)

𝛤(𝑥) is the Gamma function

Variance

𝛽2

𝛼
[2𝛤 (

2

𝛼
) −

1

𝛼
𝛤2 (

1

𝛼
)]

Frontline Solvers 2025 Q1 Reference Guide Page 321

Skewness

3
𝛼
𝛤 (
3
𝛼
) +

6
𝛼2
𝛤 (
2
𝛼
)𝛤 (

1
𝛼
) +

2
𝛼3
𝛤3 (

1
𝛼
)

[
2
𝛼
𝛤 (
2
𝛼
) −

1
𝛼2
𝛤2 (

1
𝛼
)]

3
2

Kurtosis

−6
𝛼2
𝛤 (
1
𝛼) +

24
𝛼 𝛤

2 (
1
𝛼)𝛤 (

2
𝛼) − 12𝛤

2 (
2
𝛼) − 12𝛤 (

1
𝛼)𝛤 (

3
𝛼) + 4𝛼𝛤 (

4
𝛼)

[2𝛤 (
2
𝛼
) −

1
𝛼
𝛤2 (

1
𝛼
)]
2

Median

𝛽(𝑙𝑛(2))
1
𝛼

Mode

𝛽 (
𝛼 − 1

𝛼
)

1
𝛼
 if 𝛼 ≥ 1

0 otherwise

Discrete Analytic Distributions

PsiBernoulli

PsiBernoulli (p,...)

PsiBernoulli (p) is a discrete distribution that takes on a value of 1 with

probability p, and a value of 0 with probability (1-p). A Bernoulli random

variable is usually considered as an outcome of an experiment with only two

possible outcomes (0 and 1); each experiment is called a ‘Bernoulli Trial’.

Parameters

𝑝 ∈ [0,1]

Range of Function Values

{0,1}

Probability Mass Function

𝑝(𝑥) = {
1 − 𝑝 if 𝑥 = 0
𝑝 if 𝑥 = 1
0 otherwise

Cumulative Distribution Function

𝐹(𝑥) = {
0 if 𝑥 < 0
1 − 𝑝 if 0 ≤ 𝑥 < 1
1 if x ≥ 1

Mean

𝑝

Variance

𝑝(1 − 𝑝)

Frontline Solvers 2025 Q1 Reference Guide Page 322

Skewness

1 − 2𝑝

√𝑝(1 − 𝑝)

Kurtosis

6𝑝2 − 6𝑝 + 1

𝑝(1 − 𝑝)

Median

Not defined

Mode

{

 0 if 𝑝 <

1

2

1 if 𝑝 >
1

2

0 and 1 if 𝑝 =
1

2

PsiBinomial

PsiBinomial (n,p,...)

PsiBinomial (n,p) is a discrete distribution of the number of successes in n

independent ‘Bernoulli Trials’ (experiments with exactly two possible
outcomes), where p is the success probability in each trial. The Binomial

distribution can be used to model the number of winning trades in a trading

system, or the number of defective items in a batch.

A random variable X is defined by X ~ PsiBinomial (n,p) if and only if n-X ~

PsiBinomial (n,1-p).

The Poisson distribution with parameter λ is a good approximation of the

PsiBinomial (n,p) distribution when 𝑛 → ∞ and 𝑝 → 0 , with 𝜆 = 𝑛𝑝.

Parameters

𝑛 > 0, integer
𝑝 ∈ [0,1]

Range of Function Values

{0,1,… , 𝑛}

Probability Mass Function

𝑝(𝑥) = {(
𝑛
𝑥
)𝑝𝑥(1 − 𝑝)𝑛−𝑥 if 𝑥 ∈ {0,1,… , 𝑛}

0 otherwise

where (
𝑛
𝑥
) is the binomial coefficient,

(
𝑛
𝑥
) =

𝑛!

𝑥! (𝑛 − 𝑥)!

Frontline Solvers 2025 Q1 Reference Guide Page 323

Cumulative Distribution Function

𝐹(𝑥) =

{

0 if 𝑥 < 0

∑(
𝑛
𝑖
) 𝑝𝑖(1 − 𝑝)𝑛−𝑖

⌊𝑥⌋

𝑖=0

 if 0 ≤ 𝑥 ≤ 𝑛

1 if 𝑥 > 𝑛

Mean

𝑛𝑝

Variance

𝑛𝑝(1 − 𝑝)

Skewness

1 − 2𝑝

√𝑛𝑝(1 − 𝑝)

Kurtosis

6𝑝2 − 6𝑝 + 1

𝑛𝑝(1 − 𝑝)

Median

one of {⌊𝑛𝑝⌋, ⌊𝑛𝑝⌋ − 1, ⌊𝑛𝑝⌋ + 1}

Mode

{
𝑝(𝑛 + 1) and 𝑝(𝑛 + 1) − 1 if 𝑝(𝑛 + 1) is integer
⌊𝑝(𝑛 + 1)⌋ otherwise

PsiGeometric

PsiGeometric (p,...)

PsiGeometric (p) is a discrete distribution of the number of failures before the

first success in a sequence of independent ‘Bernoulli Trials’ (experiments with

exactly two possible outcomes), where p is the success probability in each trial.

The Geometric distribution can be used to model the number of losing trades

before the first winning trade, the number of items passing inspection before the

first defective item appears in a batch, etc.

PsiGeometric (p) can be considered as a discrete analog of the (continuous)

Exponential distribution. If X1, X2, …, Xn are independent geometrically

distributed random variables with parameters p1, p2, …,pn, then X = min (X1, X2,

…, Xn) is also a Geometrically distributed random variable with parameter p = 1

– [(1-p1)(1-p2)…(1-pn)]. Additionally, if X1, X2, …, Xn are Geometrically
distributed random variables with parameter p, then their sum is Negative

Binomially distributed with parameters n, p.

Parameters

𝑝 ∈ [0,1]

Range of Function Values

{0,1,… }

Frontline Solvers 2025 Q1 Reference Guide Page 324

Probability Mass Function

𝑝(𝑥) = {
𝑝(1 − 𝑝)𝑥 if 𝑥 ∈ {0,1, … }

0 otherwise

Cumulative Distribution Function

𝐹(𝑥) = {1 − (1 − 𝑝)
⌊𝑥⌋+1 if 𝑥 ≥ 0

1 otherwise

Mean

1 − 𝑝

𝑝

Variance

1 − 𝑝

𝑝2

Skewness

2 − 𝑝

√(1 − 𝑝)

Kurtosis

9𝑝2 − 17𝑝 + 9

(1 − 𝑝)2

Median

𝑙𝑛(0.5)

𝑙𝑛(1 − 𝑝)
− 1

Mode

0

PsiHyperGeo

PsiHyperGeo (n,D,M,...)

PsiHyperGeo (n,D,M) is a discrete distribution of the number of successes in n

successive trials drawn without replacement from a finite population of size M,

when it is known that there are exactly D failures in the population. The

Hypergeometric distribution can be used to model ‘good’ and defective parts in

a manufacturing process.

A Hypergeometric distribution can be approximated by a Binomial distribution

with parameters n, p = D/M, when M is very large as compared to n.

Parameters

𝑀 ∈ {0,1,… }
𝑛,𝐷 ∈ {0,1, … ,𝑀}

Range of Function Values

{𝑚𝑎𝑥(0, 𝑛 − 𝑀 +𝐷) , … ,𝑚𝑖𝑛(𝐷, 𝑛)}

Frontline Solvers 2025 Q1 Reference Guide Page 325

Probability Mass Function

𝑝(𝑥) =
(
𝐷
𝑥
) (
𝑀 −𝐷
𝑛 − 𝑥

)

(
𝑀
𝑛
)

Cumulative Distribution Function

𝐹(𝑥) =∑
(
𝐷
𝑖
) (
𝑀 −𝐷
𝑛 − 𝑖

)

(
𝑀
𝑛
)

𝑥

𝑖=1

Mean

𝑛𝐷

𝑀

Variance

𝑛 (
𝐷
𝑀)

(𝑀 − 𝑛) (1 −
𝐷
𝑀)

𝑀 − 1

Skewness

(𝑀 − 2𝐷)(𝑀 − 2𝑛)

𝑀 − 2
√

(𝑀 − 1)

𝑛𝐷(𝑀 −𝐷)(𝑀 − 𝑛)

Kurtosis

[
𝑀2(𝑀 − 1)

𝑛(𝑀 − 2)(𝑀 − 3)(𝑀 − 𝑛)
] [
𝑀(𝑀 + 1) − 6𝑀(𝑀 − 𝑛)

𝐷(𝑀 −𝐷)
+
3𝑛(𝑀 − 𝑛)(𝑁 + 6)

𝑀2
− 6]

Median

Not defined

Mode

(𝑛 + 1)(𝐷 + 1)

𝑀 + 2
 and

(𝑛 + 1)(𝐷 + 1)

𝑀 + 2
− 1 if

(𝑛 + 1)(𝐷 + 1)

𝑀 + 2
 is integral

⌊
(𝑛 + 1)(𝐷 + 1)

𝑀 + 2
⌋ otherwise

PsiIntUniform

PsiIntUniform (a,b,...)

PsiIntUniform (a,b) is a discrete distribution with equal probability at each

integer value between the lower and upper bounds (a and b). It is used as a

rough estimate of the true distribution when the only information we have is that

the random variable takes integer values between a and b, and each of these

values are equally likely.

Parameters

𝑎, 𝑏 integers
a<b

Range of Function Values

{𝑎, 𝑎 + 1,… , 𝑏 − 1, 𝑏}

Frontline Solvers 2025 Q1 Reference Guide Page 326

Probability Mass Function

𝑝(𝑥) = {
1

𝑏 − 𝑎 + 1
if 𝑎 ≤ 𝑥 ≤ 𝑏, and 𝑥 integer

0 otherwise

Cumulative Distribution Function

𝐹(𝑥) = {

0 if 𝑥 < 𝑎
⌊𝑥⌋ − 𝑎 + 1

𝑏 − 𝑎 + 1
 if 𝑎 ≤ 𝑥 ≤ 𝑏

1 if 𝑥 > 𝑏

Mean

𝑎 + 𝑏

2

Variance

(𝑏 − 𝑎 + 1)2 − 1

12

Skewness

0

Kurtosis

−
6{(𝑏 − 𝑎 + 1)2 + 1}

5{(𝑏 − 𝑎 + 1)2 − 1}

Median

𝑎 + 𝑏

2

Mode

Net defined

PsiLogarithmic

PsiLogarithmic (p,...)

PsiLogarithmic is a discrete distribution with a lower bound of 1. It is used to
describe the diversity of a sample.

Parameters

𝑝 ∈ (0,1)

Range of Function Values

{1,2,3,… }

Probability Mass Function

𝑝(𝑥) = {
−1

𝑙𝑛(1 − 𝑝)

𝑝𝑥

𝑥
 if 𝑥 ≥ 1

0 otherwise

Cumulative Distribution Function

𝐹(𝑥) = 1 +
𝐵𝑝(𝑥 + 1,0)

𝑙𝑛(1 − 𝑝)
, 𝐵𝑝(𝑎, 𝑏) is the incomplete beta function

Frontline Solvers 2025 Q1 Reference Guide Page 327

𝐵𝑝(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡
𝑝

0

Mean

−𝑝

(1 − 𝑝) 𝑙𝑛(1 − 𝑝)

Variance

−𝑝
𝑝 + 𝑙𝑛(1 − 𝑝)

(1 − 𝑝)2 𝑙𝑛2(1 − 𝑝)

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

1

PsiNegBinomial

PsiNegBinomial (s,p,...)

PsiNegBinomial (s,p) is a discrete distribution that describes the number of

failures that will occur before a given number of successes, where each trial is

successful with probability p. The Negative Binomial distribution can be used

to describe the number of items that pass inspection before the sth defective item

is found.

If X1, X2,…,Xs are independent Geometrically distributed random variables each

with parameter p, then their sum is Negative Binomially distributed, with
parameters s and p. Additionally, the Geometric distribution with parameter p is

the same as a Negative Binomial distribution with parameters s = 1 and p;

hence, the Geometric distribution is a special case of a Negative Binomial

distribution.

Parameters

𝑝 ∈ [0,1]
𝑠 > 0, integer

Range of Function Values

{0,1,2,3,… }

Probability Mass Function

𝑝(𝑥) = {
(
𝑠 + 𝑥 − 1
 𝑥

) 𝑝𝑠(1 − 𝑝)𝑥 if 𝑥 ∈ {0,1,… }

0 otherwise

Frontline Solvers 2025 Q1 Reference Guide Page 328

Cumulative Distribution Function

𝐹(𝑥) = {∑(
𝑠 − 𝑖 + 1
𝑖

)𝑝𝑠(1 − 𝑝)𝑖

⌊𝑥⌋

𝑖=0

 if 𝑥 ≥ 0

0 otherwise

Mean

𝑠(1 − 𝑝)

𝑝

Variance

𝑠(1 − 𝑝)

𝑝2

Skewness

2 − 𝑝

√𝑠(1 − 𝑝)

Kurtosis

𝑝2 − 6𝑝 + 1

𝑠(1 − 𝑝)
+ 3

Median

Not defined

Mode

{

 𝑠
(1 − 𝑝) − 1

𝑝
 and

𝑠(1 − 𝑝) − 1

𝑝
+ 1 if (

𝑠(1 − 𝑝) − 1

𝑝
) is integer

⌊
𝑠(1 − 𝑝) − 1

𝑝
⌋ + 1 otherwise

PsiPoisson

PsiPoisson (λ,...)

PsiPoisson (λ) is a discrete distribution of the number of events that occur in an

interval of time, when the events occur at a known average rate, and each

occurrence is independent of the time of occurrence of the previous event.

The Poisson distribution with parameter λ can be approximated by a Normal

distribution with mean λ and variance λ, for large values of λ. If X1, X2,…,Xn

are independent Poisson random variables with parameters λ1, λ2,… λn, then

their sum is also a Poisson random variable with parameter λ1 +λ2+…+λn.

Parameters

𝜆>0

Range of Function Values

{0,1,… }

Probability Mass Function

𝑝(𝑥) = {
𝑒−𝜆𝜆𝑥

𝑥!
if 𝑥 ∈ {0,1,… }

0 otherwise

Frontline Solvers 2025 Q1 Reference Guide Page 329

Cumulative Distribution Function

𝐹(𝑥) = {

0 if 𝑥 < 0

𝑒−𝜆∑
𝜆𝑖

𝑖!

⌊𝑥⌋

𝑖=0

 if 𝑥 ≥ 0

Mean

𝜆

Variance

𝜆

Skewness

√
1

𝜆

Kurtosis

1

𝜆
+ 3

Median

Not applicable

Mode

{
𝜆 and 𝜆 − 1 if 𝜆 is integer
⌊𝜆⌋ otherwise

Custom Distributions

PsiCumul

PsiCumul (a,b, {x1,x2,…,xn}, {p1,p2,…,pn},...)

PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) is a custom continuous

distribution with lower and upper bounds equal to a and b respectively, and with

user specified values , x1,x2,…,xn and corresponding cumulative probabilities

p1,p2,…,pn.

Parameters

𝑎 < 𝑏
𝑎 ≤ 𝑥𝑖 ≤ 𝑏∀𝑖 = 1,2,… , 𝑛
0 ≤ 𝑝𝑖 ≤ 1∀𝑖 = 1,2,… , 𝑛
𝑝𝑖 < 𝑝𝑖+1∀𝑖 = 1,2,… , 𝑛 − 1
𝑥𝑖 < 𝑥𝑖+1∀𝑖 = 1,2,… , 𝑛 − 1
Define the boundary parameters as
𝑥0 = 𝑎, 𝑥𝑛+1 = 𝑏, 𝑝0 = 0, 𝑝𝑛+1 = 1

Range of Function Values

[𝑎, 𝑏]

Probability Density Function

𝑓(𝑥) =
𝑝𝑖+1 − 𝑝𝑖
𝑥𝑖+1 − 𝑥𝑖

 if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

Frontline Solvers 2025 Q1 Reference Guide Page 330

Cumulative Distribution Function

𝐹(𝑥) = 𝑝𝑖 + (𝑝𝑖+1 − 𝑝𝑖) (
𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

) if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

PsiCumulD

PsiCumul (min,max,{x1,x2,…,xn}, {pmax,…,pmin},...)

PsiCumulD is a complimentary distribution to PsiCumul(). PsiCumulD is a

cumulative distribution with n points between a minimum and a maximum, user

specified values, x1,x2,…,xn, and corresponding cumulative descending

probabilities p for each x. See PsiCumul for more information.

PsiDiscrete

PsiDiscrete ({x1,x2,…,xn}, {p1,p2,…,pn},…)

PsiDiscrete ({x1,x2,…,xn}, {p1,p2,…,pn},…) is a custom discrete distribution that

takes on values {x1,x2,…,xn} with probabilities {p1,p2,…,pn} respectively.

Parameters

{𝑥1, 𝑥2, … , 𝑥𝑛}
{𝑝1, 𝑝2, … , 𝑝𝑛}
The probabilities 𝑝𝑖 are first normalized so that they sum to one

Range of Function Values

{𝑥1, 𝑥2, … , 𝑥𝑛}

Probability Density Function

𝑓(𝑥) = {
𝑝𝑖 if 𝑥 = 𝑥𝑖
0 otherwise

Cumulative Distribution Function

𝐹(𝑥) =

{

0 if 𝑥 < 𝑥1

∑𝑝𝑖

𝑠

𝑖=1

 if 𝑥𝑠 ≤ 𝑥 < 𝑥𝑠+1, 𝑠 < 𝑛

1 otherwise

Frontline Solvers 2025 Q1 Reference Guide Page 331

This assumes that 𝑥𝑖 ≤ 𝑥𝑖+1∀𝑖 = 1,2,… , 𝑛 − 1

Mean

∑𝑥𝑖𝑝𝑖

𝑛

𝑖=1

= 𝜇

Variance

∑(𝜇 − 𝑥𝑖)
2𝑝𝑖

𝑛

𝑖=1

= 𝜎2

Skewness

∑ (𝑥𝑖 − 𝜇)
3𝑝𝑖

𝑛
𝑖=1

𝜎3

Kurtosis

∑ (𝑥𝑖 − 𝜇)
4𝑝𝑖

𝑛
𝑖=1

𝜎4

Median

𝑥𝑠 where 𝑠 = 𝑚𝑖𝑛(𝑗 = 1,2,… , 𝑛:∑𝑝𝑖 ≥ 0.5

𝑗

𝑖=1

)

This assumes that 𝑥𝑖 ≤ 𝑥𝑖+1∀𝑖 = 1,2,… , 𝑛 − 1

Mode

𝑥𝑎𝑟𝑔𝑚𝑎𝑥
𝑖=1,2,…,𝑛

(𝑝𝑖)

PsiDisUniform

PsiDisUniform ({x1,x2,…,xn},…)

PsiDisUniform ({x1,x2,…,xn},…) is a custom discrete distribution that takes on

values {x1,x2,…,xn} with equal probability. It is similar to the PsiDiscrete

distribution except that no probabilities are specified – instead all x values are

equally likely to occur. (In the equations below, each pi = 1/n.) PsiDisUniform

can be used to resample a set of past observations {x1,x2,…,xn}.

Parameters

{𝑥1, 𝑥2, … , 𝑥𝑛}
These values have the corresponding probabilities as

𝑝𝑖 =
1

𝑛
∀𝑖 = 1,2, … , 𝑛

Range of Function Values

{𝑥1, 𝑥2, … , 𝑥𝑛}

Probability Density Function

𝑓(𝑥) = {
𝑝𝑖 if 𝑥 = 𝑥𝑖
0 otherwise

Frontline Solvers 2025 Q1 Reference Guide Page 332

Cumulative Distribution Function

𝐹(𝑥) =

{

0 if 𝑥 < 𝑥1

∑𝑝𝑖

𝑠

𝑖=1

 if 𝑥𝑠 ≤ 𝑥 < 𝑥𝑠+1, 𝑠 < 𝑛

1 otherwise

This assumes that 𝑥𝑖 ≤ 𝑥𝑖+1∀𝑖 = 1,2,… , 𝑛 − 1

Mean

∑𝑥𝑖𝑝𝑖

𝑛

𝑖=1

= 𝜇

Variance

∑(𝜇 − 𝑥𝑖)
2𝑝𝑖

𝑛

𝑖=1

= 𝜎2

Skewness

∑ (𝑥𝑖 − 𝜇)
3𝑝𝑖

𝑛
𝑖=1

𝜎3

Kurtosis

∑ (𝑥𝑖 − 𝜇)
4𝑝𝑖

𝑛
𝑖=1

𝜎4

Median

𝑥𝑠 where 𝑠 = 𝑚𝑖𝑛(𝑗 = 1,2,… , 𝑛:∑𝑝𝑖 ≥ 0.5

𝑗

𝑖=1

)

This assumes that 𝑥𝑖 ≤ 𝑥𝑖+1∀𝑖 = 1,2,… , 𝑛 − 1

Mode

𝑥𝑎𝑟𝑔𝑚𝑎𝑥
𝑖=1,2,…,𝑛

(𝑝𝑖)

PsiGeneral

PsiGeneral (a,b, {x1,x2,…,xn}, {w1,w2,…,wn},…)

PsiGeneral (a,b, {x1,x2,…,xn}, {w1,w2,…,wn},…) is a custom continuous

distribution with lower and upper bounds equal to a and b respectively, and with
user specified values x1,x2,…,xn and corresponding weights w1,w2,…,wn. This is

similar to a PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) distribution, where the

probabilities are calculated using the weights as shown below.

Parameters

𝑎 < 𝑏
𝑎 ≤ 𝑥𝑖 ≤ 𝑏∀𝑖 = 1,2,… , 𝑛
𝑥𝑖 < 𝑥𝑖+1∀𝑖 = 1,2,… , 𝑛 − 1

The cumulative probabilities are defined as 𝑝𝑖 =∑
𝑤𝑘

∑ 𝑤𝑗
𝑛
𝑗=1

𝑖

𝑘=1

Range of Function Values

[𝑎, 𝑏]

Frontline Solvers 2025 Q1 Reference Guide Page 333

Probability Density Function

𝑓(𝑥) =
𝑝𝑖+1 − 𝑝𝑖
𝑥𝑖+1 − 𝑥𝑖

 if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

Cumulative Distribution Function

𝐹(𝑥) = 𝑝𝑖 + (𝑝𝑖+1 − 𝑝𝑖) (
𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

) if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

PsiHistogram

PsiHistogram (a,b,{w1,w2,…,wn},…)

PsiHistogram (a,b,{w1,w2,…,wn},…) is a custom continuous distribution with

lower and upper bounds equal to a and b respectively, and with user specified

weights w1,w2,…,wn corresponding to n subintervals of equal size. This is

similar to a PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) distribution, where the

probabilities are calculated using the weights as shown below, and the interval

defined by the bounds a and b is divided into subintervals of equal size as

described below.

Parameters

𝑎 < 𝑏
The interval [𝑎, 𝑏] is divided into 𝑛 subintervals
of equal size {𝑥1, 𝑥2, … , 𝑥𝑛}

𝑥𝑖 = 𝑎 + 𝑖 (
𝑏 − 𝑎

𝑛
)

The cumulative probabilities are defined as 𝑝𝑖 =∑
𝑤𝑘

∑ 𝑤𝑗
𝑛
𝑗=1

𝑖

𝑘=1

Range of Function Values

[𝑎, 𝑏]

Probability Density Function

𝑓(𝑥) =
𝑝𝑖+1 − 𝑝𝑖
𝑥𝑖+1 − 𝑥𝑖

 if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

Frontline Solvers 2025 Q1 Reference Guide Page 334

Cumulative Distribution Function

𝐹(𝑥) = 𝑝𝑖 + (𝑝𝑖+1 − 𝑝𝑖) (
𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

) if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

Special Distributions
Analytic Solver Desktop offers a number of special PSI Distribution functions

that do not fit readily into the classes of continuous, discrete and custom

distributions described above. For example, PsiCertified() provides easy access

to a named, published Certified Distribution, which could be a continuous,

discrete or custom distribution or a distribution based on a SIP or SLURP.

PsiSip(), PsiTSSip() and PsiSlurp() ensure that Monte Carlo trials are drawn
sequentially from SIP, Time Series SIP or SLURP data. PsiResample returns a

single result while PsiMVNormal() and PsiMVLogNormal() return array results

rather than single-valued results.

Note: PSI Property functions generally may not be passed as arguments to

any of the PSI Distribution functions in this section. The only exception is that

the PsiCertify() function may be passed to PsiSip(), PsiTSSip or PsiSlurp(),

enabling the SIP, Time Series SIP or SLURP-based distribution to be named and

published as a Certified Distribution.

Functions PsiMVLogNormal(), PsiMVNormal(), PsiMVResample,

PsiMVShuffle and PsiResample() are included to provide an upgrade path for
users of AnalyCorp’s XLSim software. Note that PsiMVLogNormal() and

PsiMVNormal() require a covariance matrix (not a rank correlation matrix) as

an argument; they cannot be correlated with dissimilar distributions specified via

other PSI Distribution functions.

Note: Certified Distributions and the functions PsiMVLogNormal(),

PsiMVNormal(), PsiMVResample, PsiMVShuffle and PsiResample() are not

supported in Analytic Solver Cloud.

PsiCertified

PsiCertified (name,sipname)

Frontline Solvers 2025 Q1 Reference Guide Page 335

PsiCertified creates an uncertain variable that returns trials data for a named,

published Certified Distribution. The name argument is a character string such

as “MyDist”. The sipname argument is optional; if used, it is the character

string name of a SIP (column) of a SLURP. A PsiCertified distribution may

return either continuous or discrete sample data, depending on the nature of the
published Certified Distribution. This function is not supported in Analytic

Solver Cloud.

PsiDistInfo

PsiDistInfo (cell, [info])

PsiDistInfo returns the name of the distribution contained in cell. This

function can be especially useful in displaying the distribution used in PsiFit.

The second argument is optional. Info = 0 or missing, returns the distribution name. Info

= 1 returns the distribution formula with parameters.

PsiFit

PsiFit (data)

PsiFit dynamically fits a probability distribution to sample data, and creates an

uncertain variable linked to the sample data. This dynamically fitted uncertain

variable can then be used in the model as an uncertain input variable. The "data"

argument is an Excel cell range containing the list of sample data.

PsiMVLogNormal

PsiMVLogNormal (µ,∑)

PsiMVLogNormal (µ,∑) is a multivariate distribution that returns a vector of

random variables that are lognormally distributed, with mean values specified

by the vector µ, and covariance values specified by the matrix ∑. This is a

generalization of the PsiLogNorm2 distribution to higher dimensions. A variable

vector y = [y1,…,yn] has a multivariate LogNormal distribution if and only if

the variable vector [ln(y1),…,ln(yn)] has a multivariate Normal distribution.

Note: This functionality is not supported in Analytic Solver Cloud.

PsiMVLogNormal returns an array of sample data; to use it, you must ‘array-

enter’ a formula using this function. For example, you might select cells A1:A5,

type a formula such as =PsiMVLogNormal(B1:B5,C1:G5), and press Ctrl +

Shift + Enter. The formula will then appear in all five cells A1:A5 as

{=PsiMVLogNormal(B1:B5,C1:G5)}. On each Monte Carlo trial, the function

will return 5 sample values.

Parameters

𝜇, a real vector
A positive semidefinite matrix ∑
We define parameters 𝜎𝑖

2 = ∑𝑖𝑖

Range of Function Values

0,∞)𝑛 for an 𝑛-dimensional vector

Frontline Solvers 2025 Q1 Reference Guide Page 336

Probability Density Function

𝑓(𝑦) = (2𝜋)−
𝑛
2(𝑦)−1|∑|−

1
2 𝑒𝑥𝑝 [

−(𝑙𝑛(𝑦) − 𝜇)𝑇∑−1(𝑙𝑛(𝑦) − 𝜇)

2
]

Cumulative Distribution Function

No closed form

Mean

[𝑒𝜇1+
𝜎1
2

2 , … , 𝑒𝜇𝑛+
𝜎𝑛

2

2]

Variance

[(𝑒𝜎1
2
− 1)𝑒2𝜇1+𝜎1

2
, … , (𝑒𝜎𝑛

2
− 1)𝑒2𝜇𝑛+𝜎𝑛

2
]

Skewness

[𝑠1, … , 𝑠𝑛]
where

𝑠𝑖 = (𝑒
𝜎𝑖
2
+ 2)√𝑒𝜎𝑖

2
− 1

Kurtosis

[𝑘1, … , 𝑘𝑛]
where

𝑘𝑖 = 𝑒
4𝜎𝑖

2
+ 2𝑒3𝜎𝑖

2
+ 3𝑒2𝜎𝑖

2
− 3

Median

[𝑒𝜇1 ,… , 𝑒𝜇𝑛]

Mode

[𝑒𝜇1−𝜎1
2
, … , 𝑒𝜇𝑛−𝜎𝑛

2
]

PsiMVNormal

PsiMVNormal (µ,∑)

PsiMVNormal (µ,∑) is a multivariate distribution that returns a vector of

random variables that are normally distributed, with mean values specified by

the vector µ, and covariance values specified by the matrix ∑. This is a

generalization of the PsiNormal distribution to higher dimensions. Note: This

functionality is not supported in Analytic Solver Cloud.

PsiMVNormal returns an array of sample data; to use it, you must ‘array-enter’

a formula using this function. For example, you might select cells A1:A5, type

a formula such as =PsiMVNormal(B1:B5,C1:G5), and press Ctrl + Shift +

Enter. The formula will appear in all five cells as {=PsiMVNormal(B1:B5,

C1:G5)}. On each Monte Carlo trial, the function will return 5 sample values.

Note: This function is not supported in Analytic Solver Cloud.

Parameters

𝜇, a real vector
A positive definite matrix ∑
We define parameters 𝜎𝑖

2 = ∑𝑖𝑖

Frontline Solvers 2025 Q1 Reference Guide Page 337

Range of Function Values

(−∞,∞)𝑛 for an 𝑛-dimensional vector

Probability Density Function

𝑓(𝑦) = (2𝜋)−
𝑛
2 |∑|−

1
2 𝑒𝑥𝑝 [

−(𝑦 − 𝜇)𝑇∑−1(𝑦 − 𝜇)

2
]

Cumulative Distribution Function

No closed form

Mean

[𝜇1,… , 𝜇𝑛]

Variance

[𝜎1
2, … , 𝜎𝑛

2]

Skewness

[0]𝑛 for an 𝑛-dimensional vector

Kurtosis

[0]𝑛 for an 𝑛-dimensional vector

Median

[𝜇1,… , 𝜇𝑛]

Mode

[𝜇1,… , 𝜇𝑛]

PsiResample

PsiResample (data)

PsiResample returns a random sample (with replacement) of the trial values in

the cell range specified by the data argument, i.e. =PsiResample(B1:B1000)

returns a single value randomly selected from the cell range B1:B1000.

PsiMVResample

PsiMVResample (data)

PsiMVResample is a multivariate distribution that returns a vector of sample

data; to use it, you must ‘array-enter’ a formula using this function. The data

argument must be a rectangular Excel range. This function may be array entered

in a single column (or row) of size n where n is the number of rows (or columns)

in the data argument. Note: This functionality is not supported in Analytic

Solver Cloud.

PsiMVResample returns a random sample of the trial values in the cell range

specified by the data argument. If data is a rectangular cell range and the cell

range in which PsiMVResample is array-entered is a single column, then

PsiMVResample returns values from a randomly selected column in data, with

values drawn sequentially from that column, beginning with the first
element. Similarly, if data is rectangular and the cell range is a single row,

PsiMVResample returns values from a randomly selected row in data, with

values drawn sequentially from that row, beginning with the first element.

Frontline Solvers 2025 Q1 Reference Guide Page 338

For example, you might select cells A1:A3 (or cells A1:C1) type a formula such

as =PsiMVResample(D1:F3) and press Ctrl + Shift + Enter. The formula will

then appear in all three cells A1:A3 (or A1:C1) as

{=PsiMVResample(D1:F3)}. On each Monte Carlo trial, cells A1:A3 (or cells

A1:C1) will return a uniformly selected column from the argument.

PsiMVShuffle

PsiMVShuffle (data)

PsiMVShuffle is a multivariate distribution that returns a vector of sample data;

to use it, you must ‘array-enter’ a formula using this function. For example, you

might select cells A1:B5, type a formula such as =PsiMVShuffle(C1:D5), and

press Ctrl + Shift + Enter. The formula will then appear in all ten cells A1:B5 as
{=PsiMVShuffle(C1:D5)}. On each Monte Carlo trial, the function will return

10 sample values. Note: This functionality is not supported in Analytic Solver

Cloud.

PsiMVShuffle returns a random permutation of all the trial values in the cell

range specified by the data argument, which should contain at least as many

columns and rows as the cell range in which the function is array-entered.

(Note: This function will still work if the function is array-entered into a cell

range that is smaller or larger than the data cell range.) In the sample drawn on

each Monte Carlo trial, each cell in the data range is selected only once; values

are repeated in a single sample only if they are repeated in data.

PsiSip

PsiSip (sip)

PsiSip returns trials for an uncertain variable from a list or vector of sample

data, called a Stochastic Information Packet (SIP). The sip argument is an Excel

cell range containing the list of sample data. The value returned by PsiSip() on

the ith trial is the ith value in the list.

PsiSlurp

PsiSlurp (slurp,j)

PsiSlurp returns trials for an uncertain variable from a table of correlated sample

data, called a Stochastic Library Unit, Relationships Preserved (SLURP), in the

sequence specified in the table. The slurp argument is a rectangular Excel cell

range containing the SLURP data; the j argument is the index of the desired SIP

(column) of the SLURP, starting from 1. The value returned by PsiSlurp() on

the ith trial is taken from the ith row and the jth column of the table.

Psi Time Series Functions
Analytic Solver users can represent their uncertain variables as a time series.

Users of @RiskTM may be particularly interested in this new feature as Frontline

has made it that much easier for models created in @Risk to be ran and solved

in Analytic Solver.

In past versions of Analytic Solver, uncertain variables were represented by a

distribution, which generated a single random number (scalar) at each trial. A

Time Series is another type of uncertain variable, which generates a random

Frontline Solvers 2025 Q1 Reference Guide Page 339

numerical vector at each trial. As a result, a time series may be qualified as a

generalized distribution to which a discrete time dimension has been added.

A Time Series is represented as a function in a formula containing optional

property functions. Since a Time Series returns a numerical vector at each trial,

the Time Series must be entered as an array. The size of the array formula
determines the length of the Time Series.

The discrete time dimension has the abstract values : {1, 2, 3, …, n} where n is

the length of the series. The discrete units may represent the time in years,

months, days, hours, etc. At each time point, the function generates a random

number. As a result, a time series at a given trial can be drawn as a discrete

curve with time values along the x-axis and random numbers along the y-axis.

Plot of 2 Time Series Functions

If 1000 trials are run in a simulation model, then there will be 1000 curves; one

curve for each trial. Double clicking the cell containing the Time Series

function will bring up a histogram showing all trials at a given time point.

A Time Series may be interpreted as an ordered set of joint distributions. If the

joint distributions of a Time Series have the same mean and variance, the series

is called stationary. If the joint distributions of a Time Series have the same

mean but different variance, the series is called heteroskedastic.

Analytic Solver features 9 Time Series functions. Three optional Time series

properties and three optional general properties may be applied to each function.

See the Psi Property Functions section below.

Note: If using Analytic Solver Cloud app, you must use the Psi Function,

PsiLen() to inform Analytic Solver of the number of cells used in the Time

Series. See the PsiLen() property description, below.

Time Series Functions

Analytic Solver's Time Series functions are grouped into 2 categories plus the

PsiTSSip function.

• Autoregressive Moving Averages (ARMA)

• Autoregressive Conditional Heteroskedasticity (ARCH)

Users should note the time series functions as implemented by Frontline
Systems may contain some variation in the calculation when compared to

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

months

Time Series Functions

ma2

ma1

Frontline Solvers 2025 Q1 Reference Guide Page 340

@Risk's implementation. Users should check their models to ensure that the

time series functions are behaving as expected.

Note: Time Series functions are treated as uncertain functions, not uncertain

variables.

Although Analytic Solver does not offer a fitting feature for a time series,

Analytic Solver Data Science does include fitting for ARIMA models. See the

Analytic Solver Data Science Reference Guide for more details.

See the two time series examples on the Simulation tab of Analytic Solver under

Help – Example Models for an illustration of how a time series may be used in

Analytic Solver.

Note: When using a time series, users must set the Sampling Method = “Monte

Carlo” on the Risk Solver Engine options list. The default setting is “Latin

Hypercube”.

Autoregressive Moving Averages (ARMA)

The ARMA time series (or processes), developed by Box and Jenkins in the

1970's, are well known and used extensively in practice. Theoretically, these

functions are based on stationarity, meaning they have the same mean and

variance, i.e. the time series is constant throughout time. If this assumption is

not true, the time series data can be transformed using logarithms, differences

and/or de-seasonalizing in order to induce stationarity. Afterwards, an ARMA
process is applied to reversely transform the data using exponentiating,

integration, and/or seasonalizing.

ARMA processes are, in general described by integer values p and q where p is

the number of autoregressive terms and q is the number of moving average

terms. Analytic Solver features five ARMA functions where p + q is less than

or equal to 2: AR(1), AR(2), MA(1), MA(2) and ARMA(1,1).

PsiAR1

PsiAR1(mean,volatility,coef1,val0)

where |a1| < 1 must be true for stationarity.

The PsiAR1() time series function produces a first order autoregressive time

series with mean mean, volatility volatility, autoregressive coefficient coef1 and

time value val0.

This is a well known and used time series due to its simplicity and it's ability to

provide a good fit to data. An AR(1) time series is depicted by an

autocorrelation function (ACF) that decreases geometrically and a partial

autocorrelation function (PACF) that reduces to 0 after lag 1.

Notes:

Nt = a sample taken from a Normal(0,1) distribution

Frontline Solvers 2025 Q1 Reference Guide Page 341

Ɛ t = σNt

Then (Yt - µ) = a1 (Yt-1 - µ) + Ɛt

Mean = E(Yt) = µ

Variance = Var(Yt) = σ2 / (1-𝑎1
2)

PsiAR2

PsiAR2 (mean, volatility, coef1, coef2, val0, val1)

where a1 + a2 < 1, a2 – a1 < 1 and -1 < a2 < 1 must be true for stationarity.

PsiAR2 produces a second order autoregressive time series with mean mean,

volatility volatility, autoregressive coefficients coef1 and coef2 and time values

val0 and val1.

An AR(2) time series is depicted by an autocorrelation function (ACF) that

decreases geometrically and a partial autocorrelation function (PACF) that

reduces to 0 after lag 2.

Notes:

Nt = a sample taken from a Normal(0,1) distribution

Ɛ t = σNt

Then (Yt - µ) = a1 (Yt-1 - µ) + a2 (Yt-2 - µ) + Ɛt

Mean = E(Yt) = µ

Variance = Var(Yt) = σ2 / (1-𝑎1
2 − 𝑎2

2)

PsiMA1

PsiMA1(mean,volatility,coef1,err0)

PsiMA1 produces a first order moving average time series with mean mean,

volatility volatility, moving average coefficient coef1 and initial error term err0.

This is a well known and used time series due to its simplicity and ease of use.
The PsiMA1 time series is depicted by an autocorrelation function (ACF) that

reduces to 0 after lag 1 and a partial autocorrelation function (PACF) that

decreases geometrically.

Notes:

Nt = a sample taken from a Normal(0,1) distribution

Ɛt = σNt

Then (Yt) = µ + b1Ɛt-1 + Ɛt

Mean = E(Yt) = µ

Variance = Var(Yt) = σ2 (1+𝑏1
2)

PsiMA2

PsiMA2(mean, volatility, coef1, coef2, err0, err1)

PsiMA2 produces a second order moving average time series with mean mean,

volatility volatility, moving average coefficients coef1 and coef2 and error terms

err0 and err1.

Frontline Solvers 2025 Q1 Reference Guide Page 342

The autocorrelation function for the PsiMA2 time series is depicted by an

autocorrelation function (ACF) that reduces to 0 after lag 2 and a partial

autocorrelation function (PACF) that decreases geometrically.

Notes:

Nt = a sample taken from a Normal(0,1) distribution

Ɛt = σNt

Then (Yt) = µ + b1Ɛt-1 + b2Ɛt-2 + Ɛt

Mean = E(Yt) = µ

Variance = Var(Yt) = σ2 (1+𝑏1
2 + 𝑏2

2)

PsiARMA11

PsiARMA11(mean,volatility,ar_coef, ma_coef, val0,

err0)

where |a1| < 1 must be true for stationarity.

PsiARMA11 produces a first order autoregressive moving average time series

with mean mean, volatility volatility, autoregressive coefficient ar_coef, moving

average coefficient ma_coef, time value at time 0 val0 and initial error term err0.

This time series produces an autocorrelation function (ACF) that decreases
geometrically and a partial autocorreletion function (PACF) that is comparable

to one produced by PsiMA1.

Notes:

Nt = a sample taken from a Normal(0,1) distribution

Ɛt = σNt

Then (Yt - µ) = a1(Yt-1-µ) + b1Ɛt-1 + Ɛt

Mean = E(Yt) = µ

Variance = Var(Yt) = σ2(1+𝑏1
2 + 2𝑎1𝑏1)/1− 𝑎1

2)

Autoregressive Conditional Heteroskedasticity (ARCH)

The ARCH time series functions were developed in more recent times in order

to explain or account for the change in volatility that occurs in a financial

variable. An ARCH time series is based on an AR time series; however, an

ARCH time series utilizes a constant mean parameter. The volatility term in

each ARCH time series is modeled separately thus permitting a non constant

variance.

The PsiARCH1 time series is described using the integer value q and the

variations of the PsiARCH1 time series, GARCH11, EGARCH11 AND

APARCH11, are described using two integers, p and q. Within the ARCH

processes, p indicates the number of autoregressive terms and q indicates the

number of terms involving deviations from the mean, or error terms.

PsiARCH1

PsiARCH1(mean, volatility, err_coef, val0)

where a1 > 0 must be true for stationarity.

Frontline Solvers 2025 Q1 Reference Guide Page 343

PsiARCH1 generates a first order autoregressive conditional heteroskedasticity

process with mean mean, volatility volatility, error coefficient err_coef and time

value at time 0 val0.

PsiARCH1 should be used when it can be assumed that the variance of the time

series will fluctuate throughout time.

Notes:

Define N, Nt = a sample taken from a Normal(0,1) distribution

Then

Yt = µ + 𝜎𝑡Nt

where σt is modeled as: 𝜎𝑡
2 = 𝜔 + 𝑏1(Yt-1 - µ)2

Yt is normally distributed with mean µ and variance : 𝜎𝑡
2. The variance is

conditional on the previous value of the process and is a weighted combination

of the volatility parameter ω and the previous squared deviation from the mean.

PsiGARCH11

PsiGARCH11(mean,volatility,err_coef,ar_coef,val0, stdev0)

where a1 ≥ 0, b1 ≥ 0, at least one of a1 or b1 must be positive and ω > 0

PsiGARCH11 generates a generalized first order autoregressive conditional

heteroskedasticity process with mean mean, volatility volatility, error coefficient

err_coef, autoregressive coefficient ar_coef, value at time 0 val0 and initial

standard deviation stdev0.

PsiGARCH11 is a generalization of PsiARCH1 where the conditional variance

at time t is a weighted combination of volatility, the preceeding squared

deviation of the mean and the prior variance.

Notes:

Define N, Nt = a sample taken from a Normal(0,1) distribution

Then

Yt = µ + 𝜎𝑡Nt

where σt is modeled as: 𝜎𝑡
2 = 𝜔 + 𝑏1(Yt-1 - µ)2 + a1𝜎𝑡−1

2

PsiEGARCH11

PsiEGARCH11(mean,volatility,theta,gamma,err_coef,ar_coef,

val0,stdev0)

PsiEGARCH11 generates an exponential, generalized first order autoregressive
conditional heteroskedasticity time series with mean mean, volatility parameter

volatility, parameters theta and gamma, error coefficient err_coef,

autoregressive coefficient ar_coef, value at time 0 val0 and initial standard

deviation stdev0.

PsiEGARCH11 permits negative values to appear in the calculation for variance

and no limits or bounds are applied to err_coef and ar_coef.

Notes:

Define N, Nt = a sample taken from a Normal(0,1) distribution

Frontline Solvers 2025 Q1 Reference Guide Page 344

Then

Yt = µ + σtNt

where σt is modeled as: ln (𝜎𝑡
2) = 𝜔 + 𝑏1g(Nt-1)+ a1ln(𝜎𝑡−1

2) 𝑤𝑖𝑡ℎ

𝑔(𝑁𝑡) = 𝛳𝑁𝑡 + 𝛾(|𝑁𝑡| − 𝐸(|𝑁𝑡|)) Note that 𝐸(|𝑁𝑡|) = √
2

𝜋

PsiAPARCH11

PsiAPARCH11(mean,volatility,delta,gamma,

err_coef,ar_coef,val0,stdev0)

where a1 ≥ 0, b1 ≥ 0, at least one of a1 or b1 must be positive, ω > 0 and

-1 < γ < 1

PsiAPARCH11 generates an asymmetric, power, generalized first order

autoregressive conditional heteroskedasticity time series with mean mean,

volatility volatility, parameters delta and gamma, error coefficient err_coef,

autoregressive coefficient ar_coef, value at time 0 val0 and initial standard

deviation stdev0.

PsiARCH1 and PsiGARCH11 are special cases of this time series.

Notes:

Define N, Nt = a sample taken from a Normal(0,1) distribution

Then

Yt = µ + σtNt

where σt is modeled as:

 ln (𝜎𝑡
2) = 𝜔 + 𝑏1[| Yt-1 -µ| - γ(Yt-1-µ)]δ + a1𝜎𝑡−1

δ)

PsiTSSip

PsiTSSip (tssip)

PsiTSSip returns trials from a two-dimensional SIP. The tssip argument is an m

x n matrix of trial values (or instances) for the m time moments. While the

value returned by PsiSIP on the ith trial is the ith value (or scalar) in the list, the

value returned by PsiTSSip() on the ith trial is the ith column (the entire vector).

Consider the TSSip below.

In this example, the Time Series SIP is contained in cells C15:Z20 and contains

5 time moments (years 2015 through 2020) and 20 trials (20 measurements).

Note that the argument tssip is made up of all trail values. The time moments
(2015, 2016, etc.), defined in cells B15:B21 are not included in the Excel range.

Note: The limit on the number of time moments or trials in the TSSip is

imposed by the limit on the number of rows and columns in Excel.

Frontline Solvers 2025 Q1 Reference Guide Page 345

When PsiTSSip is array entered into cells C25:C30, a simulation is performed

and the Trial to Display forward arrow is incremented, the function returns the

trial values for all time moments, in order, at once. The screenshot on the left

displays the TSSIP values in cells C25:C30 from the 3rd trial.

When the number of Trials on the Tools tab is greater than the number of trials

in the TSSIP, Solver will wrap around to the 1st trial and continue. In other

words, if Trials is set to 25 on the Tools tab, the 21st trial would be cells
C15:C20, the 22nd trial D15:D20 and so on. Because of this behaviour, the

Number of Trials is important to the calculation of any Psi Statistic. In this

example, the number of trials is set to 20 and therefore PsiMean for year 2015 is

calculated by taking the mean of cells C15:V15, =(SUM(C15:V15)/20). If the

number of trials is set to 21, PsiMean will be calculated using the formula

(SUM(C15:V15) + C15)/21. See the Analytic Solver User Guide for a complete

walk through of a TSSIP example.

Note: Currently, only Monte Carlo Sampling supports the use of TS Sips.

PSI Property Functions

PsiBaseCase

PsiBaseCase(value)

Use this property to specify a Base Case value for an Uncertain Variable. This

is the single value that you’d want to have in this input cell if you were not

treating the cell as an Uncertain Variable (i.e. if it did not have a PSI

Distribution function). If there is a number in the cell at the time you define an

Uncertain Variable using the Distributions choice on the Ribbon, that number is

automatically saved as the Base Case value.

PsiCategory

PsiCategory (string)

For future use only. This property is ignored in the current release of Analytic

Solver.

Use the forward and back
arrows for Trial to Display to
increment through the TSSip.

Frontline Solvers 2025 Q1 Reference Guide Page 346

PsiCensor

PsiCensor ([min], [max], [type])

PsiCensor is used to pile the values of samples from the uncertain variable’s

distribution as follows: if the uncertain variable’s value is less than the Min

value, then the sample value will be piled at the Min, if the uncertain variable’s

value is larger than the Max value, then the sample value will be piled at the

Max. This argument results in a “build up” of values around the Min and Max

values in the distribution.

• This property accepts "empty" arguments for the min and max

parameters. If not provided, the default of -1E+30 will be used for min
and the default of 1E+30 will be used for max.

• There is a third optional argument, type, that was added in V2019. If

type = 0 (the default), nothing is passed for the type argument. If type

= 1, the bounds will be interpreted as numbers. If type = 2, the bounds

will be interpreted as standard deviations. If type = 3, the bounds will

be interpreted as percentiles which must be between 0 and 1. This

setting overrides the Censure Measure setting on the Platform tab of the

Solver Task Pane.

• If PsiShift is also applied to the distribution, PsiCensor() will be

applied before PsiShift().

Example: You can create lower and upper censor bouds of 96 and 104,

respectively, for the PsiNormal distribution given the parameters mean = 100

and standard deviation = 2 in one of three ways:

• When type = 1 (values), use: =PsiNormal(100,2, PsiCensor(95, 105, 1))

• When type =2 (std. dev.), use =PsiNormal(100,2, PsiCensor(-2, 2, 1))

• When type = 3 (percentiles), use =PsiNormal(100,2,PsiCensor(0.03, 0.97,

3))

PsiCertify

• PsiCertify (name, default_value,

short_description, full_description, version,

author, copyright, trademark, history)

• PsiCertify is used to name, certify and ‘publish’ a PSI Distribution function

as a Certified Distribution. The default_value argument should be a

number; all other arguments should be character strings. Only the name

argument is required; the others are optional. For further information and

examples of the use of PsiCertify(), see “Creating and Using Certified

Distributions” in the Frontline Solver User Guide chapter “Mastering

Simulation and Risk Analysis Concepts.”

PsiCollect

PsiCollect ()

PsiCollect is used to specify a subset of the uncertain variables for which sample

data and statistics are collected, for future use. It has no significance in the

current release of Analytic Solver.

Frontline Solvers 2025 Q1 Reference Guide Page 347

PsiCompound

PsiCompund (number_cell, deduction, limit)

A compound distribution is made up of a "severity" distribution and a

"frequency" distribution. Assume the following compound distribution,

=PsiBeta(3, 2, PsiCompound(A2)), where A2 = PsiPoisson(100). PsiBeta(3,2)

is referred to as the "severity" distribution. The severity distribution is the

distribution to be added N times. PsiPoisson(100) is referred to as the

"frequency" distribution. The frequency distribution determines the size N of

the sum (i.e, how many PsiBeta to sum). N can be a constant but can also be

computed at each trial by drawing from a discrete distribution.

• The number_cell argument passes the number of random trial values

to be summed. Number_cell can be an integer, a cell containing an

integer, a formula evaluating to an integer, or a cell containing a

discrete distribution.

If a fractional value is passed directly or indirectly (by using a formula)

or a continuous distribution is passed to this argument, the result will

be rounded down to the nearest integer.

Note: If a discrete distribution is passed to the number_cell argument,

the frequency distribution must be formulated in such a way that the

trial values generated by the distribution must be greater than 1. If not,

trial values < 1 will be set equal to 1.

• The value passed to the deduction argument is subtracted from every

term of the compound sum which results in a shift of the compound

distribution by -N * deduction.

• If a trial value is larger than a specified limit, then the trial value is

reset to the limit.

For a complete example illustrating how to compute a compound distribution,

see the Examples: Simulation and Risk Analysis chapter in the Analytic Solver

User Guide.

PsiConvergence

PsiConvergence(tol, type, [level], [mean], [stdev],

[perc], [val])

PsiConvergence is a property to PsiOutput (only) and is used in partnership with

the Psi Statistic, PsiConverged. This property specifies the convergence
monitoring information for the output_cell supplied to PsiOutput().

If, after a simulation has been successfully completed, all PsiConverged

functions return True, then you might consider lowering the Number of

Iterations on the Platform tab of the Analytic Solver Task pane, since there is no

need for extra iterations after convergence has been reached. Conversely, if

some or all PsiConverged functions are returning False, then you might consider

increasing the number of iterations in order to attain convergence for all output

functions in the model.

Frontline Solvers 2025 Q1 Reference Guide Page 348

The required argument, tol, indicates the desired positive or negative tolerance

amount. This argument must be > 0. The default setting is 0.05.

The required argument, type, specifies the tolerance type entered, either 1 for

actual value or 2 for percentage or relative value. The default setting is 2.

Note: The remaining arguments (level, mean, stdev, perc,

val)are all optional.

• In Analytic Solver Desktop, convergence can be monitored using any

combination of the mean, standard deviation and a specific percentile

for the output_cell. When this property is passed using just the two

required arguments, tol and type, Analytic Solver performs

convergence monitoring using the mean (only) of the output_cell.

• In Analytic Solver Cloud App, RASON Decision Services and Solver

SDK, these remaining options exist only for compatibility with @Risk

converted models. These options are not utilized in the convergence

determination.

The optional argument, level, is ignored in Analytic Solver Desktop and only

exists for compatibility with @Risk converted models.

Set the optional argument, mean, to True, in order to use the mean (PsiMean) as

a monitoring statistic. If only the first two arguments are passed, tol and type,
this option will be automatically set to True.

Set the optional argument, stdev, to True, to use the standard deviation

(PsiStdDev) as a monitoring statistic.

Set the optional argument, perc, to True to use a percentile value (specific value

passed in the last argument, val) as a monitoring statistic.

If perc is set to True, use the val argument to pass the desired percentile value,

from 0.01 to .99.

Example 1:

A1 = PsiNormal(5,6)+PsiOutput("Test", 1, PsiConvergence(0.01, 2))

Where 0.01 is the tol argument and 2 is the type argument, specifying that

0.01 is a percentage.

Example 2:

A1 = PsiNormal(5,6)

A2 = PsiOutput(A1, 1, PsiConvergence(3, 1))

Where 3 is the tol argument and 1 is the type argument, specifying that 3 is a

real (actual) value.

Example 3:

A1 = PsiNormal(5,6)

A2 = PsiOutput(A1, 1, PsiConvergence(3, 1, 0, True, True, True, 0.50))

Where 3 is the tol argument and 1 is the type argument, specifying that 3 is a

real (actual) value. Three monitoring statistics are turned on, mean (4th argument

to PsiConvergence set to True), standard deviation (5th argument to
PsiConvergence set to True) and the 50th percentile (6th argument to

PsiConvergence set to True and the percentile value passef as 50% in the last

argument).

Example 4: Example 1 extended with PsiConverged():

Frontline Solvers 2025 Q1 Reference Guide Page 349

A1=PsiNormal(5,6)+PsiOutput("Test",1,PsiConvergence(0.01,2))

A2 = PsiConverged(A1,2)

Output for A2 will be either True, indicating that the mean (PsiMean) of the

output function in A1 has converged to within 1% (.01) of its true value in the
2nd simulation. If not, this function will return False.

See the PsiOutput and PsiConverged definitions for information on their

prespective arguments.

PsiCopula

PsiCopula(type, param, [reflection], [instance])

Analytic Solver supports Archimedean (and Eliptical) copulas when inducing
correlation amongst uncertain variables. Archimedean copula correlation is

implemented using the conditional distribution and Laplace-Stieltjes methods.

Type: Analytic Solver supports three types of Archimedean copulas: clayton,

frank, and gumbel. The copula type should be passed in quotes as: "clayton",

"frank", or "gumbel". In this example, "clayton" is passed. The two elliptical
copulas have their own Psi property name: PsiCopulaGauss and

PsiCopulaStudent. See below for their signatures.

Param: The parameter of a copula determines the strength of the correlation. In

this example, a parameter equal to 10 is passed. See the following parameter

restrictions for each Archimedean copula type.

Clayton:

• Bivariate: param >= -1, param ≠ 0.

• Muiltivariate: param > 0

Gumbrel

• Bivariate or Multivariate: param >= 1

Frank

• Bivariate: param ≠ 0.

• Muiltivariate: param > 0

Note: Param = 0 for a multivariate Archimedean copula is supported but

indicates no correlation between the uncertain variables.

Reflection: (Optional) Analytic Solver allows you to control the direction

of a bivariate Archimedean copula using an optional reflection parameter. This
argument may take on values of 0, 1, 2, or 3 which controls the reflection of no

variables using the value of 0, the 1st variable using the value of 1, the 2nd

variable using the value of 2 or both variables using the value of 3. By default,

the reflection option is set to 0, which indicates no reflection. In this example, a

0 is passed for the reflection argument to illustrate how this parameter should be

passed. In practice, a value of 0 need not be present.

The scatter plots below illustrate the four different positions of a clayton copula

correlating two uncertain variables with distributions PsiNormal(0,1) and

PsiBeta(3,4).

Frontline Solvers 2025 Q1 Reference Guide Page 350

Reflection = 0 Reflection = 1

 Reflection = 2 Reflection = 3

The scatter plots below illustrate the four different positions of a type gumbel

copula correlating two uncertain variables with distributions PsiNormal(0,1) and

PsiBeta(3,4).

Reflection = 0 Reflection = 1

Reflection = 2 Reflection = 3

The scatter plots below illustrate the four different positions of a type frank

copula correlating two uncertain variables with distributions PsiNormal(0,1) and

Frontline Solvers 2025 Q1 Reference Guide Page 351

PsiBeta(3,4). Note: Since the Frank copula is symmetric, this type of copula

has only one reflection.

Reflection = 0 Reflection = 1

Reflection = 2 Reflection = 3

Instance: (Optional) Instance is the string name given to the copula. An

Archimedean copula is explicitly identified by the Instance argument and

implicitly identified by its argument values. When multiple copulas are present

in the same workbook, it is considered "best practice" to use this argument.

Suppose two uncertain variables exist in the same workbook. The PsiCopula

property is used to correlate the two uncertain variables using,
=PsiCopula("clayton", 10, 0). Since the Instance property is missing, the copula

is identified implicitly by its unique set of arguments, in this case ("clayton",

"10"). When not passing the Instance property, the PsiCopula property within

each uncertain variable signature, MUST use the same arguments. Otherwise,

the correlation between the uncertain variables will not be invoked.

Note: PsiCopula("clayton", 10) and PsiCopula("clayton", 10, 0) is considered as

the same copula since 0 is the default for the Reflection argument.

To correlate a new group of uncertain variables using a 2nd copula, say

PsiCopula("clayton", 12) or PsiCopula("frank", 10), the Instance argument is

still not required since either copula is identified by its unique parameters of

"clayton" and "12" or "frank" and "10". However, if correlating this same new
group of uncertain variables with a copula using the same arguments of

"clayton" and "10", a unique name must be passed to the Instance argument, for

example, "copula2".

For a complete example of how to use the PsiCopula() property, see the

Modeling Correlation Using Copulas section within the Analytic Solver User

Guide.

Frontline Solvers 2025 Q1 Reference Guide Page 352

 Theory

An Archimedean copula, C, is defined as:

C (u1, u2, …, um) = φ-1 (φ (u1) + … + φ (ud ; θ) ; θ)

where φ: [0,1] → [0, ∞) is a strict Archimedean copula generator with inverse

𝜑−1 is completely monotonic on [0, ∞). A strictly decreasing function φ:

[0,1]→[0, ∞) that satisfies φ(0) = ∞ and φ(1) = 0. A decreasing function

f(t):[a,b]→(-∞, ∞) is completely monotonic if the following equation is satisfied.

(−1)𝑘
𝑑𝑘

𝑑𝑡𝑘
𝑓(𝑡) ≥ 0, 𝑘 𝜖 ℕ, 𝑡 𝜖(𝑎, 𝑏)

The table below displays the three types of Archimedian copulas, and their

corresponding generators) supported by Analytic Solver.

Copula Type Copula Parameter Generator

Clayton [∑ 𝑢𝑖
−𝜃𝑚

𝑖=1 −𝑚 + 1]-1/θ 𝜃 > 0 θ-1 (u -θ -1)

Frank
1

𝜃
𝑙𝑜𝑔 ⌈1 +

∏ [exp (−𝜃𝑢𝑖
𝑚
𝑖=1) − 1]

(exp(−𝜃) − 1]𝑚−1
⌉

𝜃𝜖
(−∞,∞)

{0}

𝑓𝑜𝑟 𝑚 = 2 𝑎𝑛𝑑

𝜃 > 0 𝑓𝑜𝑟 𝑚 > 3

-log⌈
exp(−𝜃𝑢)−1

exp(−𝜃)−1
⌉

Gumbel Exp{−⌈∑ (−𝑙𝑜𝑔𝑢𝑖)
𝜃𝑚

𝑖=1 ⌉
1

𝜃} θ>1 (− log 𝑢)𝜃

For more information on the theory of Copulas, please see the following

references.

Jackel, Peter., “Monte Carlo Methods in Finance”, John Wiley & Sons Ltd,
2002

Nelsen, Roger B., “An Introduction to Copulas”, New York 2006

PsiCopulaGauss

PsiCopulaGauss(sigma, position, [instance])

Sigma: If bivariate, a number between -1 and 1; if multivariate, the Excel cell

range where the correlation matrix is located in the Excel spreadsheet, i.e., if the

copula is multivariate and the correlation matrix is located in cells N2:P4, then

pass N2:P4 for this argument.

Position: Specifies the uncertain variable index in the correlation matrix.

For example, the "2" passed in the formula, =PsiBeta(3, 4,
PsiCopulaGauss(N2:P4, 2, "mycop") specifies that the correlation coefficients in

the 2nd column of the correlation matrix in cells N2:P4 will be applied to the

PsiBeta() uncertain variable.

Instance: (Optional) Instance is the string name given to the copula. An

elliptical copula is explicitly identified by the Instance argument and implicitly

Frontline Solvers 2025 Q1 Reference Guide Page 353

identified by the location of the correlation matrix. PsiCopulaGauss() supports

multiple copulas using the same correlation matrix. If passing the same type of

elliptical copula using the same correlation matrix within the same workbook,

this argument must be present. If the workbook contains multiple copulas of

different types, then this argument may be omitted. When multiple copulas are
present in the same workbook, it is considered "best practice" to use this

argument.

Suppose three uncertain variables are present in the same workbook. The three

uncertain variables can be correlated using the PsiCopulaGauss property,

=PsiCopulaGauss(N2:P4, 1, "mycop"). Since the Instance property is present,

the copula is identified explicitly by the name given in the last argument,

"mycop". When not passing the Instance property, the PsiCopulaGauss

property within each uncertain variable signature, MUST use the same

correlation matrix. Otherwise, the correlation between the uncertain variables

will not be invoked.

For a complete example of how to use the PsiCopulaGauss() property, see the
Modeling Correlation Using Copulas section within the Analytic Solver User

Guide.

Theory

If 𝑢𝑗~𝑈(0,1) for j = 1, …, m. where U(0,1) symbolizes the uniform distribution

on the interval [0, 1] and if ∑ is a semidefinite correlation matrix with
𝑚(𝑚 − 1)

2⁄ parameters, then the copula defined by PsiCopulaGauss() can be

written as:

𝑪∑ (u1, u2, …, um) = 𝝋∑
- (𝝋−𝟏 (u1) + … + 𝝋−𝟏 (um))

where φ is the distribution function of a standard normal random variable and

𝜑∑ is the m-variate standard normal distribution with mean vector 0 and

covariance matrix ∑.

For more information on the theory of Copulas, please see the following

references.

Jackel, Peter., “Monte Carlo Methods in Finance”, John Wiley & Sons Ltd,

2002

Nelsen, Roger B., “An Introduction to Copulas”, New York 2006

PsiCopulaStudent

PsiCopulaStudent(sigma, position, df, [instance])

Sigma: If bivariate, a number between -1 and 1; if multivariate, the Excel cell

range where the correlation matrix is located in the Excel spreadsheet, i.e., if the

copula is multivariate and the correlation matrix is located in cells N2:P4, then

pass N2:P4 for this argument.

Frontline Solvers 2025 Q1 Reference Guide Page 354

Position: Specifies the uncertain variable index in the correlation matrix.

For example, the "2" passed in the formula, =PsiBeta(3, 4,

PsiCopulaStudent(N2:P4, 2, 1, "mycop") specifies that the correlation

coefficients in the 2nd column of the correlation matrix in cells N2:P4 will be

applied to the PsiBeta() uncertain variable.

df: Enter an integer value greater than 1. This parameter specifies the degrees

of freedom for the PsiCopulaStudent function. In this example, 1 degree of

freedom is used.

Instance: (Optional) Instance is the string name given to the copula. An

elliptical copula is explicitly identified by the Instance argument and implicitly
identified by the location of the correlation matrix. PsiCopulaStudent() supports

multiple copulas using the same correlation matrix. If passing the same type of

elliptical copula using the same correlation matrix within the same workbook,

this argument must be present. If the workbook contains multiple copulas of

different types, then this argument may be omitted. When multiple copulas are

present in the same workbook, it is considered "best practice" to use this

argument.

Suppose three uncertain variables are present in the same workbook. The three

uncertain variables can be correlated using the PsiCopulaStudent property,

=PsiCopulaStudent(N2:P4, 1, 1, "mycop"). Since the Instance property is

present, the copula is identified explicitly by the name given in the last
argument, "mycop". When not passing the Instance property, the

PsiCopulaStudent property within each uncertain variable signature, MUST use

the same correlation matrix. Otherwise, the correlation between the uncertain

variables will not be invoked.

For a complete example of how to use the PsiCopulaStudent() property, see the

Modeling Correlation Using Copulas section within the Analytic Solver User

Guide.

Theory

If θ = {(v, ∑): v ∈ [(1,∞),∑ ∈ ℝ𝑚𝑥𝑚 where 𝑡𝑣 is a univariate t distribution

with v degrees of freedom, then the Student copula implemented with

PsiCopulaStudent() can be written as:

C (u1, u2, …, um) = 𝒕𝒗,∑ (𝒕𝒗
−𝟏(𝒖𝟏), 𝒕𝒗

−𝟏 (𝒖𝟐), … , 𝒕𝒗
−𝟏 (𝒖𝒎))

where 𝑡𝑣,∑ is the multivariate Student's t distribution with correlation matrix ∑

using v degrees of freedom.

For more information on the theory of Copulas, please see the following
references.

Jackel, Peter., “Monte Carlo Methods in Finance”, John Wiley & Sons Ltd,

2002

Nelsen, Roger B., “An Introduction to Copulas”, New York 2006

PsiCorrectCorrmat

PsiCorrectCorrmat (corr_mat,[wgt_mat])

PsiCorrectCorrmat returns a positive semi definite correlation matrix located in

the range, corr_mat, using the optional weight matrix located in the range,

wgt_mat.

Frontline Solvers 2025 Q1 Reference Guide Page 355

• This function will “spill” to the same number of rows and columns as

the correlation matrix defined in corr_mat.

• The range selected for wgt_mat must include the same number of rows

and columns as corr_mat.

• The correlation matrix, corr_mat, must be a symmetrical matrix with

1’s on the diagonal. Otherwise #NUM will be returned.

Example: PsiCorrectCorrmat(A1:C3, A6:C8) where A1:C3 is a symmetric

correlation matrix and A6:C8 is a matrix containing the adjustment weights.

PsiCorrDepen

PsiCorrDepen (corrname,coefficient)

PsiCorrDepen is used to specify that this uncertain variable is correlated with

one other uncertain variable, with the specified rank-order correlation

coefficient. The corrname argument is a text string that must match the

corrname argument of the ‘independent variable,’ a cell containing a PSI

distribution with the PsiCorrIndep() property function call. For further

information and examples, see “Inducing Correlation Among Uncertain

Variables” in the Frontline Solver User Guide chapter “Mastering Simulation

and Risk Analysis Concepts.”

PsiCorrIndep

PsiCorrIndep (corrname)

PsiCorrIndep is used to specify that this uncertain variable acts as an independ-

ent variable correlated with one other uncertain variable, the dependent variable.

The corrname argument is a text string that must match the corrname argument

of the related PsiCorrDepen() call. For further information and examples, see

“Inducing Correlation Among Uncertain Variables” in the chapter Frontline

Solver User Guide chapter “Mastering Simulation and Risk Analysis Concepts.”

PsiCorrMatrix

PsiCorrMatrix (matrix cell range, position,

[instance])

PsiCorrMatrix is used to specify that this uncertain variable or time series is

correlated with a group of other uncertain variables or time series, through a

matrix of rank-order correlation coefficients. The first argument, matrix cell

range, is the Excel cell range where the correlation matrix is located in the Excel

spreadsheet. Position specifies the uncertain variable index in the correlation

matrix. Instance (optional) is the string name given to the correlation matrix. For
further information and examples, see “Inducing Correlation Among Uncertain

Variables” in the Frontline Solver User Guide chapter “Mastering Simulation

and Risk Analysis Concepts.”

Note: Currently, when applied to a Time Series, only rank-correlation is

supported. Copulas are not supported using PsiCorrMatrix and a time series.

Frontline Solvers 2025 Q1 Reference Guide Page 356

PsiFitInfo

PsiFitInfo (name, criterion)

PsiFitInfo is a property to PsiFit (only) and is used to pass the name of the data

and the fitting criteria as a comment.

Example: =PsiNormal(0.1210,0.1963, PsiTruncate(-

1E+30,1E+30),PsiFitInfo("S&P500","Upper=1, Lower=0"))

PsiIsDate

PsiIsDate (is_date)

PsiIsDate is a property to PsiOutput (only). This property was introduced for

the @Risk conversion feature and is currently ignored.

PsiIsDiscrete

PsiIsDiscrete (is_discrete)

PsiIsDiscrete is a property to PsiOutput (only). This property was introduced

for the @Risk conversion feature and is currently ignored.

PsiLibrary

PsiLibrary (position, name)

PsiLibrary is a property to PsiOutput (only). This property was introduced for

the @Risk conversion feature and is currently ignored.

PsiLock

PsiLock (value)

PsiLock is used to (temporaril) make an uncertain variable “constant,” so it

returns the specified value for all trials in a simulation, regardless of the

distribution function used.

You can also pass True or False to PsiLock(). If True, the distribution or time

series will be locked to the first generated trial value. If False, no locking will
take place.

PsiName

PsiName (name)

PsiName is used to give a string name to an uncertain variable, for future use. It

has no significance in the current release of Analytic Solver.

PsiSample

PsiSample (array_or_dist)

PsiSample provides a known uniform (0,1) sample used to generate trial values

for an uncertain variable. Enter an array, range or DIST containing values

Frontline Solvers 2025 Q1 Reference Guide Page 357

between 0 and 1. PsiSample must provide a uniform sample longer or equal to

the number of simulation trials.

PsiSeed

PsiSeed (value)

PsiSeed is used to set a random number seed for Monte Carlo samples generated

for this distribution function, that will override any general seed value specified

for the simulation model. It is most often used in an analytic distribution that is

being published as a Certified Distribution. For further information, see

“Creating and Using Certified Distributions” in the Frontline Solver User Guide

chapter “Mastering Simulation and Risk Analysis Concepts.”

PsiShift

PsiShift (shift)

PsiShift is used to shift the domain of this uncertain variable’s distribution by

the specified amount. For further information, see the section “Using PSI

Property Functions” earlier in this chapter.

PsiStatic

PsiStatic (static_val)

When PsiStatic is applied to a distribution or a time series, the passed static

value is returned when a simulation has not yet been performed.

Example:

• PsiBernoulli(0.7) will return the value, 0.7, before a simulation is

performed.

• PsiBernoulli(0.7, PsiStatic(1)) will return a 1, before a simulation is

performed.

PsiTruncate

PsiTruncate ([min],[max],[type])

PsiTruncate is used to restrict the values of samples from an uncertain variable

distribution, or a few PSI Statistic functions, to lie within the range from min to
max. Supported PsiStatistics functions are: PsiKurtosis, PsiMax, PsiMean,

PsiMedian, PsiMin, PsiMode, PsiPercentile, PsiPercentileD, PsiRange,

PsiSkewness, PsiStdDev, PsiTarget, PsiTargetD and PsiVariance.

• This property also accepts "empty" arguments for the min and max

parameters. If not provided, the default of -1E+30 will be used for min

and the default of 1E+30 will be used for max.

Example: PsiNormal(0, 1, PsiTruncate(,2)) results in a PsiNormal

distribution with mean, 0, and standard deviation, 1, and a cutoff on the

right of the distribution at 2.

Frontline Solvers 2025 Q1 Reference Guide Page 358

Example: PsiNormal(0, 1, PsiTruncate(-2)) results in a PsiNormal

distribution with mean, 0, and standard deviation, 1, and a cutoff on the

left of the distribution at -2.

• A third optional argument, type, was added in V2019. If type = 1, the
default, bounds will be interpreted as numbers. If type = 2, the bounds

will be interpreted as standard deviations. If type = 3, the bounds will

be interpreted as percentiles which must be between 0 and 1.

Example: PsiNormal(0,1,PsiTruncate(,2,1) results in a PsiNormal

distribution with mean, 0, and standard deviation, 1, and a cutoff on the

right of the distribution at 2. This formula is equivalent to

PsiNormal(0,1,PsiTruncate(,2)).

Example: PsiNormal(0, 0.5, PsiTruncate(, 2, 2) results in a PsiNormal

distribution with mean, 0, and standard deviation, 0.5, and a cutoff

value on the right of the distribution at 1, which is the 2nd standard

deviation from the mean.

Frontline Solvers 2025 Q1 Reference Guide Page 359

Example: PsiNormal(0, 0.5, PsiTruncate(, 0.98, 3) results in a

PsiNormal distribution with mean, 0, and standard deviation, 0.5, and a

cutoff value on the right of the distribution at the 98th percentile or

1.0269.

• If PsiTruncate is applied to a distribution that also includes the PsiShift

function, the shift will occur after truncation. Use type = -1 (numbers),

-2 (standard deviation) or -3 (percentiles) to apply the shift before

truncation.

Example: PsiNormal(0, 1, PsiShift(1), PsiTruncate(, 2, -1) results in a

PsiNormal distribution with mean, 1, and standard deviation, 1, and a

cutoff value on the right of the distribution at 2.

Example: PsiNormal(0, 0.5, PsiShift(1), PsiTruncate(, 2, -2) results in

a PsiNormal distribution with mean, 1, and standard deviation, 0.5, and

a cutoff value on the right of the distribution at 2, the 2nd standard

deviation from the mean.

Frontline Solvers 2025 Q1 Reference Guide Page 360

Example: PsiNormal(0, 0.5, PsiShift(1), PsiTruncate(, 0.98, -3) results

in a PsiNormal distribution with mean, 1, and standard deviation, 0.5,

and a cutoff value at the 98th percentile, 1.0269. Note that PsiTruncate

is not considered when calculating percentile values.

PsiTruncateP

PsiTruncateP([min],[max])

PsiTruncate is used to restrict the values of samples from an uncertain variable’s

distribution or certain PSI Statistic functions to lie within the range from min to

max measured as percentiles. min <= max and 0 < min, max < 1

Supported PsiStatistics functions are: PsiKurtosis, PsiMax, PsiMean,

PsiMedian, PsiMin, PsiMode, PsiPercentile, PsiPercentileD, PsiRange,

PsiSkewness, PsiStdDev, PsiTarget, PsiTargetD and PsiVariance.

When PsiTruncateP is applied to a distribution or PsiStatistic, Analytic Solver

will restrict samples drawn from the distribution or statistic function to values

within the minimum-maximum range.

This property accepts "empty" arguments for the min and max parameters in

order to restrict values on only 1 side of the distribution. If not provided, no

restriction will be applied.

Example:

Uncertain Function – PsiNormal(0,1,PsiTruncateP(.05, .95))

Psi Statistic Function – PsiMean(A1,,,,PsiTruncateP(.05, .95)) where A1 =

PsiNormal(0,1)

If unsupported parameters are given, function will return #NUM.

Frontline Solvers 2025 Q1 Reference Guide Page 361

PsiUnits

PsiUnits (string)

For future use. This property has no significance in the current release of

Analytic Solver.

Time Series Properties

The following properties may only be used in conjunction with a Time Series

and may be applied in any order. The three properties below are necessary to

transform the generated vector to the original scale of the historical data. The

Time Series which support these properties are: PsiAR1, PsiAR2, PsiMA1,

PsiMA2, PsiARMA11, PsiARCH1, PsiGARCH11, PsiEGARCH11 or

PsiAPARCH11. Additional optional properties supported by the Time Series

functions are PsiLock, PsiStatic and PsiCorrMatrix. Note that there is no

truncation, shifting, censoring or individual seeding for a time series.

PsiTSIntegrate

PsiTSIntegrate(order, c1, c2)

PsiTSIntegrate is a property supported by a time series that applies an

integration in the time series where:

• order is the type of integration applied to the time series. This
argument may take on values of 0 (none), 1 (1st order) or 2 (2nd order).

• c1 is the first starting constant and c2 is the second starting constant.

Example:

PsiAR1(1,1,0,1,PsiTSIntegrate(2, 4, 10)) will apply a 2nd order integration using

c1 = 4 and c2 = 10.

PsiTSSeasonality

PsiTSSeasonality(order, period, {terms}, index)

PsiTSSeasonality applies a seasonality term to the time series.

• order may be 0 (none), 1 (1st order), 2 (2nd order) or 3 (additive

seasonality).

• period is the number of seasonal periods, i.e. 4 for quarterly data, 6 for

semi-annual data, etc.

• {terms} is the seasonality definition. Use this argument to pass constant

terms for the seasonal integration or additive terms for additive

seasonality.

• index is the starting index for the seasonal period for additive

seasonality. Note that if a time series with monthly seasonal data begins

in February (rather than January), then the starting index would be 2,

rather than 1.

Example:

=PsiAR1(1,1,0,1,PsiTSSeasonality(2,2)) will apply type=2nd order and period =

2 to each item in the time series.

Frontline Solvers 2025 Q1 Reference Guide Page 362

PsiTSTransform

PsiTSTransform(type, shift)

PsiTSTransform is a property supported by the time series functions that applies

a transformation where:

• type is the type of transformation to apply to the time series. The

argument type may be 0 (none), 1 (exponentiate) or 2 (square).

• shift is the data shift to apply to the time series. The shift argument is

applied to the time series after the transformation has occurred.

Example:

PsiAR1(1,1,0,1,PsiTSTransform(2,2)) applies type = square and shift = 2 to

each item in the series.

PsiTSLen

PsiTSLen(length)

PsiTSLen is a property supported by the time series functions enforcing the

length of the process result; length must be an integer greater than 0. Note:

This property only applies to the Analytic Solver Cloud App and is not

supported in the Analytic Solver COM addin.

Example:

PsiAR1(1,1,0,1,PsiTSTransform(2,2), PsiTSLen(10)) applies type = square and

shift = 2 to each item in the series. The series is of length 10 cells.

PSI Statistics Functions
A portion of the statistic functions below may be used in conjunction with

Dimensional Modeling. When used with Dimensional Modeling, two additional

arguments are utilized: struc_format and param_slice. See the chapter

Dimensional Modeling Psi Functions for more information. Psi Statistics

functions that do not support these added parameters are: PsiCorrelation,
PsiCount, PsiCurrentSim, PsiCurrentTrial, PsiFrequency, PsiOutput,

PsiSimOutput, PsiSpearmanRho, and all PsiTheo functions.

When moving from @Risk to Analytic Solver, the Prop_fcn can be used to

obtain the same results in Analytic Solver as was returned in @Risk. Two

properties may be passed for Prop_fcn, either PsiTruncate or PsiTruncateD. See

below for an explanation of each.

Example of the use of the Prop_fcn property

Frontline Solvers 2025 Q1 Reference Guide Page 363

=PsiMean(A1,,,,PsiTruncate(0,50))

where A1 contains the PsiNormal(0,1) Psi distribution.

The following Psi statistics functions support the use of the Prop_fcn property:

PsiMean, PsiKurtosis, PsiMax, PsiMedian, PsiMin, PsiMode, PsiPercentile,

PsiPercentileCI, PsiPercentileD, PsiPercentiles, PsiPtoX, PsiQtoX, PsiRange,

PsiSkewness, PsiStdDev, PsiTarget, PsiTargetCI, PsiTargetD, PsiVariance,

PsiXtoP and PsiXtoQ.

PsiAbsDev

PsiAbsDev (cell,[simulation])

PsiAbsDev returns the average of the absolute deviations of the specified

uncertain function cell’s sample values from their mean. This is also known as

Mean Absolute Deviation (MAD), especially in time series analysis

applications. It is defined as:

𝑀𝐴𝐷(𝑋) =
1

𝑛
∑|𝜇 − 𝑥𝑖|

𝑛

𝑖=1

Here μ is the mean of the sample values.

PsiBVaR

PsiBVaR (cell,percentile,[simulation])

PsiBVaR returns the Value at Risk for the specified uncertain function cell at the

specified ‘confidence level,’ which is better described as a percentile – for

example, 0.95 or 0.99. (The “B” stands for “Basel” or “building block,” and is

used to distinguish this function name from a function named PsiVar().)

In finance applications, the Value at Risk is the maximum loss that can occur at
a given confidence level. In a distribution of returns or profits, losses would lie

at the “left end” of the distribution and would be represented by negative

numbers and smaller percentiles (say 0.01 or 0.05). But it is customary in Value

at Risk analysis to treat losses as positive numbers at the “right end” of the

distribution. Consider a Normal (PsiNormal()) distribution, Analytic Solver

would compute PsiBVaR (cell, percentile) as –PsiPercentile(cell, 1- percentile).

If A1 = PsiNormal(0,1) then PsiBVaR (A1, 0.95) = –PsiPercentile (A1, 0.05).

Frontline Solvers 2025 Q1 Reference Guide Page 364

PsiCITrials

PsiCITrials (cell,confidence level,tolerance,

simulation)

PsiCITrials returns the estimated number of simulation trials needed to ensure

that the specified uncertain function's sample mean value (returned by the
PsiMean() function) lies within the confidence interval specified by confidence

level (for example 0.95 or 0.99) and the half-interval size given by tolerance.

An optional simulation index (simulation) may be passed if multiple simulations

are being run (default =1). If using, enter an integer greater than 0 but less than

the entry for Num Simulations in the Platform tab of the Solver Task Pane.

Note that this number of trials is sufficient only to ensure that the single output

value specified by cell lies within the confidence interval. To ensure that N

output cells lie within confidence intervals at level 1 - (e.g. 0.95 = 1 – 0.05),

use a confidence level of / N.

PsiCoeffVar

PsiCoeffVar (cell, simulation)

PsiCoeffVar finds the coefficient of variation for the specified uncertain

function. This function is defined as the ratio of the standard deviation to the

mean and is calculated as:

𝑐𝑣 =
𝜎

𝜇

This statistic measures the magnitude of the variability in relation to the mean of

the population.

PsiConverged

PsiConverged (output_cell, [simulation])

PsiConverged returns True if an adequate number of trials have been performed
in order for the uncertain function to converge. Otherwise, this statistic returns

False. Convergence monitoring is performed using the mean (PsiMean).

PsiConverged is a statistic to PsiOutput (only). The output_cell must be defined

explicitly though PsiOutput. The parameters for the statistic are obtained when

the property PsiConvergence is used in conjunction with PsiOutput(). See

example below. See the definition for PsiConvergence for more information on

PsiConvergence parameters.

The required argument, output_cell, must be a valid Excel cell containing

an uncertain function defined explicitly though PsiOutput(), which must contain

the PsiConvergence property. (See example below.) If the PsiConvergence

property is missing from the PsiOutput() function in output_cell,

PsiConverged will return #N/A.

The optional argument, simulation, must be an integer from 1 to the

Number of Simulations as set in the Platform tab of the Analytic Solver

Taskpane. If the Number of Simulations is set to 5, then simulation can be
1,2,3,4 or 5. The default setting is 1.

Note: If, after a simulation has been successfully completed, all PsiConverged

functions return True, then you might consider lowering the Number of

Iterations on the Platform tab of the Analytic Solver Task pane, since all output

Frontline Solvers 2025 Q1 Reference Guide Page 365

functions converged to the desired mean threshold. Conversely, if some or all

PsiConverged functions are returning False, then you might consider increasing

the number of iterations in order to attain convergence for all output functions in

the model.

Example:

A1=PsiNormal(5,6)+PsiOutput("Test",1,PsiConvergence(0.01,2))

A2 = PsiConverged(A1,2)

Output for A2 will be either True, indicating that the mean (PsiMean) of the

output function in A1 has converged to within 1% (.01) of its true value in the

2nd simulation. If not, this function will return False.

PsiCorrelation

PsiCorrelation (cell1,cell2,simulation)

PsiCorrelation returns the Pearson product moment correlation coefficient

between the two uncertain variables or functions cell1 and cell2. Correlation is

a measure of linear dependence between two uncertain variables or functions.

The correlation coefficient can take on values between -1 and +1. A correlation

of -1 indicates a perfect negative correlation (the cells move linearly in opposite

directions); a correlation of +1 indicates a perfect positive correlation (the cells

move linearly in the same direction). If the two random variables are independ-

ent, then their correlation coefficient is zero; but if the correlation coefficient is

zero, this does not necessarily mean that the two variables are independent. For
more information, see “Dependence and Correlation” in the Frontline Solver

User Guide chapter “Mastering Simulation and Risk Analysis Concepts.”

Pearson’s product moment correlation coefficient between random variables X

and Y is defined as:

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=
𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]

𝜎𝑋𝜎𝑌

In Monte Carlo simulation, this value is computed from the sample values x[]

and y[] over n trials as:

𝑟𝑥,𝑦 =
𝑛∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1)(∑ 𝑦𝑖

𝑛
𝑖=1)

√[𝑛∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1)2][𝑛∑ 𝑦𝑖

2𝑛
𝑖=1 − (∑ 𝑦𝑖

𝑛
𝑖=1)2]

Note: The values returned by PsiCorrelation() are not the same as the

correlation coefficients you specify in PsiCorrDepen() and PsiCorrMatrix()

property functions. The latter are Spearman rank correlation coefficients and

are used to generate sample values from different PSI Distribution functions that

are properly correlated. The values returned by PsiCorrelation() are Pearson

product moment correlation coefficients, computed from the observed result of

the simulation process. You can specify any cell in your model for cell1 and
cell2, so you can compute observed correlations between two formula cells, two

PSI Distribution cells, or a formula cell and a PSI Distribution cell.

PsiCount

PsiCount (cell,type,simulation)

PsiCount returns the number of trials of the specified type executed in the most

recent simulation. The type may be 0 for all trials, 1 for normal or ‘success’
trials (where a number appeared in cell), or 2 for error or ‘failed’ trials (where an

Frontline Solvers 2025 Q1 Reference Guide Page 366

Excel error value appeared in cell). You can omit the cell argument (but include

the first comma); in this case type = 1 returns the count of trials where numbers

appeared in all output cells in the model, and type = 2 returns the count of trials

where an Excel error value appeared in any output cell in the model. Statistics

are computed only for trials where numbers appeared in all output cells.

PsiCVaR

PsiCVaR (cell,percentile,simulation)

PsiCVaR returns the conditional Value at Risk for the specified uncertain

function cell, at the specified ‘confidence level’ which is better described as a

percentile – for example, 0.95 or 0.99. The conditional Value at Risk is defined

as the expected value of a loss given that a loss at the specified percentile occurs.

Like PsiBVaR, PsiCVaR returns a loss as a positive number. It is computed as

the negative of the mean value of the specified uncertain function for the trials

that lie between PsiMin(cell) and PsiPercentile(cell, 1-percentile), inclusive.

PsiData

Analytic Solver Desktop

PsiData (cell,trial,[simulation])

Analytic Solver Cloud

PsiData (cell,trial,[simulation], [numTrials])

PsiData returns a specific trial value or an array of trial values for the specified

uncertain function cell. To return one value, specify the trial index and (if

multiple simulations are used) the simulation index for the value you want.

In Analytic Solver Cloud and in recent versons of desktop Excel, PsiData()

returns a Dynamic Array. To use this function, you need only enter the Psi

function in one cell as a normal function, i.e., not as a control array. The

contents of the Dynamic Array will "spill" down the column. If a nonblank cell

is "blocking" the contents of the Dynamic Array, PsiData() will return #SPILL

until such time as the blockage is removed. Use the optional numTrials

argument to specify the number of trials in the Dynamic Array. If not present,

all trials will be returned.

In older versions of Excel that do not support Dynamic Arrays, to return an

array of all trial values for a given simulation, omit the trial argument and

“array-enter” the PsiData function by selecting a column of cells, typing the

function call, and pressing Ctrl + Shift + Enter. If the number of cells N in the

array-entered result is less than the number of trials in the simulation, only the

first N trials are returned. Note: The Publish/Unpublish feature does not

support Ctrl+Shift+Enter arrays.

PsiExpGain

PsiExpGain (cell,simulation)

PsiExpGain returns the average of all positive data multiplied by 1 -

percentrank of 0 among all data. It is always a positive number.

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

Frontline Solvers 2025 Q1 Reference Guide Page 367

PsiExpGainRatio

PsiExpGainRatio (cell,simulation)

PsiExpGain returns the expected gain ratio for a specified uncertain function.

This function is calculated as:

𝑃𝑠𝑖𝐸𝑥𝑝𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 =
𝑃𝑠𝑖𝐸𝑥𝑝𝐺𝑎𝑖𝑛

𝑃𝑠𝑖𝐸𝑥𝑝𝐺𝑎𝑖𝑛+|𝑃𝑠𝑖𝐸𝑥𝑝𝐿𝑜𝑠𝑠|

This value ranges between 0 and 1 inclusive.

PsiExpLoss

PsiExpLoss (cell,simulation)

PsiExpLoss returns the average of all negative data multiplied by the

percentrank of 0 among all data. It is always a negative number.

PsiExpLossRatio

PsiExpLossRatio (cell,simulation)

PsiExpLoss returns the expected loss ratio for a specified uncertain function.

This function is calculated as:

𝑃𝑠𝑖𝐸𝑥𝑝𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑖𝑜 =
𝑃𝑠𝑖𝐸𝑥𝑝𝐿𝑜𝑠𝑠

𝑃𝑠𝑖𝐸𝑥𝑝𝐺𝑎𝑖𝑛+|𝑃𝑠𝑖𝐸𝑥𝑝𝐿𝑜𝑠𝑠|

This value ranges between 0 and 1 inclusive.

PsiExpValMargin

PsiExpValMargin (cell,simulation)

PsiExpValMargin is calculated as:

PsiExpValMargin = PsiExpGainRatio – PsiExpLossRatio.

This statistic ranges between -1 and 1 inclusive.

PsiFrequency

PsiFrequency (cell,freq_type,bin_bounds,simulation)

PsiFrequency returns an array of frequencies describing the distribution of trial
values for the specified uncertain function cell. Use PsiFrequency to easily

draw a histogram chart. This function spills down.

The freq_type argument affects the contents of each element of the array result:

0 – Each element contains the frequency of trial values falling into the

corresponding bin (like a probability density function)

1 – Each element contains the cumulative frequency of trial values falling into

the corresponding bin plus all lower bins (like a cumulative distribution

function)

2 – Each element contains the cumulative frequency of trial values falling into
the corresponding bin plus all higher bins (like a reverse cumulative

distribution function)

Frontline Solvers 2025 Q1 Reference Guide Page 368

In Analytic Solver Desktop, the bin_bounds argument is either an array of values

(e.g. { 5, 10, 15, 20 }) or a cell range containing the upper limit of trial values

that should fall into the corresponding bin. The values should be in strictly

increasing order. As in the Excel FREQUENCY function, the number of

elements in the array result will be one more than the number of values or cells
in the bin bounds argument (or fewer, if the array-entered result occupies fewer

cells); the last element contains the number of trial values larger than the highest

bin bound value.

Alternatively, in Analytic Solver Desktop and only in Analytic Solver Cloud,

you can specify an integer number N of bins for the bin bounds argument. In

this case, N equal-size bins are assumed, with bounds sufficient to capture all

trials values from PsiMin (cell) to PsiMax (cell); N values are returned, with the

last one always 1 or 0.

Note to RASON Users: The Deploy Model feature in Analytic Solver supports

the translation of the PsiFrequency function into the RASON modeling language

when the PsiFequency function is in one of the following two forms:

=PsiFrequency(cell, freq_type, NumBins) - Specify an integer number

N of bins for the bin bounds argument. In this case, N equal-size bins

are assumed, with bounds sufficient to capture all trials values from

PsiMin (cell) to PsiMax (cell); N values are returned, with the last one

always 1 or 0.

=PsiFrequency(cell, freq_type, CellRange) - Cell range containing the

lower and upper limits of trial values that should fall into the

corresponding bin. The values should be listed in the cell range in

strictly increasing order.

PsiKendallTau

PsiKendallTau(cell1, cell2)

PsiKendallTau returns a non-parametric correlation coefficient (based on the

relative ordering of ranks) between two uncertain variables or functions, cell1

and cell2. This statistic can be used to determine how (if at all) the two

uncertain variables or functions are correlated.

The Kendall Tau rank correlation coefficient measures the ordinal association
between two uncertain variables or functions. It is a measure of rank

correlation. This correlation coefficient is high when observations have a

similar rank between the two variables, and low when observations have a

dissimilar rank between the two variables.

PsiKurtosis

PsiKurtosis (cell,simulation)

PsiKurtosis returns the kurtosis for the specified uncertain function cell.

Kurtosis is the 4th moment and measures the peakedness of the distribution of

trial values. It is computed as:

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) =
𝑛∑ (𝑥𝑖 − 𝜇)

4𝑛
𝑖=1

[∑ (𝑥𝑖 − 𝜇)
2𝑛

𝑖=1]2

where μ is the mean of the trial values. A higher kurtosis indicates a distribution

with a sharper peak and heavier tails, and that more of the variability is due to a
small number of extreme outliers or values; a lower kurtosis indicates a

Frontline Solvers 2025 Q1 Reference Guide Page 369

distribution with a rounded peak and that more of the variability is due to many

modest-sized values.

PsiMax

PsiMax (cell,simulation)

PsiMax returns the maximum value attained by the specified uncertain function

cell over all the trials in the simulation.

PsiMean

PsiMean (cell,simulation)

PsiMean returns the mean value for the specified uncertain function cell. The

mean or average value is the 1st moment of the distribution of trials and is

computed as:

𝜇 =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛

The mean is frequently used as a measure of central tendency or the “middle” of

an uncertain function; but for skewed distributions, care must be taken in using

the mean as a measure of central tendency because the mean is easily distorted

by extreme outlier values.

Compound Distributions

 Analytic Solver computes the mean of a compound distribution as:

Mean = N * distr mean

Where N is the compound size and distr mean is the analytical mean of the

underlined distribution.

For example, for the compound distribution, PsiNormal(m, std), N times, the
mean of the compound distribution is N * m.

PsiMeanCI

PsiMeanCI (cell,confidence level,simulation)

PsiMeanCI returns the confidence “half-interval” for the estimated mean value

(returned by the PsiMean() function) for the specified uncertain function cell, at

the specified confidence level (for example 0.95 or 0.99). If μ is the value
returned by PsiMean() and δ is the value returned by PsiMeanCI(), the true

mean is estimated to lie within the interval μ - δ to μ + δ.

The confidence level can be interpreted as follows: If we compute a large

number of independent estimates of confidence intervals on the true mean of the

uncertain function, each based on n observations with n sufficiently large, then

the proportion of these confidence intervals that contain the true mean of the

function should equal the confidence level.

If σ2 (n) is the sample variance from n trial values, = 1 – confidence level, and

tn-1, 1-α/2 is the upper 1-α/2 critical point of the Student’s t-distribution with n-1

degrees of freedom, the confidence half-interval δ is computed as:

Frontline Solvers 2025 Q1 Reference Guide Page 370

𝑡
𝑛−1,1−

𝛼
2

√
𝜎2(𝑛)

𝑛

The confidence interval measures the precision with which we have estimated
the true mean. Larger half widths imply that there is a lot of variability in our

estimates. The above formula for the half-width assumes that the individual xis

are normally distributed; when this is not the case, the above formula still gives

us an approximate confidence interval on the true mean of the uncertain

function.

PsiMeanCIB

PsiMeanCIB (cell, confidence_level, [lowerbound],

[simulation], [strucformat],[paramslice])

PsiMeanCIB returns the lower or upper bound of the confidence interval (half

width) of the mean value for the specified uncertain function.

cell – Enter the cell address of the specified uncertain function.

Confidence_level – Enter the desired confidence level, i.e. 0.95 or 0.99.

lowerbound – (Optional) Enter true for the lower (default) or false for the upper

bound.

simulation – (Optional) Used when multiple simulations are performed during

simulation parameter analysis (i.e. use of the PsiSimParam function). Enter an

integer greater than 0 and less than NumSimulations for the simulation index.

The default is 1.

strucformat, paramslice—(Optional) Used in Dimensional Modeling. Enter
"vals" to display cube elements in a pivot table, enter "dims" to display

dimensions with lengths or enter a dimension name to return a "slice" of the data

table.

Example: =PsiMeanCIB(A1, .99, true, 5) returns the lower bound for the 99%

confidence interval for the distribution in cell A1 for simulation index 5.

PsiMedian

PsiMedian (cell,simulation)

PsiMean returns the median value for the specified uncertain function cell. The

median value is the 50th percentile of the distribution of trials and is computed

as:

 𝑋(𝑛 + 1)/2 if n is odd

𝑋𝑛/2+ 𝑋(𝑛/2) + 1

2
 if n is even

The median is a very useful statistic for measuring the center of a distribution.

PsiMin

PsiMin (cell,simulation)

Frontline Solvers 2025 Q1 Reference Guide Page 371

PsiMin returns the minimum value attained by the specified uncertain function

cell over all the trials in the simulation.

PsiMode

PsiMode (cell,simulation)

PsiMode returns the mode of the specified uncertain function cell. For discrete

distributions, this is the most frequently occurring value (where the probability

mass function has its greatest value). For continuous distributions, PsiMode()

returns the half-sample mode as defined by D.R. Bickel, a robust estimator that

is less sensitive to outliers than most other estimators of location.

PsiOutput

PsiOutput() or PsiOutput(cell_or_name, [instance],
[PsiSixSigma])

PsiOutput marks cell as an uncertain function, with a distribution of trial values.

You can either reference the cell as an argument of PsiOutput() – for example

PsiOutput (B1) – or you can add PsiOutput() to the computed result – for

example, if the uncertain function formula in cell B1 is =A1+A2*ABS(A3), edit

this formula to read =PsiOutput()+A1+A2*ABC(A3).

PsiOutput() always returns 0, so it will not affect the value of the uncertain

function. Using PsiOutput() is optional – if you reference an uncertain function

cell as the first argument of another PSI Statistics function, that cell is implicitly

marked as an uncertain function.

You can use a formula such as =PsiOutput (B1:B10) to group contiguous
uncertain function cells together in Analytic Solver’s VBA object model, so they

appear as one Function object in the Problem’s Functions collection. For further

information, see “PsiOutput() and “Uncertain Function Objects” in the section

“Using PSI Functions” earlier in this chapter.

Named Output Signature

In V2019, PsiOutput was extended to use a named output signature which may
be referenced in a PsiStatistics function. To use,

1. Enter an uncertain variable in a blank cell.

A1 = PsiNormal(0,1)

2. In a 2nd cell, pass the cell address of the uncertain variable and append "+

PsiOutput("AnyString")", then press Enter. ("AnyString" is the name given

to the output from the uncertain variable.)

A2 = A1 + PsiOutput("Test")

3. Enter any PsiStatistics function, i.e. PsiMean(), in a blank cell and instead

of passing a cell address, pass the name given to PsiOutput.

A3 = PsiMean("Test")

Instance argument

In V2025 Q1, PsiOutput() was extended to include an additional argument,

instance, to aid in the conversion of @Risk functions to Psi functions. With this

new argument, two outputs may be given identical names. In this case, the

instance argument is used to distinguish each occurrence. For example:

Frontline Solvers 2025 Q1 Reference Guide Page 372

= A1 + PsiOutput(“myname”, 1)

= B1 + PsiOutput(“myname”, 2)

Note: Internally, the name and instance are concatenated to “myname1” and “myname2”.

PsiSixSigma() argument

Analytic Solverincludes the ability to convert an @Risk model to a model

solvable by Analytic Solver.

For more information on this new feature, see the section “Using the Distribution Galleries” that

appears earlier in this guide.

In order to comply with @Risk functionality pertaining to Six Sigma functions,

PsiOutput() was extended to accept a third argument, the new property function

PsiSixSigma(). This new property can be used to supply the arguments to one or

more Psi Six Sigma functions.

Note: This extension applies only to Psi Six Sigma functions, which are listed in the table below.

See the section “Psi Six Sigma Functions” for signatures and definitions for all Psi Six Sigma

Functions.

PsiSigmaCP PsiSigmaCPK PsiSigmaCPKLower PsiSigmaCPKUpper

PsiSigmaCPM PsiSigmaDefectPPM PsiSigmaDefectShiftPPM PsiSigmaDefectShiftPPMLower

PsiSigmaDefectShiftPPMUpper PsiSigmaK PsiSigmaLowerBound PsiSigmaProbDefectShift

PsiSigmaProbDefectShiftLower PsiSigmaProbDefectShiftUpper PsiSigmaSigmaLevel PsiSigmaUpperBound

PsiSigmaYield PsiSigmaZLower PsiSigmaZMin PsiSigmaZUpper

The expanded signature for PsiOutput() uses the PsiSixSigma property to pass

arguments to any Psi Six Sigma function that references the cell containing this

function.

PsiOutput(cell_or_name, [instance], [PsiSixSigma(p1,

p2, …)])

Note that in the example below, only the first two arguments to PsiSixSigma are

utilized since PsiSigmaCP accepts just two arguments, lower_limit and

upper_limit.

Example:

F1 = PsiSigmaCP(F4)

F4 = PsiOutput(“Output1”, 2, PsiSixSigma(3, 40, 50, 75, 80)) + PsiNormal(1,0)

PsiPercentile/PsiPtoX

PsiPercentile (cell,percentile,simulation)

PsiPtoX (cell,percentile,simulation)

PsiPercentile/PsiPtoX return a percentile (.01-.99) value for the specified

uncertain function cell: This means that m (or m%) of the simulation trials have

values less than the returned value, where m is the percentile.

Output function

Optional: Name of output

Simulation

Arguments for PsiSigmaCP() – Only

first 2 are used.

Uncertainty

Psi Six Sigma function

Frontline Solvers 2025 Q1 Reference Guide Page 373

PsiPercentileCI

PsiPercentileCI (cell,percentile,confidence_level,

[simulation])

PsiPercentileCI returns the confidence “half-interval” for a given percentile

(.01-.99) value for the specified uncertain function cell. If the optional
simulation argument does not exist, simulation = 1 is assumed.

This function is computed as: Lower: PsiPercentile-PsiPercentileCI, Upper:

PsiPercentile + PsiPercentileCI.

Since the output of PsiPercentileCI is symmetric, the mean and median are

theoretically the same, i.e. PsiMeanCI(cell, 0.95) is expected to be

approximately equal to PsiPercentileCI(cell, 0.5, 0.95).

This function together with PsiMeanCI, PsiMeanCIB, PsiStdDevCI, PsiCITrials

and the newly added PsiTargetCI, make up the confidence interval functions in

Analytic Solver.

Example: PsiPercentileCI (A1,0.95, 0.99,2) - Finds the confidence half-interval
for cell A1 using the 95th percentile and a confidence level of 99% for the 2nd

simulation.

PsiPercentileD/PsiQtoX

PsiPercentileD (cell,percentile,simulation)

PsiQtoX (cell,percentile,simulation)

PsiPercentileD/PsiQtoX returns a descending percentile (.01-.99) value for the

specified uncertain function cell: This means that m (or m%) of the simulation

trials have values less than the returned value, where m is the percentile.

PsiPercentiles

PsiPercentiles(cell, [simulation],[struc_format],

[param_slice])

PsiPercentiles returns an array of all percentiles (0.01 to 0.99) for the specified

uncertain function cell. To return one value, use the Percentile() function

described above. If multiple simulations are used, specify the simulation index

to receive the percentiles for the desired simulation.

If using a version of Excel that does not support Dynamic Arrays, omit the trial

argument and “array-enter” the PsiData function by selecting a column of cells,

typing the function call, and pressing Ctrl + Shift + Enter. If the number of cells
N in the array-entered result is less than the number of trials in the simulation,

only the first N trials are returned.

In Analytic Solver Cloud and in later versions of desktop Excel, PsiData()

returns a Dynamic Array. To use this function in the Cloud, you need only enter

the Psi function in one cell as a normal function, i.e., not as a control array. The

contents of the Dynamic Array will "spill" down the column. If a nonblank cell

is "blocking" the contents of the Dynamic Array, PsiData() will return #SPILL

until such time as the blockage is removed.

https://support.microsoft.com/en-us/office/-spill-errors-in-excel-ffe0f555-b479-4a17-a6e2-ef9cc9ad4023
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

Frontline Solvers 2025 Q1 Reference Guide Page 374

PsiRange

PsiRange (cell,simulation)

PsiRange returns the range of the specified uncertain function cell. The range is

the difference between the maximum and minimum values attained in the

distribution of trial values.

PsiSemiDev

PsiSemiDev (cell,q,target,simulation)

PsiSemiDev returns the semideviation for the specified uncertain function cell,
relative to the target if specified. If the target is omitted, the mean value is

used. This is a one-sided measure of dispersion of values of the uncertain

function. The semideviation is the square root of the semivariance, described

directly below. If a q argument different from 2 is specified, PsiSemiDev()

returns the qth root of the lower partial moment at power q of the uncertain

function.

PsiSemiDev2

PsiSemiDev2 (cell, [lowerdata], [simulation],

[strucformat],[paramslice])

PsiSemiDev2 returns the standard deviation of the values in the distribution

below or above the mean or the square root of PsiSemiVar2.

cell – Enter the cell address of the specified uncertain function.

lowerdata – (Optional) Enter true for the lower (default) or false for the upper

data.

simulation – (Optional) Used when multiple simulations are performed during

simulation parameter analysis (i.e. use of the PsiSimParam function). Enter an

integer greater than 0 and less than NumSimulations for the simulation index.

The default is 1.

strucformat, paramslice —(Optional) Used in Dimensional Modeling. Enter
"vals" to display cube elements in a pivot table, enter "dims" to display

dimensions with lengths or enter a dimension name to return a "slice" of the data

table.

Example: =PsiSemiDev2(A1, true, 5) returns the standard deviation of the

values below the mean for the distribution in cell A1 for simulation index 5.

PsiSemiVar

PsiSemiVar (cell,q,target,simulation)

PsiSemiVar returns the semivariance for the specified uncertain function cell, if

the argument q is omitted, or the ‘lower partial moment’ for the function, if an

argument q different from 2 is specified. The semivariance is computed relative

to the target if specified, or relative to the mean value if target is omitted. This

is a measure of the dispersion of values of an uncertain function, but unlike the

variance which measures (or penalizes) both positive and negative deviations

from the target, the semivariance or lower partial moment is only concerned

Frontline Solvers 2025 Q1 Reference Guide Page 375

with one-sided deviations from the target. It is usually used in finance and

insurance applications, when we are only concerned with downside risks (or loss

in portfolio value). The semivariance is computed by summing only the

downside differences from the target of all the trials, raised to the given power q,

divided by the number of trials:

1

𝑛
∑(𝑡 − 𝑥𝑖)+

𝑞

𝑛

𝑖=1

(𝑥)+ = 𝑚𝑎𝑥(𝑥, 0)
𝑡 = target value

All trials – not just the trials with downside deviations – are included in n.

Again if q is different from 2, the result is called the ‘lower partial moment.

PsiSemiVar2

PsiSemiVar2 (cell, [lowerdata], [simulation],

[strucformat],[paramslice])

PsiSemiVar2 returns the variance of the values in the distribution below or
above the mean.

cell – Enter the cell address of the specified uncertain function.

lowerdata – (Optional) Enter true for the lower (default) or false for the upper

data.

simulation – (Optional) Used when multiple simulations are performed during

simulation parameter analysis (i.e. use of the PsiSimParam function). Enter an

integer greater than 0 and less than NumSimulations for the simulation index.

The default is 1.

strucformat, paramslice —(Optional) Used in Dimensional Modeling. Enter

"vals" to display cube elements in a pivot table, enter "dims" to display
dimensions with lengths or enter a dimension name to return a "slice" of the data

table.

Example: =PsiSemiVar2(A1, true, 5) returns the variance of the values below

the mean for the distribution in cell A1, for simulation index 5.

PsiSimData

Analytic Solver Desktop

PsiSimData (cell,trial,[simulation])

Analytic Solver Cloud

PsiSimData (cell,trial,[simulation], [numTrials])

PsiSimData behaves the same as PsiData returning a specific trial value or an

array of trial values for the specified uncertain function cell. To return one

value, specify the trial index and (if multiple simulations are used) the

simulation index for the value you want. To return an array of all trial values for

a given simulation, omit the trial argument and “array-enter” the PsiSimData

function by selecting a group of cells, typing the function call, and pressing Ctrl

+ Shift + Enter. If the number of cells N in the array-entered result is less than

the number of trials in the simulation, only the first N trials are returned.

Frontline Solvers 2025 Q1 Reference Guide Page 376

In Analytic Solver Cloud, PsiSimData() returns a Dynamic Array. To use this

function in the Cloud, you need only enter the Psi function in one cell as a

normal function, i.e., not as a control array. The contents of the Dynamic Array

will "spill" down the column. If a nonblank cell is "blocking" the contents of

the Dynamic Array, PsiSimData() will return #SPILL until such time as the
blockage is removed. Use the optional numTrials argument to specify the

number of trials in the Dynamic Array. If not present, all trials will be returned.

PsiSimOutput

PsiSimOutput() or PsiSimOutput(cell range)

PsiSimOutput behaves exactly the same as PsiOutput where it marks cell as an

uncertain function, with a distribution of trial values. You can either reference

the cell as an argument of PsiSimOutput() – for example PsiSimOutput (B1) –

or you can add PsiSimOutput() to the computed result – for example, if the

uncertain function formula in cell B1 is =A1+A2*ABS(A3), edit this formula to
read =PsiSimOutput()+A1+A2*ABC(A3).

PsiSimOutput() always returns 0, so it will not affect the value of the uncertain

function. Using PsiSimOutput() is optional – if you reference an uncertain

function cell as the first argument of another PSI Statistics function, that cell is

implicitly marked as an uncertain function.

You can use a formula such as =PsiSimOutput (B1:B10) to group contiguous

uncertain function cells together in Analytic Solver’s VBA object model, so they

appear as one Function object in the Problem’s Functions collection. For further

information, see “PsiOutput() and “Uncertain Function Objects” in the section

“Using PSI Functions” earlier in this chapter.

PsiSkewness

PsiSkewness (cell,simulation)

PsiSkewness returns the skewness for the specified uncertain function cell.

Skewness is the 3rd moment of an uncertain function, and describes the

asymmetry of its distribution. Skewness can be either positive or negative:

Positive skewness implies that the distribution is right skewed (longer right
tails), and negative skewness implies that the distribution is left skewed (longer

left tails). Skewness is computed as:

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) =
√𝑛∑ (𝑥𝑖 − 𝜇)

3𝑛
𝑖=1

[∑ (𝑥𝑖 − 𝜇)
2𝑛

𝑖=1]
3
2

where μ is the mean of the trial values.

Compound Distributions

Analytic Solver computes the skewness of a compound distribution as:

Skewness = distribution_skew/ (SQRT(N))

Where N is the compound size and distribution_skew is the skewness of the

underlined distribution.

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

Frontline Solvers 2025 Q1 Reference Guide Page 377

PsiSpearmanRho

PsiSpearmanRho (cell1, cell2)

PsiSpearmanRho returns a non-parametric measure (based on trial ranks). This

function measures the correlation between two uncertain variables or functions,

cell1 and cell2. This statistic can be used to determine how (if at all) the two

uncertain variables or functions are correlated.

The Spearman correlation between two variables is equal to the Pearson

correlation between the rank values of those two variables; while Pearson's

correlation assesses linear relationships, Spearman's correlation assesses

monotonic relationships (whether linear or not). If there are no repeated data

values, a perfect Spearman correlation of +1 or −1 occurs when each of the

variables is a perfect monotone function of the other.

The Spearman correlation between two variables will be high when observations

have a similar rank between the two variables or functions, and low when

observations have a dissimilar rank between the two variables or functions.

PsiStdDev

PsiStdDev (cell,simulation)

PsiStdDev returns the standard deviation for the specified uncertain function
cell. Standard deviation is a measure of the dispersion of an uncertain function,

and accounts for both positive and negative deviations from the mean. The

square of standard deviation is the Variance. Standard deviation is defined as:

𝑠𝑡𝑑𝑑𝑒𝑣(𝑋) = √𝐸[𝑋2] − (𝐸[𝑋])2
The sampled population standard deviation is given by

𝑠𝑡𝑑𝑑𝑒𝑣(𝑋) = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝜇)

2

𝑛

𝑖=1

where E[.] is the expected value, and µ is the mean of the trial values. As a

rough rule, about ¾ of the values of any uncertain function are within two

standard deviations from the mean. A large standard deviation indicates that

most of the trial values are away from the mean, and a small standard deviation

indicates that most of the trial values are close to the mean.

Compound Distributions

Analytic Solver computes the standard deviation of a compound distribution as:

Standard Deviation = SQRT(Compound Distribution Variance)

PsiStdErr

PsiStdErr (cell, simulation)

PsiStdErr finds the standard error of the mean of the specified uncertain

function. This function can be defined as the standard deviation of the sample

mean ans is calculated as:

𝑆𝐸𝑥 =
𝑠

√𝑛

where s is the sample standard deviation and n is the size of the sample.

Frontline Solvers 2025 Q1 Reference Guide Page 378

PsiStdDevCI

PsiStdDevCI (cell,confidence level,simulation)

PsiStdDevCI returns the confidence ‘half-interval’ for the estimated standard

deviation of the simulation trials (returned by the PsiStdDev() function) for the

specified uncertain function cell, at confidence level (for example 0.95 or 0.99).

If σ is the value returned by PsiStdDev () and δ is the value returned by

PsiStdDevCI(), the true mean is estimated to lie within the interval σ - δ to σ + δ.

If σ2 (n) is the sample variance from n trial values, = 1 – confidence level, and

tn-1, 1-α/2 is the upper 1-α/2 critical point of the Student’s t-distribution with n-1

degrees of freedom, the confidence half-interval δ is computed as:

𝑡
𝑛−1,1−

𝛼
2
𝜎(𝑛)√

𝑘 − 1

4(𝑛 − 1)

See also the description of the PsiMeanCI() function.

PsiTarget

PsiTarget (cell,target_value,simulation)

PsiTarget returns the cumulative frequency of the target value in the distribution

of trial values for the specified uncertain function cell. This function returns the

proportion of simulated values for cell that are less than or equal to target value.

PsiTargetCI

PsiTargetCI (cell,target_value,confidence_level,

[simulation])

PsiTargetCI returns the confidence “half-interval” for the cumulative probability

of the target value in a distribution of trial values for the specified uncertain

function cell. This means that PsiTarget is accurate within PsiTarget +/-

PsiTargetCI with a given confidence level. If the optional simulation argument

does not exist, simulation = 1 is assumed.

This function is computed as: Lower: PsiTarget-PsiTargetCI, Upper:
PsiTarget + PsiTargetCI.

This function together with PsiMeanCI, PsiMeanCIB, PsiStdDevCI, PsiCITrials

and the newly added PsiPercentileCI, make up the confidence interval functions

in Analytic Solver.

Example: PsiTargetCI (A1,7, 0.99,2) - Finds the confidence half-interval for

cell A1 for the target value = 7, using a confidence level of 99% for the 2nd

simulation.

PsiTargetD

PsiTargetD (cell_or_name,target value,simulation)

PsiTargetD returns the descending cumulative probability of the target value in

the distribution of trial values for the specified uncertain function cell. This

function returns the proportion of simulated values for cell_or_name that are

less than or equal to target value.

Frontline Solvers 2025 Q1 Reference Guide Page 379

PsiTheoKurtosis

PsiTheoKurtosis (cell_or_name)

Returns the analytic kurtosis (4th moment) value for the specified distribution.

 Example: If A1 =PsiNormal(0,1) then

=PsiTheoKurtosis(A1) returns the kurtosis of the PsiNormal(0,1) function.

PsiTheoMax

PsiTheoMax(cell_or_name)

Returns the maximum value of the specified distribution.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoMax(A1) returns the maximum value for the PsiNormal(0,1)

distribution.

PsiTheoMean

PsiTheoMean(cell_or_name)

Returns the mean of the specified distribution.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoMean(A1) returns the mean for the PsiNormal(0,1) distribution.

PsiTheoMedian

PsiTheoMedian(cell_or_name)

Returns the median of the specified distribution.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoMedian(A1) returns the median for the PsiNormal(0,1) distribution.

PsiTheoMin

PsiTheoMin(cell_or_name)

Returns the minimum value of the specified distribution.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoMax(A1) returns the minimum value for the PsiNormal(0,1)

distribution.

PsiTheoMode

PsiTheoMode(cell_or_name)

Returns the analytical mode of the specified distribution.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoMax(A1) returns the mode for the PsiNormal(0,1) distribution.

A Note on PsiTheo Functions

PSI statistics functions that return a

statistic on a simulation input

distribution, or uncertain variable, begin

with PsiTheo. If a PsiTheoXXX

function is applied to an output
function, the error #N/A will be

returned. In addition, if the requested

statistic is impossible for the targeted

distribution, the statistical function will

return #N/A. PsiTheoXXX functions

compute the moment only when

distribution parameters are not

dependent on other distributions or

decision variables in order to guarantee

that the moment is constant throughout

solving. PsiTheoXXX functions were

designed to aid in the visualization of
results and for comparison of the exact

analytic moment with the trial statistics.

Frontline Solvers 2025 Q1 Reference Guide Page 380

PsiTheoPercentile/PsiTheoPtoX

PsiTheoPercentile(cell_or_name, percentile)

PsiTheoPtoX(cell_or_name, percentile)

PsiTheoPercentile and PsiTheoPtoX are alternate names for the same function.

Both functions return the analytic percentile (CDFInv) value for the distribution

specified in the cell_or_name argument. Enter the desired percentile (in

decimal form) for the percentile argument, i.e. .01, .30, or .98. The

percentile value must be between 0 and 1.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoPercentile(A1, .50) or PsiTheoPtoX(A1, .50) return the 50th percentile

for the PsiNormal(0,1) distribution.

PsiTheoPercentileD/PsiTheoQtoX

PsiTheoPercentileD(cell_or_name, percentile)

PsiTheoQtoX(cell_or_name, percentile)

PsiTheoPercentileD and PsiTheoQtoX are alternate names for the same

function. Both return the percentile (CDFInv descending) value for the

distribution specified in the cell_or_name argument. Enter the desired

percentile (in decimal form) for the percentile argument, i.e. .01, .30, or

.98. The percentile value must be between 0 and 1.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoPercentileD(A1, .50) and =PsiTheoQtoX(A1, .50) return the 50th

percentile (CDFInv descending) value for the PsiNormal(0,1) distribution.

PsiTheoRange

PsiTheoRange(cell_or_name)

Returns the range information for the specified distribution.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoRange(A1) returns the range information for the PsiNormal(0,1)

distribution.

PsiTheoSkewness

PsiTheoSkewness(cell_or_name)

Returns the skewness of the specified distribution.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoSkewness(A1) returns the skewness of the PsiNormal(0,1) distribution.

PsiTheoStdDev

PsiTheoStdDev(cell_or_name)

Returns the standard deviation of the specified distribution.

Frontline Solvers 2025 Q1 Reference Guide Page 381

Example: If A1 =PsiNormal(0,1) then

=PsiTheoStdDev(A1) returns the standard deviation of the PsiNormal(0,1)

distribution.

PsiTheoTarget/PsiTheoXtoP

PsiTheoTarget(cell_or_name, target)

PsiTheoXtoP(cell_or_name, target)

Returns the cumulative probability for target for the specified distribution.

The cumulative probability returned is the probability of a value less than or

equal to target occurring. (PsiTheoTarget and PsiTheoXtoP are alternative

names for the same function.)

Example: If A1 =PsiNormal(0,1) then

=PsiTheoTarget(A1, 2) and PsiTheoXtoP(A1, 2) returns the cumulative

probability of the target value, 2, of the PsiNormal(0,1) distribution.

PsiTheoTargetD/PsiTheoXtoQ

PsiTheoTargetD(cell_or_name, target)

PsiTheoXtoQ(cell_or_name, target)

Returns the cumulative descending probability for target for the specified

distribution. The cumulative probability returned is the probability of a value

greater than or equal to target occurring. (PsiTheoTargetD and PsiTheoXtoQ

are alternative names for the same function.)

Example: If A1 =PsiNormal(0,1) then

=PsiTheoTarget(A1, 2) and PsiTheoXtoP(A1, 2) returns the cumulative

descending probability of the target value, 2, of the PsiNormal(0,1) distribution.

PsiTheoVariance

PsiTheoVariance(cell_or_name)

Returns the variance of the specified distribution.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoVariance(A1) returns the variance of the PsiNormal(0,1) distribution.

PsiTheoXtoY

PsiTheoXtoY(cell_or_name, value)

Returns the probability for value for the specified distribution. For a continuous

distribution, the value returned is the probability density value at value. For a

discrete distribution, the value returned is the probability value at value.

Example: If A1 =PsiNormal(0,1) then

=PsiTheoXtoY(A1,2) returns the probability density function (PDF) at 2 of the

PsiNormal(0,1) distribution.

Frontline Solvers 2025 Q1 Reference Guide Page 382

PsiVariance

PsiVariance (cell,simulation)

PsiVariance returns the variance for the specified uncertain function cell. Like

standard deviation, variance is a measure of the spread or dispersion of the

distribution of trial values for cell, and takes into account both positive and

negative deviations from the mean. The square root of variance is the standard

deviation. The variance is the 2nd moment of the distribution of trials and is

computed as:

𝑣𝑎𝑟(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2
The sampled population variance is given by

𝑣𝑎𝑟(𝑋) =
1

𝑛 − 1
∑(𝑥𝑖 − 𝜇)

2

𝑛

𝑖=1

Compound Distributions

 Analytic Solver computes the variance of a compound distribution as:

 Variance = N * distr variance

Where N is the compound size and distr variance is the variance of the

underlined distribution.

Psi Six Sigma Functions
Psi Six Sigma functions allow easy computation of Six Sigma metrics that you

can easily drag and drop into cells from the Results gallery or check quickly in

the side panel of the Uncertain Function chart display.

PsiSigmaCP

PsiSigmaCP

(cell,lower_limit,upper_limit,[simulation])

PsiSigmaCP(cell,[simulation],

[PsiSixSigma(lower_limit,upper_limit)])

A Six Sigma index, PsiSigmaCP predicts what the process is capable of

producing if the process mean is centered between the lower and upper limits.

This index assumes the process output is normally distributed.

𝐶𝑝 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

6�̂�

where �̂� is the estimated standard deviation of the process.

PsiSigmaCPK

PsiSigmaCPK

(cell,lower_limit,upper_limit,[simulation])

PsiSigmaCPK(cell,[simulation],

[PsiSixSigma(lower_limit,upper_limit)])

A Six Sigma index, PsiSigmaCPK predicts what the process is capable of

producing if the process mean is not centered between the lower and upper

limits. This index assumes the process output is normally distributed and will be

Frontline Solvers 2025 Q1 Reference Guide Page 383

negative if the process mean falls outside of the lower and upper specification

limits.

𝐶𝑝𝑘 =
𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�,�̂�−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

3�̂�

where �̂� is the process mean and �̂� is the standard deviation of the
process.

PsiSigmaCPKLower

PsiSigmaCPKLower(cell,lower_limit,[simulation])

PsiSigmaCPKLower(cell,[simulation],

[PsiSixSigma(lower_limit)])

A Six Sigma index, PsiSigmaCPKLower calculates the one-sided Process

Capability Index based on the lower specification limit. This index assumes the

process output is normally distributed.

𝐶𝑝, 𝑙𝑜𝑤𝑒𝑟 =
�̂�−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

3�̂�

where �̂� is the process mean and �̂� is the standard deviation of the process.

PsiSigmaCPKUpper

PsiSigmaCPKUpper(cell,upper_limit,[simulation])

PsiSigmaCPKUpper(cell,[simulation],

[PsiSixSigma(upper_limit)])

A Six Sigma index, PsiSigmaCPKUpper calculates the one-sided Process

Capability Index based on the upper specification limit. This index assumes the

process output is normally distributed.

𝐶𝑝, 𝑢𝑝𝑝𝑒𝑟 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�

3�̂�

where �̂� is the process mean and �̂� is the standard deviation of the process.

PsiSigmaCPM

PsiSigmaCPM(cell,lower_limit,upper_limit,target,

[simulation])

PsiSigmaCPM(cell,[simulation],

[PsiSixSigma(lower_limit,upper_limit,target)])

A Six Sigma index, PsiSigmaCPM calculates the capability of the process

around a target value. This index is referred to as the Taguchi Capability Index.

This index assumes the process output is normally distributed and is always

positive.

𝐶𝑝𝑚 =
𝐶𝑝

√1+(
�̂�−𝑇

�̂�
)2

where �̂�𝑝 is the process capability (PsiSigmaCP), �̂� is the process mean, �̂� is

the standard deviation of the process and T is the target process mean.

Frontline Solvers 2025 Q1 Reference Guide Page 384

PsiSigmaDefectPPM

PsiSigmaDefectPPM(cell,lower_limit,upper_limit,

[simulation])

PsiSigmaDefectPPM(cell,[simulation],

[PsiSixSigma(lower_limit,upper_limit)])

A Six Sigma index, PsiSigmaDefectPPM calculates the Defective Parts per

Million.

𝐷𝑃𝑀𝑂 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − �̂�

�̂�
) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − �̂�

�̂�
)) ∗ 1000000

 where�̂� is the process mean, �̂� is the standard deviation of the process and 𝛿−1
is the standard normal inverse cumulative distribution function.

PsiSigmaDefectShiftPPM

PsiSigmaDefectShiftPPM(cell,lower_limit,upper_limit,

shift, [simulation])

PsiSigmaDefectShiftPPM(cell,[simulation],

[PsiSixSigma(lower_limit, upper_limit, shift)])

A Six Sigma index, PsiSigmaDefectShiftPPM calculates the Defective Parts per

Million with an added shift.

𝐷𝑃𝑀𝑂𝑆ℎ𝑖𝑓𝑡 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − �̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡)) ∗ 1000000

where�̂� is the process mean, �̂� is the standard deviation of the process and 𝛿−1 is
the standard normal inverse cumulative distribution function.

PsiSigmaDefectShiftPPMLower

PsiSigmaDefectShiftPPMLower(cell,lower_limit,shift,

[simulation])

PsiSigmaDefectShiftPPMLower(cell,[simulation],

[PsiSixSigma(lower_limit,shift)])

A Six Sigma index, PsiSigmaDefectShiftPPMLower calculates the Defective

Parts per Million, with a shift, below the lower specification limit.

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑙𝑜𝑤𝑒𝑟 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

�̂�
− 𝑆ℎ𝑖𝑓𝑡) ∗ 1000000

where�̂� is the standard deviation of the process and 𝛿−1 is the standard normal

inverse cumulative distribution function.

PsiSigmaDefectShiftPPMUpper

PsiSigmaDefectShiftPPMUpper(cell,upper_limit,shift,

[simulation])

Frontline Solvers 2025 Q1 Reference Guide Page 385

PsiSigmaDefectShiftPPMUpper(cell,[simulation],

[PsiSixSigma(upper_limit,shift)])

A Six Sigma index, PsiSigmaDefectShiftPPMUpper calculates the Defective

Parts per Million, with a shift, above the lower specification limit.

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑢𝑝𝑝𝑒𝑟 = (𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

�̂�
− 𝑆ℎ𝑖𝑓𝑡) ∗ 1000000

where�̂� is the standard deviation of the process and 𝛿−1 is the standard normal

inverse cumulative distribution function.

PsiSigmaK

PsiSigmaK(cell,lower_limit,upper_limit,[simulation])

PsiSigmaK(cell,[simulation],[PsiSixSigma(lower_limit,

upper_limit)])

A Six Sigma index, PsiSigmaK calculates the Measure of Process Center and is

defined as:

1 −
2∗𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�,�̂�−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

where�̂� is the process mean.

PsiSigmaLowerBound

PsiSigmaLowerBound(cell,number_stdev,[simulation])

PsiSigmaLowerBound(cell,[simulation],

[PsiSixSigma(number_stdev)])

A Six Sigma index, PsiSigmaLowerBound calculates the Lower Bound as a

specific number of standard deviations below the mean and is defined as:

�̂� − �̂� ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

where�̂� is the process mean and �̂� is the standard deviation of the process.

PsiSigmaProbDefectShift

PsiSigmaProbDefectShift(cell,lower_limit,

upper_limit,shift,[simulation])

PsiSigmaProbDefectShift(cell,[simulation],

[PsiSixSigma(lower_limit,upper_limit,shift)])

A Six Sigma index, PsiSigmaProbDefectShift calculates the Probability of

Defect, with a shift, outside of the upper and lower limits. This statistic is

defined as:

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − �̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡)

where �̂� is the process mean ,�̂� is the standard deviation of the process and 𝛿−1
is the standard normal inverse cumulative distribution function.

Frontline Solvers 2025 Q1 Reference Guide Page 386

PsiSigmaProbDefectShiftLower

PsiSigmaProbDefectShiftLower(cell,lower_limit,

shift,[simulation])

PsiSigmaProbDefectShiftLower(cell,[simulation],

[PsiSixSigma(lower_limit,shift)])

A Six Sigma index, PsiSigmaProbDefectShiftLower calculates the Probability

of Defect, with a shift, outside of the lower limit. This statistic is defined as:

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −�̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡)

where�̂� is the process mean ,�̂� is the standard deviation of the process and 𝛿−1 is

the standard normal inverse cumulative distribution function.

PsiSigmaProbDefectShiftUpper

PsiSigmaProbDefectShiftUpper(cell,upper_limit,

shift,[simulation])

PsiSigmaProbDefectShiftUpper(cell,[simulation],

[PsiSixSigma(upper_limit,shift)])

A Six Sigma index, PsiSigmaProbDefectShiftUpper calculates the Probability of

Defect, with a shift, outside of the upper limit. This statistic is defined as:

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −�̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡)

where�̂� is the process mean ,�̂� is the standard deviation of the process and 𝛿−1 is

the standard normal inverse cumulative distribution function.

PsiSigmaSigmaLevel

PsiSigmaSigmaLevel(cell,lower_limit,upper_limit,

shift,[simulation])

PsiSigmaSigmaLevel(cell,[simulation],

[PsiSixSigma(lower_limit,upper_limit,shift)])

A Six Sigma index, PsiSigmaSigmaLevel calculates the Process Sigma Level

with a shift. This statistic is defined as:

−𝛿(𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − �̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡))

where�̂� is the process mean ,�̂� is the standard deviation of the process 𝛿is the

standard normal cumulative distribution function, and 𝛿−1 is the standard

normal inverse cumulative distribution function.

PsiSigmaUpperBound

PsiSigmaUpperBound(cell,number_stdev,[simulation])

PsiSigmaUpperBound(cell,[simulation],

[PsiSixSigma(number_stdev)])

Frontline Solvers 2025 Q1 Reference Guide Page 387

A Six Sigma index, PsiSigmaUpperBound calculates the Upper Bound as a

specific number of standard deviations above the mean and is defined as:

�̂� − �̂� ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

where�̂� is the process mean and �̂� is the standard deviation of the process.

PsiSigmaYield

PsiSigmaYield(cell,lower_limit,upper_limit,shift,

[simulation])

PsiSigmaYield(cell,[simulation],

[PsiSixSigma(lower_limit,upper_limit,shift)])

A Six Sigma index, PsiSigmaYield calculates the Six Sigma Yield with a shift,

or the fraction of the process that is free of defects. This statistic is defined as:

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − �̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡) −

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�

�̂�
− 𝑆ℎ𝑖𝑓𝑡)

where�̂� is the process mean, �̂� is the standard deviation of the process and 𝛿−1 is

the standard normal inverse cumulative distribution function.

PsiSigmaZLower

PsiSigmaZLower(cell,lower_limit,[simulation])

PsiSigmaZLower(cell,[simulation],

[PsiSixSigma(lower_limit)])

A Six Sigma index, PsiSigmaZLower calculates the number of standard

deviations of the process that the lower limit is below the mean of the process.

This statistic is defined as:

�̂�−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

�̂�

where�̂� is the process mean and �̂� is the standard deviation of the process.

PsiSigmaZMin

PsiSigmaZMin(cell,lower_limit,upper_limit,

[simulation])

PsiSigmaZMin(cell,[simulation],

[PsiSixSigma(lower_limit,upper_limit)])

A Six Sigma index, PsiSigmaZMin calculates the minimum of PsiSigmaZLower

and PsiSigmaZUpper. This statistic is defined as:

𝑀𝐼𝑁(�̂�−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡,𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�)

�̂�

Frontline Solvers 2025 Q1 Reference Guide Page 388

where�̂� is the process mean and �̂� is the standard deviation of the process.

PsiSigmaZUpper

PsiSigmaZUpper(cell,upper_limit,[simulation])

PsiSigmaZMin(cell,[simulation],

[PsiSixSigma(upper_limit)])

A Six Sigma index, PsiSigmaZUpper calculates the number of standard
deviations of the process that the upper limit is above the mean of the process.

This statistic is defined as:

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−�̂�

�̂�

where�̂� is the process mean and �̂� is the standard deviation of the process.

Psi Six Sigma Property Functions

PsiSixSigma

PsiSixSigma(p1, p2, …,)

PsiSixSigma is an (optional) property providing the necessary arguments to a
Psi Six Sigma function such as PsiSigmaCP, PsiSigmaCPK, etc. (Note: This

property may only be used in conjunction with a Psi Six Sigma function.) Only

the required arguments for the Psi Six Sigma function will be utilized; all others

will be ignored. This property can be passed as the third argument to a Psi Six

Sigma function or within the PsiOutput() function.

Note: This property was created to aid in the conversion of @Risk models using the Convert

function on the Distributions dialog (Analytic Solver – Distributions).

Form 1: PsiSigmaXX(cell_or_name, [simulation], [PsiSixSigma(p1, p2, …)])

• PsiSigmaXX refers to the name of a Psi Six Sigma function.

• cell_or_name refers to the cell address or named range containing

the uncertain function

• simulation refers to the simulation number, if multiple simulations

are being performed.

• The property PsiSixSigma passes the properties p1, p2, etc. to

PsiSigmaXX.

Example:

PsiSigmaCP(F4, 2, PsiSixSigma(3, 40, 50, 75, 80))

Form 2: PsiOutput([name], [simulation], [PsiSixSigma(p1, p2, …))

• name is the optional name given to the output.

• simulation refers to the simulation number if multiple simulations

are being performed.

• The property PsiSixSigma passes the properties p1, p2, etc. to any

Psi Six Sigma function referencing the cell containing this
function.

Output Function

Simulation

Arguments passed to PsiSigmaCP

via the property PsiSixSigma – Only

first 2 parameters are utilized since
PsiSigmaCP() accepts just 2

arguments.

Frontline Solvers 2025 Q1 Reference Guide Page 389

Example:

F1 = PsiSigmaCP(F4)

F4 = PsiOutput(“Output1”, 2, PsiSixSigma(3, 40, 50, 75, 80)) +

PsiNormal(1,0)

Functions for Multiple Simulations
You can specify that multiple simulations should be performed whenever the

spreadsheet changes, or whenever you call Problem.Solver.Simulate in VBA

(Analytic Solver Desktop only). If you want to run n (say 5) simulations, simply

enter n for the “Number of Simulations to Run” in the Task Pane Model. In

your VBA code, you can set the property Problem.Solver.NumSimulations = n.

You could then use PsiSimParam() with an argument list of n values, to vary a
parameter in each simulation in the run.

PsiCurrentTrial

PsiCurrentTrial ()

PsiCurrentTrial returns the index (1, 2, 3, etc.) of the current trial during a

simulation run.

PsiCurrentSim

PsiCurrentSim ()

PsiCurrentSim returns the index (1, 2, 3, etc.) of the current simulation, when

you’ve asked for more than one simulation to be run.

PsiSimParam

PsiSimParam (values)

PsiSimParam accepts a list of different values that a variable should have in

different simulations, where the value is the same for all trials in one simulation.

Values is either a cell range, such as PsiSimParam(A1:A3), or an array of

numbers, such as PsiSimParam({6.0, 7.5, 9.0}). In the 1st case, PsiSimParam

will return the value in cell A1 for all trials of the first simulation, the value in

cell A2 for all trials of the second simulation and the value in cell A3 for all

trials in the third simulation. In the 2nd case, PsiSimParam will return 6.0 for all

trials of the first simulation, 7.5 for all trials of the second simulation, and 9.0
for all trials of the third simulation. In the 3rd case, PsiSimParam will return the

value in the values argument for the first simulation, the middle value between

the values and upper arguments for the 2nd simulation, and the value in the

upper argument for the 3rd simulation. If a value is entered for base_case, this

value will be used when this input cell is not being treated as an uncertain

variable, for example, if multiple optimizations are being run, during Parameter

Analysis, etc.

Output function

Optional: Name of output Simulation

Arguments for PsiSigmaCP() – Only

first 2 are used.

Psi Six Sigma function

Frontline Solvers 2025 Q1 Reference Guide Page 390

Functions for Classification, Prediction & Forecasting
Analytic Solver Data Science and the Data Science Cloud app (formerly

Analytic Solver Data Mining and Data Mining Cloud) include the ability to

score data using prediction, classification, forecasting, and transformation

methods without the need to click the Score icon on the Data Science ribbon. In

addition, Analytic Solver allows users to perform a time series simulation,

where future points in a time series are forecast on each Monte Carlo trial, using

a model created via ARIMA or one of our smoothing methods (Exponential,

Double Exponential, Moving Average, or Holt Winters). (A time series

simulation model, created with Analytic Solver Data Science, can be distributed

to users of Analytic Solver without the need for an additional Analytic Solver

Data Science license.) PsiForecast(), PsiPosteriors(), PsiPredict(), and
PsiTransform are described below.

Note: In Analytic Solver Cloud and in versions of desktop Excel that support

Dyanamic Arrays, the Psi Data Science functions return Dynamic Arrays. To

use this function in the Cloud, you need only enter the Psi function in one cell as

a normal function, i.e., not as a control array. The contents of the Dynamic

Array will "spill" down the column. If a nonblank cell is "blocking" the

contents of the Dynamic Array, the Psi Data Science function will return

#SPILL until such time as the blockage is removed. Use the optional

numForecasts argument to specify the number of forecasts in the Dynamic

Array. If not present, one forecast will be returned.

For more information on performing a time series forecast, please see the

Analytic Solver User Guide section, “Time Series Simulation" in the chapter,

“Getting Results: Simulation.” See the Analytic Solver Data Science User

Guide for an example on how to use the PsiPredict(), PsiPosteriors() and

PsiTransform() functions.

PsiForecast()

PsiForecast(Model, Input_Data, [Simulate],

Num_Forecasts, [Header])

Computes the forecasts for Input_Data using a Time Series model stored in

PMML format.

Model: Range containing the stored Times Series model in PMML format.

Input_Data: Range containing the new Time Series data for computing the

forecasts. Range must contain a header with the time series name and a

sufficient number of records for the forecasting with a given model.

Simulate: If True, the forecasts are adjusted with random normally

distributed errors. If False or omitted, the forecasts will be deterministic.

Num_Forecasts: Enter the desired number of forecasts.

Header: If True, a heading will be inserted above the returned forecasts.

Note: In Analytic Solver Cloud and in newer versions of desktop Excel,

PsiForecast() returns a Dynamic Array (see Note in section heading, above).

The contents of the Dynamic Array will "spill" down the column. If a nonblank

cell is "blocking" the contents of the Dynamic Array, PsiForecast() will return

#SPILL until such time as the blockage is removed.

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

Frontline Solvers 2025 Q1 Reference Guide Page 391

Output: A single column containing the header and forecasts for input time

series. The number of produced forecasts is determined by the number of

selected cells in the array-formula entry.

Supported Models:

• Arima

• Exponential Smoothing

• Double Exponential Smoothing

• Holt Winters Smoothing

Previous related Psi Scoring functions: PsiForecastARIMA, PsiForecastExp,

PsiForecastDoubleExp, PsiForecastMovingAvg, PsiForecastHoltWinters

Each forecasting method requires a minimum number of initial points. See the

chart below for each forecasting method's requirements.

Forecasting

Algorithm

Stored Model Sheet Minimum # of

Initial Points when

Simulate = False

Minimum # of

Initial Points when

Simulate = True

Non- Seasonal ARIMA ARIMA_Stored Max(p + d, q) Max(p + d, q)

Seasonal ARIMA ARIMA_Stored Max((p + d + s *(P

+ D), (q + s * Q)

1 + Max((p + d + s

*(P + D), (q + s *

Q)**

Exponential Smoothing Expo_Stored 1 1

Double Exponential

Smoothing

DoubleExpo_Stored 1 1

Moving Average

Smoothing

MovingAvg_Stored # of Intervals # of Intervals

Holt Winters

Smoothing

MulHoltWinters_Stored

AddHoltWinters_Stored

NoTrendHoltWinters_Stored

2 * #Periods 2 * #Periods

**Adding a number of data points equal to the Number of Periods (as shown on
the Time Series – ARIMA dialog) to the Minimum # of Initial Points when

Simulate = True is recommended when calling PsiForecast() with Simulate =

True.

PsiPosteriors()

PsiPosteriors(Model, Input_Data, [Header])

Computes the posterior probabilities for Input_Data using a Classification

model stored in PMML format.

Model: Range containing the stored Classification model in PMML format.

Input_Data: Range containing the new data for computing posterior

probabilities. Range must contain a header with column names and at least one

row of data containing the exact same features (or columns) as the data used to

create the model.

Header: If True, a heading will be inserted above the returned results.

Frontline Solvers 2025 Q1 Reference Guide Page 392

In Analytic Solver Cloud and in new versions of desktop Excel, PsiPosterior()

returns a Dynamic Array (see Note in section heading, above). To use this

function as a dynamic array, you need only enter the Psi function in one cell as a

normal function, i.e., not as a control array. The contents of the Dynamic Array

will "spill" down the column. If a nonblank cell is "blocking" the contents of
the Dynamic Array, PsiForecast() will return #SPILL until such time as the

blockage is removed.

Output: Multiple columns containing a header with class labels and estimated

posterior probabilities for each class label for all records in Input_Data.

Supported Models:

• Classification:

o Linear Discriminant Analysis

o Logistic Regression

o K-Nearest Neighbors

o Classification Tree

o Naïve Bayes

o Neural Network

o Random Trees

o Bagging (with any supported weak learner)

o Boosting (with any supported weak learner)

Previous related Psi Scoring functions: N/A

Classification Algorithm Stored Model Sheet

Linear Discriminant Analysis Classification DA_Stored

Logistic Regression Classification LogReg_Stored

k-Nearest Neighbors Classification KNNC_Stored

Classification Trees CT_Stored

Naïve Bayes Classification NB_Stored

Neural Networks Classification NNC_Stored

Ensemble Methods for Classification CBoosting_Stored

CBagging_Stored

CRandTrees_Stored

PsiPredict()

PsiPredict(Model, Input_Data, [Header]))

Predicts the response, target, output or dependent variable for Input_Data

whether it is continuous (Regression) or categorical (Classification) when the

model is stored in PMML format. In addition, this function also computes the

fitted values for a Time Series model when the model is stored in PMML

format. Note: If using a version of Excel that does not support Dynamic

Arrays, this formula must be ented as an array.

Model: Range containing the stored Classification, Regression or TimeSeries

model in PMML format.

Input_Data: Range containing the new data for computing predictions.

Range must contain a header row with column names and at least one row of

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

Frontline Solvers 2025 Q1 Reference Guide Page 393

data containing the exact same features (or columns) as the data used to create

the model.

Header: If True, a heading will be inserted above the returned results.

In Analytic Solver Cloud or in newer versions of desktop Excel, PsiPredict()

returns a Dynamic Array (see Note in section heading, above) To use this

function as a dynamic array, you need only enter the Psi function in one cell as a

normal function, i.e., not as a control array. The contents of the Dynamic Array

will "spill" down the column. If a nonblank cell is "blocking" the contents of

the Dynamic Array, PsiForecast() will return #SPILL until such time as the

blockage is removed.

Output: A single column containing the header and predicted/fitted values for

each record in Input_Data.

To know if the result of the prediction is continuous or categorical, you must

know what kind of model you are passing as an argument to the scoring function

– if you previously fitted the classification model and are now predicting the
new feature vectors, you should expect to get the compatible categorical

response. On the other hand, you should expect the continuous response from

the new data prediction when using a fitted regression model. In V201, the user

had to know the exact type model, such as MLR or LDA, to know what kind of

output will be produced, whereas now, it’s sufficient to know whether you’re

pointing to classification or regression model in order to determine the type of

the response. Note: If the user intends to use an “unknown” model for scoring,

the stored worksheets contain the complete information about the model

including several clear indications of the model type and data dictionaries with

the types of the features/response.

As a bonus, not available with old Psi functions, PsiPredict() can compute the
fitted values for the new time series based on the provided TS model. Unlike

future-looking forecasting, provided by PsiForecast(), PsiPredict() computes a

model prediction for each observation in the provided new time series. It is

analogous to classifying/regressing the new feature vectors based on the fitted

model in supervised learning, only that when applied to a time series, the

univariate TS vector, provided on input, provides the material for prediction.

Supported Models:

• Classification:

o Linear Discriminant Analysis

o Logistic Regression
o K-Nearest Neighbors

o Classification Tree

o Naïve Bayes

o Neural Network

o Random Trees

o Bagging (with any supported weak learner)

o Boosting (with any supported weak learner)

• Regression:

o Logistic Regression

o K-Nearest Neighbors

o Neural Network
o Bagging (with any supported weak learner)

o Boosting (with any supported weak learner)

• Time Series (fitted values)

o ARIMA

o Exponential Smoothing

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

Frontline Solvers 2025 Q1 Reference Guide Page 394

o Double Exponential Smoothing

o Holt-Winters Smoothing

Previous related Psi Scoring functions:

• Classification: PsiClassifyLR, PsiClassifyDA, PsiClassifyCT,
PsiClassifyNB, PsiClassifyNN, PsiClassifyCTEnsemble,

PsiClassifyNNEnsemble

• Regression: PsiPredictMLR, PsiPredictRT, PsiPredictNN,

PsiPredictNNEnsemble, PsiPredictRTEnsemble

Prediction/Classification/Time Series

Algorithm

Stored Model Sheet

Linear Discriminant Analysis Classification DA_Stored

Logistic Regression Classification LogReg_Stored

k-Nearest Neighbors Classification KNNC_Stored

Classification Trees CT_Stored

Naïve Bayes Classification NB_Stored

Neural Networks Classification NNC_Stored

Ensemble Methods for Classification CBoosting_Stored

CBagging_Stored

CRandTrees_Stored

Multiple Linear Regression LinReq_Stored

k-Nearest Neighbors Regression KNNP_Stored

Regression Tree RT_Stored

Neural Network Regression NNP_Stored

Ensemble Methods for Regression RBoosting_Stored

RBagging_Stored

RRandTrees_Stored

ARIMA ARIMA_Stored

Exponential Smoothing Expo_Stored

Double Exponential Smoothing DoubleExpo_Stored

Moving Average Smoothing MovingAvg_Stored

Holt Winters Smoothing MultHoltWinters_Stored

AddHoltWinters_Stored

NoTrendHoltWinters_Stored

PsiTransform()

PsiTransform(Model, Input_Data, [Header])

Transforms the Input_Data using a Transformation model stored in PMML

format.

Model: Range containing the stored Transformation model in PMML format.

Frontline Solvers 2025 Q1 Reference Guide Page 395

Input_Data: Range containing the new data for transformation. Range must

contain a header with column names and at least one row of data containing the

exact same features (or columns) as the data used to create the model.

Header: If True, a heading is inserted above the returned results.

In Analytic Solver Cloud or in new versions of desktop Excel, PsiTransform()

returns a Dynamic Array (see Note in section heading, above). To use this

function as a dynamic array, you need only enter the Psi function in one cell as a

normal function, i.e., not as a control array. The contents of the Dynamic Array

will "spill" down the column. If a nonblank cell is "blocking" the contents of

the Dynamic Array, PsiForecast() will return #SPILL until such time as the

blockage is removed. Use the optional numForecasts argument to specify the

number of forecasts in the Dynamic Array. If not present, one forecast will be

returned.

Output: One or multiple columns containing a header and transformed data.

Supported Models:

• Transformation:

o Rescaling

• Text Mining

o TF-IDF Vectorization (input data – text variable with the

corpus of documents)

o LSA Concept Extraction (input data – term-document matrix,

where columns represent terms and rows represent documents)

Previous related Psi Scoring functions: N/A

Algorithm Stored Model Sheet

Rescaling Rescaling_Stored

Text Mining TFIDF_Stored

LSA_Stored

About Microsoft Excel Functions and Operators
Frontline Systems developers are continuously working to ensure that Analytic

Solver supports Excel's latest features and methods. This section discusses a

portion of Excel's functionality that directly impacts Analytic Solver.

Excel's Custom Types

Analytic Solver now supports Excel's new Type Definitions, either the built in

options such as Geogrophy and Stocks or a user-defined custom type. For more

information and full documentation on this new feature in Excel, click here.

To view an example of a pre-defined custom type in an optimization model,

click Help – Example Models – Optimization Examples and scroll down to

Custom Type Example. Below is a screenshot of the model contained in the

first tab.

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://www.microsoft.com/en-us/microsoft-365/blog/2020/10/29/connect-to-your-own-data-with-more-new-data-types-in-excel

Frontline Solvers 2025 Q1 Reference Guide Page 396

This example uses Excel's Geography Data Type to provide latitude and

longitude for different locations within Clark County, Nevada. These

coordinates are then used to find a suitable location for a proposed airport that

minimizes the time between the proposed airport site and each location within

the county. In the 2nd example, Excel's Geography Data Type also provides the

population for each location. This new information is included as a "weight" in

the optimization example's objective function to provide locations with a larger

number of people more influence over the proposed location site.

Cells E14:E38 contain the formula =Dxx.Latitude where xx equals the row

where the cell is located, for example E14 =D14.Latitude

Cells F14:F38 contain the formula = Dxx.Longitude where xx equals the row

where the cell is located, for example F14 = D14.Longitude

Analytic Solver treats the Geography coordinates as constants. In other words,

Analytic Solver treats cell E14 as 36.0472 and F14 as -115.4031. The "." within

the formula D14.Latitude is not treated as a dot "." operator.

In contrast, RASON Decision Services, Frontline's API/modeling language

embedded in JSON, fully supports custom definitions. RASON executes the dot

"." operator or allows the use of the variable as an array. Custom types in

RASON follow the DMN specificiations but can be applied equally to FEEL

and Excel data. For more information on Frontline's RASON Decision Service,
see the Deploying Your Model chapter within the Analytic Solver User Guide.

Excel's LAMBA Function

According to Microsoft Excel Support, the LAMBDA function can be used to

create custom, reusable functions which can be invoked using a custom name; in

short, users can now add their own functions to the Excel function library using

the Name Manager without the use of VBA, macros or Javascript. For example,

a user could use the LAMBDA function to define a new function that calculates

a common formula within a worksheet model. Using the new function in the

cell to calculate the formula, rather than the actual formula, reduces the chance

of introducing an error in the worksheet. For a complete documentation of this

function, see Microsoft Excel Support. See the next topic (below) to find out
how this function can be used in conjunction with Analytic Solver. Note: This

https://support.microsoft.com/en-us/office/lambda-function-bd212d27-1cd1-4321-a34a-ccbf254b8b67
https://support.microsoft.com/en-us/office/lambda-function-bd212d27-1cd1-4321-a34a-ccbf254b8b67

Frontline Solvers 2025 Q1 Reference Guide Page 397

new function is currently only available with a Microsoft Office 365

subscription.

See the chapter Using Custom Functions within the Analytic Solver User

Guide for a walkthrough of two examples that use the LAMBDA function in the

model formulation.

Example

Function Name: AddXY

Scope: Workbook

Refers to: =LAMBDA(x,y,x+y)

A1 = ADDXY(B1,C1)

If B1 = 1 and C1 = 2, AddXY evaluates to "3".

Excel's LET Function

Microsoft Excel's LET function assigns a name to a calculation result which
allows for the storage of intermediary calculations, values or defined names

within a formula. Names used within a LET function only apply within the

scope of that function. To use this function, a variable name is introduced in

the first argument, the value of the variable in the 2nd argument and the

calculation in the 3rd argument, for example: =LET(x, 2, x + 9) where LET

evaluates to 11. See Microsoft's Office Support for a complete documentation

of this function. See the chapter Using Custom Functions within the Analytic

Solver User Guide for an example of how to use this function in conjunction

with Analytic Solver.

Excel @ Operator

Analytic Solver support's Excel's new implicit intersection (@) operator,
introduced in early 2019. This operator was introduced in order to support

Excel's new Dynamic Array functionality. While implicit intersection has

always been present in Excel, later versions of Excel use the @ operator to

signal where implicit intersection might occur, whereas older versions of Excel

silently utilize implicit intersection.

In general, if a workbook containing Psi functions created using a version of

Excel that does not support Dynamic Arrays is opened in a version of Excel that

does support Dynamic arrays, then an @ operator will be inserted in front of the

Psi functions. Note that there will be no change in how the formula is

calculated. For more information on this operator, click here.

Excel Forecast Functions

Microsoft Excel Desktop and Excel for the Web (formerly Excel Online)

contains forecast functions which may be used to predict future points in a time

series dataset:

• FORECAST.ETS

• FORECAST.ETS.SEASONALITY

• FORECAST.LINEAR

• FORECAST.ETS.CONFINT

• FORECAST.ETS.STAT

https://support.microsoft.com/en-us/office/let-function-34842dd8-b92b-4d3f-b325-b8b8f9908999
https://support.microsoft.com/en-us/office/implicit-intersection-operator-ce3be07b-0101-4450-a24e-c1c999be2b34

Frontline Solvers 2025 Q1 Reference Guide Page 398

These functions compute forecasts using exponential smoothing, similar to the

PsiForecastExp, PsiForecastDoubleExp and PsiForecastHoltWinters functions

above, but they use different argument lists and differ in other specific details.

(The Psi ARIMA functions use a different forecasting method.)

Analytic Solver (starting with V2018) includes support for these functions, so
you can use them in your models, with one caveat: If you use such a forecast

function in an optimization model where the arguments depend on the decision

variables, or in a simulation model where the arguments depend on uncertain

variables, you may see slightly different calculated forecast values depending on

whether the Psi Interpreter or Excel Interpreter is selected in the Task Pane

Platform tab. When the Psi Interpreter is used, a slightly different (but arguably

better) methodology is used to compute these forecast functions. When the

Excel Interpreter is selected, Microsoft Excel is used to calculate the worksheet

and thus Excel's methodology will be used.

Using PsiForecastETS() and PsiForecastLinear()

Users of Analytic Solver can use PsiForecastETS() and PsiForecastLinear() to
forecast future points in a time series dataset. These two functions were

introduced to coincide with the new Excel 2016 Forecast functions:

Forecast.Linear and Forecast.ETS.

PsiForecastLinear() predicts a future value or values for a time series dataset

(containing known or historical data) using linear regression. PsiForecastETS()

uses exponential smoothing to predict a future value or values in a time series

dataset with the option to either detect seasonality in the dataset automatically or

pass a seasonality period. Passing False as the last argument to either function

will result in a static forecast. If True is passed for this argument, a random

error will be included in the forecasted points. For more information on

performing a time series forecast using these two functions, please see the
Analytic Solver User Guide section, “Excel 2016 Forecast Functions" in the

chapter, “Getting Results: Simulation.”

PsiForecastETS()

PsiForecastETS(target_date, values, timeline, [,

seasonality][, data_completion][, aggregation][,

simulate])

target_date: A data point for which you want the predicted value. A data

point may be date/time or numeric. If a target date is given that appears before

the start of the timeline in the dataset, PsiForecastETS will return #NUM (i.e. if,

in this example, 1940 is passed for X)

values: An Excel range containing the historical values in the given dataset.

timeline: An Excel range containing the time variables in the given dataset.

Both functions require the historical data to be structured using a constant

interval between data points. For example, The Airpass example dataset (Help –

Example Models – Forecasting/Data Science Examples) presents monthly

passenger data, therefore the forecast must also predict the number of passengers

by month.

seasonality: (Optional) This argument indicates the length of the seasonal

pattern. The following values are accepted as valid inputs. All other values will

return a #NUM error.

Frontline Solvers 2025 Q1 Reference Guide Page 399

0: Signifies no seasonality exists in the data. The result is a linear

prediction.

1: (Default Value) Triggers Solver to detect seasonality within the data

automatically.

1 < N < 8,760: Positive integer values greater than 1 but less will be used

as the seasonality period.

data_completion: (Optional) This argument specifies how to handle

missing values. The default value of 1 replaces missing values by interpolation.

If 0 is passed, missing values will be replaced by 0's.

aggregation: (Optional) PsiForecastETS can aggregate multiple points

with the same time stamp. Pass an integer value from 0 to 6 to indicate which

method should be used.

0: (Default) Average

1: SUM

2: COUNT

3: COUNTA

4: MIN

5: MAX

6: MEDIAN

simulate: (Optional) Pass True or False for the third argument. Passing

False (the default) will result in a static forecast that will only update if a cell

passed in the 2nd argument is changed. If True is passed for this argument, a

random error will be included in the forecasted points.

PsiForecastLinear()

PsiForecastLinear(X, known_ys, known_xs[, simulate])

X: The target date. A data point for which you want the predicted value. A data

point may be date/time or numeric.

known_ys: An Excel range containing the independent variables in the given

dataset.

known_xs: An Excel range containing the time variables in the given dataset.

simulate: (Optional) Pass True or False for the third argument. Passing False

(the default) will result in a static forecast that will only update if a cell passed in

the known_ys argument is changed. If True is passed for this argument, a
random error will be included in the forecasted points.

Unsupported Excel Functions
You can use almost any Excel arithmetic or intrinsic operations, as well as

almost all Excel built-in functions in conjunction with Analytic Solver.

However, there are a few Excel functions that are not supported by the PSI

Interpreter. These functions include: Call, Cell, Context, ContextPut,

ContextMerge, EuroConvert, EncodeURL, FieldValue, FilterXML,

GetPivotData, Hyperlink, Info, Matches, Register.ID, Replace, RTD,

SQL.Request, WebService and all Cube functions (CubeKPIMember(),

Frontline Solvers 2025 Q1 Reference Guide Page 400

CubeMember(), CubeMemberProperty(), CubeRankedMember(), CubeSet(),

CubeSetCount() and CubeValue()) .

If you're experiencing prolonged Solver runtimes, particularly with numerous

MMULT functions in your model, consider enhancing efficiency by converting

these functions to DOTPRODUCT functions. See the “Improving the
Formulation of Your Model” within the Analytic Solver Reference Guide for

more details.

Frontline Solvers 2025 Q1 Reference Guide Page 401

Solver Add-in Math Functions

Introduction
Analytic Solver Desktop defines seven special Excel functions:
DOTPRODUCT, QUADPRODUCT, MATOP, ROWOP, MSOLVE,

MTRACE, MNORM, MEIGENVEC, and MEIGENVAL. These functions

behave just like Excel built-in functions: You can use them in formulas in any

spreadsheet (not only in Solver models). When you use the Insert Function…

menu option, these functions will appear in the “Select a Function” or “Paste

Function” list (classified as Math & Trig functions), and you’ll be prompted

with named edit fields for their arguments. All seven functions are recognized

by the PSI Interpreter.

Note: These functions are currently not supported in Analytic Solver Cloud.

DOTPRODUCT and QUADPRODUCT are recognized for purposes of fast

problem setup as described in the Analytic Solver User Guide chapter, “Building
Large-Scale Models.”

All functions can either be manually entered by typing the function and

arguments into an Excel cell, or by using the Insert Function icon on the

Formulas ribbon and selecting Math and Trig.

Note: Excel range information may be entered using the syntax {1, 2; 3, 4} for a

2 by 2 matrix or A1:B2 where the Excel cells contain the values (see picture
below).

Frontline Solvers 2025 Q1 Reference Guide Page 402

Functions

COLOP

COLOP(range_array, operation)

Applies 2nd argument, operation, to the matrix column-wise resulting in a single

column-vector.

Range_array can take the form of an explicit cell range (such as A1:C3) or the

name of a named range.

Operation may be:

• ‘+’ or ‘sum’ (addition),

• ‘prod’ (product),

• ‘ave’ (average),

• ‘max’ (maximum)

• ‘min’ (minimum)

Example 1: Matrix 1 is shown below; each element is a constant.

See the COLOP function in cell D2 = COLOP(A2:B4, “*”)

D2 = A2 * B2 = 1 * 4 = 4

D3 = A3 * B3 = 2 * 5 = 10

D4 = A4 * B4 = 3 * 6 = 18

Example 2: Matrix 1 is shown below; each element is a constant.

See the COLOP function in cell D2 = COLOP(A2:B4, “max”)

D2 = MAX(A2, B2) = MAX(1,4) = 4

 D3 = MAX(A3, B3) = MAX(2,5) = 5

D4 = MAX(A4, B4) = MAX(3,6) = 6

Example 3: Given a matrix containing binary values. The formula

=COLOP(range, “or”) returns a 1 in cells A29 and A30 to indicate that there is

at least one “1” in the ranges, A26:C26 and A27:C27.

Frontline Solvers 2025 Q1 Reference Guide Page 403

MATOP

MATOP(range_array_x, oper1, oper2, range_array_y)

Generalization of MMULT. This function calculates a third matrix by applying

two operators, oper1 and oper 2.

MATOP(A, op1, op2, B); For each k: MATOP[x, y] = MATOP[x, y] oper2

(A[x, k] oper1 B[k, y])

Range_array_x contains the first matrix. This argument can take the form of an

explicit cell range (such as A1:C3) or the name of a named range.

Range_array_y contains the second matrix. This argument can also take the

form of an explicit cell range (such as A1:C3) or the name of a named range.

Option 1: If Oper1 equals either:

• '+' or 'sum' (addition)

• '-' or 'sub' (subtraction)

• '*' or 'prod' (multiplication)

• '/' or 'div' (division)

• '^' or 'pow' (exponential)

• 'ave' (average)

• 'min' (minimum)

• 'max' (maximum)

Then Oper 2 must equal either:

• ‘+’ or ‘sum’ (addition)

• ‘*’ or ‘prod’ (subtraction)

Option 2: If Oper1 equals either:

• '=' or 'eq' (equals)

• '<>' or 'neq' (not equal)

• '<=' or 'le' (less than or equal to)

• '>=' or 'ge' (greater than or equal to

Then Oper2 must equal either:

• 'and'

• 'or'

Example1: Take two arrays, array1(in cells A2:B4) and array2 (in cells

D2:D3), both containing constant values as shown below.

Array1 is a 3 x 2 array (3 rows, 2 columns) and Array2 is a 2 x 1 (2 rows, 1

column). Therefore, the resulting MATOP matrix will be a 3 x 1 (3 rows, 1

column).

The formula in cell F2 = MATOP(A2:B4, “*”, “+”, D2:D3). In the MATOP
function the "*" operator is used for oper1 and the “+” operator is used for oper2

making the results of this function equal to the MMULT function results.

F2 is calculated as : A2 * D2 + B2 * D3 = 1 * 7 + 4 * 8 = 39

Frontline Solvers 2025 Q1 Reference Guide Page 404

F3 is calculated as : A3 * D2 + B3 * D3 = 2 * 7 + 5 * 8 = 54

F4 is calculated as : A4 * D2 + B4 * D3 = 1 * 7 + 4 * 8 = 69

Example2: Given two arrays, array1(in cells A1:A3) and array2 (in cells

B1:D1), both containing constant values as shown below.

Array1 is a 3 x 1 array (3 rows, 1 column) and Array2 is a 1 x 3 (1 rows, 3

columns). The resulting MATOP matrix will be a 3 x 3 (3 rows, 3 column).

If cell B2 = MATOP(A2:A4, “min”, “+”, B1:D1), then each cell is calculated as:

• B2 = MIN(A2, B1) = MIN(4, 2) = 2

• C2 = MIN(A2, C1) = MIN(5, 3) = 3

• D3 = MIN(A2, D1) = MIN(4, 6) = 4

• B3 = MIN(A3, B1) = MIN(5, 2) = 2

etc.

Notes:

1. The number of columns in range_array_x must be equal to the number of

rows in range_array_y. If range_array_x is an m x n matrix, then
range_array_y must be an n x p matrix. The resulting matrix will be an m x

p matrix.
2. Array 1 and Array 2 must be contiguous ranges.

3. All cells within range_array_x and range_array_y must contain numeric

data. Empty cells are treated as 0.

MSOLVE

MSOLVE(M, b) returns the solution of M x = b efficiently without matrix

inversion. Matrix M must be a square matrix (m x m). Vector b and vector x

must be of size m x 1.

In the screenshot below, the M matrix is contained in the range A1:C3 (3 rows x

3 columns), the b matrix is contained in the range E1:E3 (3 rows x 1 column)

and the x matrix (3 rows x 1 column) has been entered as an array formula in the

cell range G1:G3.

This function is currently not supported in Analytic Solver Cloud.

Frontline Solvers 2025 Q1 Reference Guide Page 405

MTRACE

MTRACE(squared_array) returns the sum of the diagonal elements of a squared

matrix (m x m) entered as a range or array.

In the screenshot below, the squared matrix is contained in the cell range A1:C3

and the MTRACE() function is in cell E1.

This function is currently not supported in Analytic Solver Cloud.

MNORM

MNORM(array, norm) returns the norm of a matrix entered as an array or Excel

range. Pass norm = 1 for ||a||1 (the maximal column sum), norm = 2 for

Euclid/Frobenius (||a||2 =√∑𝑛𝑖=1 ∑ (𝑎𝑖𝑗)𝑛
𝑗=1

2
), or norm = 3 for ||a||∞ (the

maximal row sum).

Consider the matrix in the screenshot below contained in cells A1:C3. ||a||1 is

being calculated in cell E1, ||a||2 is being calculated in cell E2 and ||a||∞ is being

calculated in cell E3.

This function is currently not supported in Analytic Solver Cloud.

MEIGENVEC

MEIGENVEC(squared_matrix) returns the eigenvectors for a squared matrix

entered as a range or array.

In the screenshot below, the squared matrix is contained in the cell range A1:C3.

Cells E1:G3 contain the MEIGENVEC function entered as an array. If

squared_matrix is of size m x m, and =MEIGENVEC(squared_matrix) is

entered in array form in an m x 1 cell orientation, the first eigenvector will be

returned. If squared_matrix is of size m x m and

=MEIGENVEC(squared_matrix) is entered in array form in an m x 2 cell
orientation, the first and second eigenvectors will be returned, etc. For example,

in the screenshot below squared_matrix is of size 3 x 3 and contained in the

range A1:C3, =EIGENVEC(A1:C3) entered in array form in cells E1:E3 will

Frontline Solvers 2025 Q1 Reference Guide Page 406

return the first eigenvector, =EIGENVEC(A1:C3) entered in array form in cells

F1:F3 will return the second eigenvector and =EIGENVEC(A1:C3) entered in

array form in cells E1:G3 will return all three eigenvectors.

This function is currently not supported in Analytic Solver Cloud.

MEIGENVAL

MEIGENVAL(squared_matrix) returns the eigenvalues of a squared matrix

entered as a range or array. Note: While MSOLVE() returns a typical vertical

range, MEIGENVAL() returns a horizontal range. This is done intentionally, so
the user may compute the eigenvectors underneath the eigenvalues. If values

are complex numbers they are printed as strings.

In the screenshot below, the squared matrix is contained in the cell range A1:C3.

Cells E1:G1 contain the eigenvalues.

This function is currently not supported in Analytic Solver Cloud.

ROWOP

ROWOP(range_array, operation)

Applies 2nd argument, operation, to the matrix row-wise resulting in a single

row-vector.

Range_array can take the form of an explicit cell range (such as A1:C3) or the

name of a named range.

Operation may be:

• ‘+’ or ‘sum’ (addition),

• ‘prod’ (product),

• ‘ave’ (average),

• ‘max’ (maximum)

• ‘min’ (minimum)

Example 1: Matrix 1 is shown below; each element is a constant.

See the ROWOP function in cell D2 = ROWOP(A2:B4, “+”)

D2 = A2 + A3 + A4 = 1 + 2 + 3 = 6

E2 = B2 + B3 + B4 = 4 + 5 + 6 = 15

Example 2:

Frontline Solvers 2025 Q1 Reference Guide Page 407

Matrix 1 is shown below; each element is a constant.

See the ROWOP function in cell D2 = ROWOP(A2:B4, “ave”)

D2 = AVERAGE(A2 + A3 + A4) = (1 + 2 + 3)/3 = 2

E2 = AVERAGE(B2 + B3 + B4) = (4 + 5 + 6)/3 = 5

Example 3: Given a matrix containing binary values. The formula

=ROWOP(range, “and”) returns 0 in cell B22 to indicate that there is at least

one 0 in the corresponding column.

DOTPRODUCT

DOTPRODUCT is a generalized version of the Excel function SUMPRODUCT,

and it is very useful for defining the objective function and constraints of linear

programming problems. DOTPRODUCT is also recognized for fast problem

setup as described in the “Fast Problem Setup” section in the Analytic Solver

User Guide chapter “Building Large Scale Models”, provided that you follow

the rules outlined earlier: Your formula must consist only of

=DOTPRODUCT(cell reference, cell reference) where all of the cells in one of

the cell references are decision variables, and all of the cells in the other cell

reference are constant in the Solver problem. Each cell reference must be either

an individual selection or a defined name, but the cell ranges specified by the

two arguments need not have the same “shape” (row, column, or rectangular

area).

For use in Excel and for purposes of fast problem setup, DOTPRODUCT will

accept defined names that specify multiple selections for either of its arguments.

For example, if you had designed a model where the decision variables

consisted of several rectangular cell selections, you could still calculate the

objective function for your model with one call to DOTPRODUCT.

DOTPRODUCT always processes its arguments in column, row, area order – in

an individual selection it reads cells across columns, wrapping around to

subsequent rows, and in a multiple selection it reads the individual cell

selections in the order in which they are listed. For example, the formula:

=DOTPRODUCT(A1:C2,D1:D6)

will calculate as =A1*D1+B1*D2+C1*D3+A2*D4+B2*D5+C2*D6.

The Array Form of DOTPRODUCT

If SUMPRODUCT is used in an array formula, it returns a scalar (single

number) result, which is returned in every cell of the array. However, if

DOTPRODUCT is used (with the proper arguments) in an array formula, it

Frontline Solvers 2025 Q1 Reference Guide Page 408

returns an array result. You can use this capability to calculate the left hand

sides of several constraints with a single array formula. In a sparse optimazation

model where you’d like to use the built-in function MMULT to compute the

constraint values, but the variables and constraints aren’t laid out in a single

matrix, you can use the array form of DOTPRODUCT instead.

Further, when you use the array form of DOTPRODUCT, Analytic Solver will

recognize this form and use it to process many constraints at once in problem

setup. (The array form is recognized for fast problem setup, and it’s also

recognized by the PSI Interpreter.) If you can’t use the array form, even the

simple form of DOTPRODUCT will save time in problem setup.

DOTPRODUCT will return an array value when the number of cells in one of

its arguments is an even multiple of the number of cells in its other argument.

As an example, consider the calculation of parts used in the LP model

EXAMPLE1. The decision variables are in cells D9 to F9 (3 cells), and the

coefficients of the constraint left hand sides – the number of parts used for each

product – are in cells D11 to F15 (15= 3*5 cells). We want to calculate the left
hand sides of the constraints in cells C11 to C15. To do this, we would first

select the group of five cells C11:C15 with the mouse. Then we would type:

=DOTPRODUCT(D9:F9,D11:F15)

completing the entry with CTRL+SHIFT+ENTER instead of just ENTER. The

formula will display as {=DOTPRODUCT(D9:F9,D11:F15)} – the braces are

added by Microsoft Excel when the formula is array-entered. With the cell

values shown in EXAMPLE1 prior to solution (e.g. 100 for each of the decision

variables), this array formula will calculate 200 in C11, 100 in C12, 500 in C13,

200 in C14 and 400 in C15. Hence, it will compute the same set of values as the

array expression shown earlier: {=MMULT(_A, TRANSPOSE(_X))}.

Whether it is used in the simple form or the array form, DOTPRODUCT always

processes its arguments in column, row, area order. In the array form, when the

cells in the “shorter” argument have all been processed and cells remain to be

processed in the “longer” argument, DOTPRODUCT “wraps around” to the

beginning of the “shorter” argument. In the example above, cell C11 calculates

the value =D9*D11+E9*E11+F9*F11; cell C12 computes

=D9*D12+E9*E12+F9*F12; and so on. Keep this rule in mind when you use

the array form of DOTPRODUCT, and keep your spreadsheet layouts as simple

as possible!

QUADPRODUCT

The QUADPRODUCT function can be used to define the objective for

quadratic programming problems in a single function call, as required for fast

problem setup.

The QUADPRODUCT function is designed to supply coefficients for each
single variable and each pair of variables, in a manner similar to

SUMPRODUCT and DOTPRODUCT.

You supply the arguments of QUADPRODUCT as shown below:

=QUADPRODUCT(variable cells, single coefficients, pair coefficients)

The first argument must consist entirely of decision variable cells. The second

and third arguments must consist entirely of cells whose values are constant in

the optimization problem; if these cells contain formulas, those formulas must

not refer to any of the decision variables. The second argument supplies the

coefficients to be multiplied by each single variable in the first argument, using

Frontline Solvers 2025 Q1 Reference Guide Page 409

an element-by-element correspondence. The third argument supplies the

coefficients to be multiplied by each pair of variables drawn from the first

argument. Hence, if there are n cells in the first argument, there must be n2 cells

in the third argument. If the variables are represented by x1,x2,...,xn, the single

coefficients by a1,a2,...,an, and the pair coefficients by c1,c2,...,cN where N = n2,
QUADPRODUCT computes the function:

 n n n

 cn(i-1)+j xi xj + aj xj
i=1 j=1 j=1

The pairs are enumerated starting with the first cell paired with itself, then the

first cell paired with the second cell, and so on. For example, if the first
argument consisted of the cells A1:A3, there should be nine cells in the third

argument, and the values in those cells will be multiplied by the following pairs

in order: A1*A1, A1*A2, A1*A3, A2*A1, A2*A2, A2*A3, A3*A1, A3*A2,

and A3*A3. The value returned by QUADPRODUCT is the sum of all of the

coefficients multiplied by their corresponding single variables or pairs of

variables.

Multiple selections can be used for each argument of QUADPRODUCT, subject

to the same considerations outlined above for DOTPRODUCT: You can use the

general syntax for multiple selections in Microsoft Excel, but defined names are

needed for purposes of fast problem setup, and multiple selections are not

accepted by the PSI Interpreter.

Frontline Solvers 2025 Q1 Reference Guide Page 410

Dimensional Modeling Psi
Functions

Introduction
This chapter provides function information on Analytic Solver’s PSI functions

for the Dimensional Modeling feature. The primary goal of Dimensional

Modeling is in the creation of structured, easily readable, compact Excel models.

The second goal of Dimensional Modeling is to extend the capabilities of

Analytic Solver's current Optimization/Simulation/Sensitivity parameters. For

more information on how to use this feature, please see the Dimensional

Modeling chapter in the Analytic Solver User Guide.

Psi Cube Functions

PsiCube

PsiCube() creates a multi-dimensional array which holds the dimensional data in

the form of a data range. This data range is structured along the dimension

elements of the included set of dimensions.

A sparse cube can be defined by missing values in cells for PsiCube(). If Use
Sparse Cubes = False, on the Platform tab of the Solver Task Pane, and you

have defined a cube using PsiCube() with missing valus, these values will be

considered equal to 0. If Use Sparse Cubes = True, you have defined a cube

using PsiCube() with missing values, and the percentage of elements missing or

empty is more than 30% of the total possible cube elements, those missing

elements will not be included in the model.

The maximum number of elements in a cube created by PsiCube or by formula

evaluation is 1,000,000.

To create a Cube, click

• Analytic Solver Desktop: Model – Cube to open the Cube menu.

• Analytic Solver Cloud: Model – Dimensional Modeling -- Cube to

open the Cube menu.

Frontline Solvers 2025 Q1 Reference Guide Page 411

If using an Excel Pivot Table, select From Pivot Table, otherwise select From

Cell Range. (For more information on creating a Cube from within an Excel

Pivot Table, please see below.)

If From Cell Range is selected, the following dialog appears.

Range: Enter an Excel range that contains a fact table or data table.

Dimension(s): Click the down arrow to select the desired Dimension. If

multiple dimensions are to be included in the Cube, click the “+” button, then

select the desired Dimension from the next Dimension(s) field.

Take care to enter the dimensions in the correct order. In our Structural example

above, we have the following table.

When entering the dimensions, the first dimension should be the “most rapidly

changing” dimension. Starting from cell B2 (the start of the fact table) and

reading from left to right, the 1st element of the cube will be 1 (Chassis & LCD

TV), the 2nd element of the cube will be 1 (Chassis & Stereo), the 3rd element of
the cube will be 0 (Chassis & Speakers). The 4th element of the cube will be 1

(Screen & LCD TV), the 5th element of the cube will be 0 (Screen & Stereo)

and the 6th element of the cube will be 0 (Screen & Speakers). Between

Products and Parts, which dimension is changing more frequently as we read

from left to right? Correct! Products is changing more frequently which means

this dimension should come first in the PsiCube() formula.

Location: Select a blank cell on the spreadsheet where the dimension will

reside.

Frontline Solvers 2025 Q1 Reference Guide Page 412

Function Signatures

The signature provided for this function is:

=PsiCube(range_with_values, dim1, [dim2], [dim3], …)

This function creates a cube along the listed dimensions in the data range,

range_with_values. Dim1 is the most rapidly changing dimension in the listed

dimension set when interpreting the data range. (Dimensions should be entered
in order from most rapidly changing to least rapidly changing.)

range_with_values: The data range is simply a range of cells on the Excel

worksheet containing data relevant to the problem, i.e. the number of parts

needed to manufacture a product.

dim1, [dim2], [dim3],….: At least one dimension is required (dim1) and up to 7

more optional dimensions ([dim2], [dim3], …) are used in cube creation. The

product of dimension lengths must be equal to the number of values in

range_with_values (the data range). Dimensions can be all structural, all

parametric, or mixed.

Examples

=PsiCube(C14:E14, "Products") where cells C14:E14 contain data for the

Products dimension.

=PsiCube(C18:E22, "Products", "Parts") where cells C18:E22 contain data for

both the Products and Parts dimension.

After a Cube is created, the name and address of the dimension will appear
under Dimensions in the Solver Task Pane.

Address: Displays the cell address where the Structural dimension resides (read

– only).

Formula: Displays the formula in the Address cell (read – only).

Name: Displays the name of the Structural dimension (read – only).

Dimensions: Displays the Dimensions included in the Cube.

Frontline Solvers 2025 Q1 Reference Guide Page 413

PsiCubeData

PsiCubeData() can be used to display all elements in a cube’s data range or

display only a portion or “slice” of the data. (While PsiOptData() should only

be used when solving an optimization model, PsiCubeData can be used when

creating an “what if” analysis without the existence of an optimization or

simulation model.)

Only the first element of a cube will be displayed in an Excel Cell. Double click

the cell to display a pop up window containing the full contents of the

cube. Alternatively, the function PsiCubeData() can be used to display all cube

elements or a “slice” or portion of the cube elements in the spreadsheet
formatted according to the optional struc_format argument. PsiCubeData can

exist outside of an optimization or simulation model. When parametric

dimensions are present in the model, this function will calculate cubes along

structural dimensions only for the current selections of parametric dimension

elements as selected in the Model tab of the Solver task pane. To calculate the

function, click Model – Cube Output – Calculate.

To insert the PsiCubeData() formula, click Formulas – Insert Function on the

Excel Ribbon, select Psi Dimension from the Or select a category dropdown

menu, select PsiCubeData from the list, then click OK.

.

The following Function Arguments dialog opens.

Function Signature

=PsiCubeData(output_cell, [struc_format])

Function_cell: Enter an existing cube here. (PsiCubeData() can be used with

any cube.)

Struc_format: An optional argument entered as a string. If omitted, all cube

values are printed in a single vector.

Frontline Solvers 2025 Q1 Reference Guide Page 414

If struc_format = “dims”, PsiCubeData() prints all dimensions in the cube with

their lengths.

If struc_format = “vals”, all cube elements are returned in the form of a

relational or pivot table. In addition, this argument can also be used to

selectively print only a portion of a cube’s elements or a “slice” of the data
table. (See below for an example.)

Examples

=PsiCubeData(A1, ”dims”) – Returns dimension name and number of

elements will be returned. This function "spills" across.

=PsiCubeData(A1, “vals”) – Returns the values of the fact table along with the
dimension elements in the form of a relational or pivot table. This function

"spills" across n+1 columns, where n is the number of elements in the 1st

dimension, and down in order to list all elements of the cube.

=PsiCubeData(A1, ”[Parts].[Chassis], [Products].[TV]”) - Only the slice of

the data range pertaining to the number of chassis used when manufacturing a

TV will be printed.

Cells containing PsiCubeData() will appear under Results in the Model tab of

the Solver task pane.

Address: Displays the cell address range where PsiCubeData is located (read –

only).

Formula: Displays the cell formula located in the Address range (read – only).

PsiCubeOutput

Use this function to designate that cell as a cubic output. To calculate this

output cell, click Model – Cube Result – Calculate or, if using Analytic Solver
Desktop, set Dimensional Calculation to “Automatic” on the Platform tab on the

Solver task pane.

To specify a target cell as a Output function, click..

• Analytic Solver Desktop: Model – Cube Result – Output

• Analytic Solver Cloud: Model – Dimensional Modeling – Cube

Result – Output

… to append PsiCubeOutput() to the existing cell formula.

Frontline Solvers 2025 Q1 Reference Guide Page 415

Function Signatures

There is one signature provided for this function.

=PsiCubeOutput([output_cell])

output_cell: PsiCubeOutput assigns the output_cell as the cubic output.

Alternatively, “+ PsiCubeOutput()” can be appended to the original formula in

the target cell.

Examples

=PsiCubeOutput(A1) – Results in the cube located in cell A1 being designated

as a cubic output cell.

A1=PsiReduce(K16*L16, "sum", "Products") + PsiCubeOutput() - Results in

A1 as an cubic output cell.

Cells containing PsiCubeOutput() functions will appear under Cubes in the

Model tab of the Solver task pane.

Address: This field displays the cell address with the PsiCubeOutput() function

is entered.

Formula: This field displays the formula entered into the Address field.

Frontline Solvers 2025 Q1 Reference Guide Page 416

PsiDim

Creates a structural dimension which can be used in an unlimited number of

cubes. A Dimension, when used in Solver’s Dimensional Modeling feature, is a

set of N elements over which a cube can iterate. This function should appear in

a single cell and not be included in a formula chain. Analytic Solver supports 8

total dimensions (parametric and structural combined).

To create a Structural Dimension, click …

• Analytic Solver Desktop: Model – Dimension to open the Dimension

menu.

• Analytic Solver Cloud: Model – Dimensional Modelimg --

Dimension to open the Dimension menu.

If using an Excel Pivot Table, select From Pivot Table, otherwise select From

Cell Range. (For more information on creating a dimension from within an

Excel Pivot Table, please see below.)

If From Cell Range is selected, the following dialog appears.

Name: Enter an appropriate name of your choice.

Specify: Select Range to enter a range of cells containing the elements of the

dimensions. Alternatively, one could also enter an array of the form “{elem1,

elem2, …. elem n}”. The length of the dimension is equal to the number of cells

in the range, or the length of the array.

If Bounds is selected, the value entered as Lower will become the first

dimension element and the Upper value will become the last dimension element.

Dimension length will be calculated as Upper – Lower + 1.

Location: Select a blank cell on the spreadsheet where the dimension will

reside.

Frontline Solvers 2025 Q1 Reference Guide Page 417

Type: Select Structural to create a Structural Dimension. (Please see below for

information on creating Parametric Dimensions.)

Function Signatures

Three signatures are provided for this function.

=PsiDim(name, range_or_array)

=PsiDim(name, from_num, to_num)

=PsiDim(name, length)

name: A unique string value assigned to identify the dimension.

range_or_array: Enter a range of cells containing the elements of the
dimensions. Alternatively, one could also enter an array of the form “{elem1,

elem2, …. elem n}”. The length of the dimension is equal to the number of cells

in the range, or the length of the array.

From_num is an integer value which will become the first dimensional element.

To_num is an integer value which will become the last dimensional element.

Dimension length will be calculated as to_num – from_num + 1.

The length argument is an integer value defining the number of elements in the

dimension. Elements will not be assigned names, rather each element will be

assigned a value of 1, 2, 3, ….N.

Examples

=PsiDim(“cities”, A1:A3) where A1 = NY, A2 = LA, and A3 = SF - Results in

a Structural dimension named “cities” containing three elements: NY, LA, and

SF.

=PsiDim(“cities”, {“NY”, “LA”, “SF”}) – Results in a Structural dimension

named “cities” containing three elements: NY, LA, and SF.

=PsiDim(“countdown”, 60, 0) – Results in a Structural dimension named

“countdown” that contains 61 elements: 60, 59, 58, …, 2, 1, 0.

=PsiDim(“index”, 10) – Results in a Structural dimension named “index” with

10 elements: 1, 2, 3, …, 8, 9, 10.

After a Structural dimension is created, the name and address of the dimension

will appear under Dimensions in the Solver Task Pane.

Address: Displays the cell address where the Structural dimension resides (read
– only).

Formula: Displays the formula in the Address cell (read – only).

Frontline Solvers 2025 Q1 Reference Guide Page 418

Name: Displays the name of the Structural dimension (read – only).

Current Value: Controls the values displayed in the cell containing the cube.

Type: Displays the type of dimension, Structural or Parametric.

PsiOptData

PsiOptData() can be used to display all elements in a cube calculating either the

objective or constraints in an optimization model.

• In Analytic Solver Desktop, the difference between PsiCubeData() and
PsiOptData() is that PsiOptData() will only be populated after an

optimization is run, while PsiCubeData can be populated at any time.

• In Analytic Solver Cloud, there is no difference in returned results

between PsiCubeData() and PsiOptData().

To insert the PsiOptData() formula, click Formulas – Insert Function on the

Excel Ribbon, select Psi Dimension from the Or select a category dropdown

menu, select PsiOptData from the list, then click OK.

The following dialog opens.

Function_cell: Enter an existing cube used to calculate either the objective or

the constraints in an optimization model.

Optimization: This argument is optional. This argument specifies the
optimization number to which the function will be applied. If omitted, the

optimization selected in the Ribbon will be used.

Frontline Solvers 2025 Q1 Reference Guide Page 419

Struc_format: An optional argument entered as a string. If omitted, all cube

values are printed in a single vector.

To use this argument to return the value of a specific element in a 1-dimensional

cube containing a structural dimension, use the form:

“[StructuralDimisension1].[Element1]”.

 To use this argument to return the value of a 2-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element]”.

To use this argument to return the value of an N-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element],…,[Stru

cturalDimensionN].[Element]”.

Param_slice: The param_slice argument is an optional string argument

specifying the desired element “slice” for the parametric dimensions. If omitted

the element selected for the Dimension’s Current Value in the Solver Task Pane
will be used.

To use this argument to return the value of a specific element in a cube with 1-

dimensional cube containing a parametrc dimension, use the form:

“[ParametricDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

parametrc dimensions), use the form:

“[ParametricDimension1].[Element],[ParametricDimension2].[Element]”.

To use this argument to return the value of an N-dimensional cube (containing

parametric dimensions), use the form:

“[ParametricDimension1].[Element],[ParametricDimension2].[Element],…,[P
arametricDimensionN].[Element]”.

Function Signatures

When a cube evaluation results in a given optimization output_cell, (e.g. a

constraint or objective definition cell) is a cube, Excel may display at most one

element of that cube. PsiOptData will "spill" all contents or selected elements of

the cube result formatted according to the optional struc_format string.

There is one signature provided for this function.

=PsiOptData(output_cell, [optimization], [struc_format], [param_slice])

output_cell: (required) Enter an existing cube used to calculate either the

objective or the constraints in an optimization model.

Optimization: (optional) An optional argument specifying the current

optimization related to PsiOptParam() functions. If omitted the one selected in

the Ribbon will be assumed.

To use this argument to return the value of a specific element in a 1-dimensional

cube containing a structural dimension, use the form:
“[StructuralDimisension1].[Element1]”.

 To use this argument to return the value of a 2-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element]”.

To use this argument to return the value of an N-dimensional cube (containing

structural dimensions), use the form:

Frontline Solvers 2025 Q1 Reference Guide Page 420

“[StructuralDimension1].[Element],[StructuralDimension2].[Element],…,[Stru

cturalDimensionN].[Element]”.

Param_slice: The param_slice argument is an optional string argument

specifying the desired element “slice” for the parametric dimensions. If omitted

the element selected for the Dimension’s Current Value in the Solver Task Pane
will be used.

To use this argument to return the value of a specific element in a cube with 1-

dimensional cube containing a parametrc dimension, use the form:

“[ParametricDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

parametrc dimensions), use the form:

“[ParametricDimension1].[Element],[ParametricDimension2].[Element]”.

To use this argument to return the value of an N-dimensional cube (containing

parametric dimensions), use the form:

“[ParametricDimension1].[Element],[ParametricDimension2].[Element],…,[P
arametricDimensionN].[Element]”.

Examples

=PsiOptData(A1, 1, ”dims”) – Returns the dimension name and number of

elements. This formula spills across n columns where n is the number of

dimensions in A1.

=PsiOptData(A1, 2, “vals”) – Returns the values of the fact table for the 2nd

optimization along with the dimension elements in the form of a relational or

pivot table. (Optimizations to run must be set to 2 or larger.)

=PsiOptData(A1, 4, ”[Parts].[Chassis], [Products].[TV]”) - Returns the cube

elements as well as the element value for the 4th optimization. (Optimizations to

run must be set to 4 or larger.)

Note for Excel versions that do not support Dynamic Arrays

If the user's Excel version does not support Dynamic Arrays, the PsiOptData()

function must be entered in array form.

If PsiCubeData is entered as an array (with size equal to the number of
dimensions in the Function_cell cube) and struc_format = “dims”,

PsiCubeData() prints all dimensions in the cube with their lengths.

Enter this function while passing struc_format = “vals” to print all cube

elements in the form of a relational or pivot table. In addition, this argument can

also be used to selectively print only a portion of a cube’s elements or a “slice”

of the data table. (See below for an example.)

PsiOptData in the Task Pane

Cells containing PsiOptData() will appear under Results in the Model tab of the

Solver task pane.

Frontline Solvers 2025 Q1 Reference Guide Page 421

Address: Displays the cell address range where PsiOptData is located (read –

only).

Formula: Displays the cell formula located in the Address range (read – only).

PsiOptValue

The PsiOptValue() function has been extended to support Dimensional

Modeling. When used with Dimensional Modeling, PsiOptValue() returns the

specific values for a cube in an optimization model. A user can display an
optimization result by not only specifying the desired optimization, but also by

specifying elements of the parametric dimensions through param_slice. When

PsiOptValue() points to a constraint evaluated as a structural cube, the argument

struc_format can be used to select elements on participating structural

dimensions.

To insert PsiOptValue, click Formulas – Insert Function on the Excel Ribbon,

select Psi Optimization from the Or select a category dropdown menu, select

PsiOptValue.

 The following dialog appears.

Frontline Solvers 2025 Q1 Reference Guide Page 422

Cell_or_name: Enter an existing cube.

Optimization: This optional argument specifies the simulation number to which

the function will be applied. If omitted, the optimization selected in the Ribbon

will be used.

Model: This argument is not supported in Dimensional Modeling. Leave this

argument blank.

Struc_format: A string argument specifying the desired element selected along

the structural dimension to be monitored. If omitted, the element selected for

the Dimension’s Current Value in the Solver task pane will be used.

To use this argument to return the value of a specific element in a structural

cube, use the form: “[StructuralDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element]”.

To use this argument to return the value of a N-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element],…,[Stru

cturalDimensionN].[Element]”.

Param_slice: The param_slice argument is an optional string argument
specifying the desired element “slice” for the parametric cube to be monitored.

If omitted the element selected for the Dimension’s Current Value in the Solver

Model task pane will be used.

To use this argument to return the value of a specific element in a 1-dimension

cube containing a parametric dimension use the form:

“[StructuralDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

parametric dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element]”.

To use this argument to return the value of a N-dimensional cube (containing
parametric dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element],…,[Stru

cturalDimensionN].[Element]”.

Function Signatures

One signature is provided for this function.

=PsiOptValue(output_cell, [optimization],[model], [struc_format],

[param_slice])

Frontline Solvers 2025 Q1 Reference Guide Page 423

Output_cell: (required) An output cell that evaluates to a cube, e.g. a constraint,

objective, or intermediate cell

optimization: (optional) Specifies the current optimization related to the

PsiOptParam() function. If omitted, the optimization selected in the Ribbon will

be used.

model : (optional) This argument is not supported in Dimensional Modeling.

Leave this argument blank.

struc_format: (optional) A string argument specifying the desired element

selected along the structural dimension to be monitored. If omitted, the

element selected for the Dimension’s Current Value in the Solver task pane will

be used.

To use this argument to return the value of a specific element in a 1-dimensional

cube containing a structural dimension, use the form:

“[StructuralDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element]”.

To use this argument to return the value of a N-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element],…,[Stru

cturalDimensionN].[Element]”.

param_slice: (optional) An optional string argument specifying the desired

element “slice” along the parametric dimensions to be monitored. Detailed

usage of this argument is the same as the identical one in the PsiOptData().

To use this argument to return the value of a specific element in a 1-dimension

cube containing a parametric dimension use the form:

“[StructuralDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

parametric dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element]”.

To use this argument to return the value of a N-dimensional cube (containing

parametric dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element],…,[Stru

cturalDimensionN].[Element]”.

Examples

=PsiOptValue(K21, 2, ””, "[Parts].[Speaker]")– Results in the value of K21 (a

cube comprised of 1 structural dimension) in the 2nd optimization, when Speaker

is selected for the Parts dimension.

=PsiOptValue(L17, 3, ””, "[Products].[TVs], [Parts].[Electronics]") – Results

in the value of L17 (a cube comprised of 2 structural dimensions) in the 3rd
optimization, where the element TVs is selected for the Products dimension and

the element Electronics is selected for the Parts dimension.

Cells containing PsiOptValue functions will appear under Results in the Model

tab of the Solver task pane. Expand the range K31:L31 to display the following.

Frontline Solvers 2025 Q1 Reference Guide Page 424

Address: Displays the cell address range where the PsiOptValue function is

located (read – only).

Formula: Displays the cell formula located in the Address range (read – only).

Monitor Value: Displays “True” since PsiOptValue by definition creates a

monitored value (read – only).

PsiParamDim

Creates a Parametric dimension which can be used in an unlimited number of

cubes. When a Parametric dimension is included in a cube, the Psi Interpreter

will treat all data as parametric values. This function should appear in a single

cell and not be included in a formula chain. Analytic Solver supports 8 total
dimensions (parametric and structural combined).

To create a Parametric Dimension, click …

• Analytic Solver Desktop: Model – Dimension to open the Dimension

menu.

• Analytic Solver Desktop: Model – Dimensional Modeling --

Dimension to open the Dimension menu.

Frontline Solvers 2025 Q1 Reference Guide Page 425

If using an Excel Pivot Table, select From Pivot Table, otherwise select From

Cell Range. (For more information on creating a dimension from within an

Excel Pivot Table, please see below.)

If From Cell Range is selected, the following dialog appears.

Name: Enter an appropriate name of your choice.

Specify: Select Range to enter a range of cells containing names for dimension

elements or Bounds to enter lower and upper integer values. If Bounds is

selected, the value entered as Lower will become the first dimension element
and the Upper value will become the last dimension element. Dimension length

will be calculated as Upper – Lower + 1.

Location: Select a blank cell on the spreadsheet where the dimension will

reside.

Type: Select Parametric to create a Parametric Dimension. (Please see above

for information on creating Structural Dimensions.)

Function Signatures

Three signatures are provided for this function.

=PsiParamDim(name, range_or_array)

=PsiParamDim(name, from_num, to_num)

=PsiParamDim(name, length)

name: A unique string value assigned to identify the dimension.

range_or_array: Range of cells containing the elements of the dimensions.

Alternatively, one could also enter an array of the form “{elem1, elem2, ….
elem n}”. The length of the dimension is equal to the number of cells in the

range, or the length of the array.

From_num: Integer value which will become the first dimensional element.

To_num: Integer value which will become the last dimensional element.

Dimension length will be calculated as to_num – from_num + 1.

Length: Argument is an integer value defining the number of elements in the

dimension. Elements will not be assigned names, rather each element will be

assigned a value of 1, 2, 3, ….N.

Frontline Solvers 2025 Q1 Reference Guide Page 426

Examples

=PsiParamDim(“cities”, A1:A3) where A1 = NY, A2 = LA, and A3 = SF -

Results in a Parametric dimension named “cities” containing three elements:

NY, LA, and SF.

=PsiParamDim(“cities”, {“NY”, “LA”, “SF”}) – Results in a Parametric

dimension named “cities” containing three elements: NY, LA, and SF.

=PsiParamDim(“countdown”, 60, 0) – Results in a Parametric dimension

named “countdown” that contains 60 elements: 60, 59, 58, …, 2, 1, 0.

=PsiParamDim(“index”, 10) – Results in a Parametric dimension named

“index” with 10 elements: 1, 2, 3, …, 8, 9, 10.

After a Parametric dimension is created, the name and address of the dimension

will appear under Dimensions in the Solver Task Pane.

Address: Displays the cell address where the Parametric dimension resides

(read – only).

Formula: Displays the formula in the Address cell (read – only).

Name: Displays the name of the Structural dimension (read – only).

Current Value: Controls the values displayed in the cell containing the cube.

Locked: Setting Locked to True, will result in the dimension being “locked” or

“frozen” to the Current Value element.

Type: Displays the type of dimension, Structural or Parametric.

Active in Optimization: If False, dimension will be ignored in the next

optimization.

Active in Simulation: If False, dimension will be ignored in the next simulation.

Active in Sensitivity Analysis: If False, dimension will be ignored in the next

sensitivity analysis.

PsiDimActive() Signatures

The PsiDimActive() function is a property function passed to PsiParamDim().

=PsiParamDim(name, range_or_array, [PsiDimActive(opt, sim, sen])

=PsiParamDim(name, from_num, to_num, [PsiDimActive(opt, sim, sen])

=PsiParamDim(name, length, [PsiDimActive(opt, sim, sen])

The opt argument can be set to True or False. If False, dimension will not

appear in the next optimization

Frontline Solvers 2025 Q1 Reference Guide Page 427

The sim argument can be set to True or False. If False, dimension will not

appear in the next simulation.

The sen argument can be set to True or False. If False, dimension will not

appear in the next sensitivity analysis.

Example

=PsiParamDim(“cities”, A1:A3, PsiDimActive(true, false, false)) - Results in a

Parametric dimension named “cities” containing three elements: NY, LA, and

SF. This dimension will only be available for optimization models.

PsiDimLock() Signature

The PsiDimLock() function is a property function passed to PsiParamDim().

=PsiParamDim(name, range_or_array, [PsiDimLock(elem_or_index)])

The elem_or_index argument should be either the name of the locked element or

its 1-based index.

Example

=PsiParamDim(“cities”, A1:A3, PsiDimLock(“LA”)) - Results in a Parametric

dimension named “cities” containing three elements: NY, LA, and SF. This

dimension will be locked to the “LA” dimension element.

PsiPivotCube

The function creates a cube from a pivot table. A dimension in a pivot table

should be defined explicitly by PsiPivotDim. Since values in pivot tables are not

evaluable, pivot cubes are not transparent to any inputs (variables, distributions

etc.). Hence, values in pivot table must not be dependent on inputs, rather they

must be constants.

To create a Cube from a Pivot Table, click …

• Analytic Solver Desktop: Model – Cubes to open the Cube menu.

• Analytic Solver Cloud: Model – Dimensional Modeling -- Cubes to

open the Cube menu.

Select From Pivot Table, the following dialog appears.

Frontline Solvers 2025 Q1 Reference Guide Page 428

Pivot Tables: Click the down arrow to select an existing pivot table from the
menu.

Location: Select a blank cell on the spreadsheet where the dimension will

reside.

Function Signatures

One signature is provided for this function.

=PsiPivotCube(cell_within_pivot)

cell_within_pivot: (required) A cell reference within the range of a pivot table

definition. This argument is used by Analytic Solver to identify the appropriate

pivot table.

Examples

=PsiPivotCube(A3:E17) -- Results in a cube created from data within the
Pivot table residing in cells A3:E17.

After a Cube is created, the name and address of the dimension will appear

under Dimensions in the Solver Task Pane.

Address: Displays the cell address where the cube is located (read – only).

Formula: Displays the formula in the Address cell (read – only).

PsiPivotDim

This function extracts a dimension from an existing pivot table, making it either

structural or parametric. To construct a cube from a pivot table you must

explicitly define all table fields as dimensions through PsiPivotDim() first.

To create a Parametric Dimension, click

• Analytic Solver Desktop: Model – Dimension to open the Dimension

menu.

• Analytic Solver Cloud: Model – Dimensional Modeling –

Dimension.

Frontline Solvers 2025 Q1 Reference Guide Page 429

Select From Pivot Table. The following dialog appears.

Pivot Tables: Click the down arrow to select the desired Pivot Table from the

drop-down menu.

Dimension: Click the down arrow to select the desired Pivot Table field. A

dimension will be created from the selected field.

Type: Select Structural to create a Structural Dimension or Parametric to create

a Parametric Dimension.

Location: Select a blank cell on the spreadsheet where the dimension will
reside.

Function Signatures

There is one signature provided for this function.

=PsiPivotDim(cell_within_pivot, dim_name, [dim_type],…)

cell_within_pivot: (required) A cell reference within the range of a pivot table
definition.

dim_name:(required) A string containing the name of the extracted pivot table

field as a dimension. This argument is used by Analytic Solver to create a

dimension with that name.

dim_type: (optional) Pass False for this argument if creating a Structural

Dimension or True if creating a Parametric Dimension. If this argument is

omitted, a Structural Dimension will be created.

If a Parametric Dimension is created, two additional arguments can be used,

PsiDimLock() and/or PsiDimActive(). See below for explanation of these two

functions.

Frontline Solvers 2025 Q1 Reference Guide Page 430

Examples

=PsiPivotDim(A1, "Product", TRUE) - Results in a Parametric dimension

created from the “Products” field from within the Pivot Table contained in cell

A1.

=PsiPivotDim(A7, "Product", FALSE) or =PsiPivotDim(A7, "Product") –

Results in a Structural dimension created from the “Product” field from the

Pivot Table located in cell A7.

=PsiPivotDim(A7, "Product", TRUE, PsiDimLock("dyn tool")) – Results in a

Parametric dimension created from the “Product” field from the Pivot Table

located in cell A7 locked to the dyn tool dimension element. (For more
information on PsiDimLock, see below.)

=PsiPivotDim(A7, "Product", TRUE, PsiDimLock("dyn tool"),

PsiDimActive(FALSE, TRUE, TRUE)) – Results in a Parametric dimension

created from the “Product” field from the Pivot Table located in cell A7 locked

to the dyn tool dimension element and active in simulation and sensitivity

analysis. This dimension will not be active in optimization. (For more

information on PsiDimLock() or PsiDimActive(), see below.)

After a Parametric dimension is created, the name and address of the dimension

will appear under Dimensions in the Solver Task Pane.

Formula: Displays the formula in the Address cell (read – only).

Name: Displays the name of the parametric dimension (read – only).

Current Value: Controls the values displayed in the cell containing the cube.

Locked: Setting Locked to True, will result in the dimension being “locked” or

“frozen” to the Current Value element.

Type: Displays the type of dimension, Structural or Parametric.

Active in Optimization: If False, dimension will be ignored in the next

optimization.

Active in Simulation: If False, dimension will be ignored in the next simulation.

Active in Sensitivity Analysis: If False, dimension will be ignored in the next

sensitivity analysis.

PsiDimActive() Signatures

The PsiDimActive() function is a property function passed to PsiPivotDim().

=PsiParamDim(name, range_or_array, [PsiDimActive(opt, sim, sen])

Frontline Solvers 2025 Q1 Reference Guide Page 431

=PsiParamDim(name, from_num, to_num, [PsiDimActive(opt, sim, sen])

=PsiParamDim(name, length, [PsiDimActive(opt, sim, sen])

The opt argument can be set to True or False. If False, dimension will not

appear in the next optimization

The sim argument can be set to True or False. If False, dimension will not

appear in the next simulation.

The sen argument can be set to True or False. If False, dimension will not

appear in the next sensitivity analysis.

Example

=PsiParamDim(“cities”, A1:A3, PsiDimActive(true, false, false)) - Results in a
Parametric dimension named “cities” containing three elements: NY, LA, and

SF. This dimension will only be available for optimization models.

PsiDimLock() Signature

The PsiDimLock() function is a property function passed to PsiPivotDim().

 =PsiParamDim(name, range_or_array, [PsiDimLock(elem_or_index])

The elem_or_index argument should be either the name of the locked element or

its 1-based index.

Example

=PsiParamDim(“cities”, A1:A3, PsiDimLock(“LA”)) - Results in a Parametric

dimension named “cities” containing three elements: NY, LA, and SF. This

dimension will be locked to the “LA” dimension element.

PsiReduce

PsiReduce() eliminates one structural dimension in a multi-dimensional cube by

aggregating the values along that dimension. (PsiReduce() does not support
parametric dimensions.) If used with a parametric dimension, the error “Invalid

use of Dimension/Cube Reduction” will appear on the Solver status bar and

Output tab on the Task Pane.

To create a Cube Reduction, click …

• Analytic Solver Desktop: Model – Reduction.

• Analytic Solver Cloud: Model – Dimensional Modeling --

Reduction.

Frontline Solvers 2025 Q1 Reference Guide Page 432

The following dialog appears.

Cube: Select the desired cube from the drop down menu. If multiplying,
dividing, subtracting, etc. multiple cubes, simply type the operation, for

example: K16*L16, A1 * B1 – 10, etc.

Dimension(s): Click the down arrow to select the desired Dimension. If

multiple dimensions are to be included in the Cube, click the “+” button, then

select the desired Dimension from the next Dimension(s) field.

Reduce By: Select the how you would like to aggregate the cube. The

supported functions are: average, sum, max, min, stdev (or stdev.s), var (or

var.s), index, and element.

 If “index” is selected, PsiReduce() will reduce the expression in the first

argument, which evaluates to a cube, by considering only the element index of
the reduction dimension selected in the Dimension drop down menu.

Frontline Solvers 2025 Q1 Reference Guide Page 433

If “element” is selected, PsiReduce() will reduce the expression in the first

argument, which evaluates to a cube, by considering only the element specified

in the reduction dimension selected in the Dimension drop down menu.

Location: Select a blank cell on the spreadsheet where the dimension will

reside.

Function Signatures

One signature is provided for this function.

The function reduces a cube along a given (structural) dimension or along all

dimensions by aggregating all relevant elements as requested.

=PsiReduce(cube_expression, aggregation, [dimension])

cube_expression: (required) An existing cube on the spreadsheet. The function

reduces the cube to a cube or degenerated cube (single value) by eliminating one

or all dimensions through aggregation.

aggregation: (required) A string specifying how to aggregate the cube along a

specific dimension or along all dimensions. Supported values are: “average”,

“sum”, “max”, “min”, “stdev”, “stdev.s”, “var”, “var.s”. (The second moment

aggregations (stdev.s and var.s) are always computed as sample-based. The

name “stdev.s” is equivalent to “stdev”; the name “var.s” is equivalent to “var”.)

If the name of a dimension’s element is passed for aggregation, the function will

be reduced/sliced at that named element. If an index n is passed for
aggregation, then the cube will be reduced/sliced along the nth element of the

dimension.

Dimension: (optional) The name of the dimension along which the reduction

by aggregation of the cube is requested. If omitted, the cube will be aggregated

along all structural dimensions.

Examples

=PsiReduce(A1,”sum”, "state") - Results in the sum of the values in the A1

cube along the state dimension.

=PsiReduce(A2, “average”) – Results in the average of all values in the fact

table for the cube located in cell A2.

=PsiReduce(A3, “San Francisco”, “City”) – Reduces the cube in cell A3 by

considering only the San Francisco element of the reduction dimension City.

=PsiReduce(A4, 2, “City”) – Reduces the cube in cell A4 by considering only

the 2nd element of the reduction dimension City.

The result of PsiReduce() is another cube. If the cell containing =PsiReduce() is
selected in the Model tab of the Solver task pane, the name and address of the

dimension will appear under Cubes in the Solver Task Pane.

Frontline Solvers 2025 Q1 Reference Guide Page 434

Address: Displays the cell address where the PsiReduce() occurs (read – only).

Formula: Displays the formula in the Address cell (read – only).

Values: Displays the cube being reduced or the first argument of PsiReduce().

PsiTableCube

PsiTableCube() defines a cube over a sparse table representation with an

arbitrary order of records.

A sparse cube is defined by missing records for PsiTableCube(). If Use Sparse

Cubes = False, on the Platform tab of the Solver Task Pane, and you have

defined a cube using PsiTableCube(), elements missing from the cube will be

considered equal to 0. If Use Sparse Cubes = True, you have defined a cube
using PsiTableCube() with missing records, and the percentage of elements

missing or empty is more than 30% of the total possible cube elements, those

missing elements or records will not be included in the model.

As with PsiCube, the maximum number of elements in a cube created by

PsiTableCube or by formula evaluation is 1,000,000. The maximum number of

index columns or dimensions is 8.

To create a sparse cube using PsiTableCube(), click Formula on the Excel

Ribbon, select Psi Dimension as the category, then select PsiTableCube from the

list of PSI Cube functions, then click OK.

The Function Arguments dialog opens. Here is where you will enter the

dimension names as well as the values for the table.

Frontline Solvers 2025 Q1 Reference Guide Page 435

Table_description: Enter an Excel range containing the table headings. These

headings may be entered in an arbitrary order. You may enter a maximum of
eight descriptive (or index) columns.

Table_values: Enter an Excel range containing the table values. Only one value

column is supported.

In our Structural example above, we have the following table,

which can be rewritten as:

Using this example, our arguments for PsiCubeTable() would be:

Table_description: M8:N19

Table_values: O8:O19

Function Signatures

The signature provided for this function is:

=PsiTableCube(table_description, table_values)

Frontline Solvers 2025 Q1 Reference Guide Page 436

PsiTableCube() defines a cube over a sparse table representation with an

arbitrary order of records. The missing combinations are assumed to have

values equal to 0.

table_description: Enter a range of cells containing string values that describe

the numeric value column, i.e. the part and product names in the “Parts” and
“Products” columns.

range_with_values: The is a range of cells on the Excel worksheet containing

numeric values, i.e. the values listed in the “Qty” column.

Examples

= PsiTableCube(M8:N19, O8:O19) where cells M8:N19 are cells containing

string names such as "Products" and "Parts" and cells O8:O19 contain numeric

values.

Psi Statistics Functions

All Psi Statistics functions used in Simulation except PsiCorrelation() and

PsiFrequency() have been extended to support Dimensional Modeling. Psi

Statistics functions can be entered into a single cell which will "spill" down.

To insert a Psi Statistics function, click Formulas – Insert Function on the

Excel Ribbon, select Psi Statistics from the Or select a category dropdown
menu, select the desired function from the list. In this example, we’ll use

PsiMean() -- select PsiMean from the list, then click OK. The following dialog

appears.

Cell_or_name: Enter an existing cube for which Psi Statistic information is

desired.

Additional Arguments: Some Psi Statistics functions include additional

arguments such as a Target Cell, Percentile, Confidence Level, etc. For more

information on this additional arguments, see the Psi Function Reference

chapter in this guide.

Optimization: This argument is optional. This argument specifies the

simulation number to which the function will be applied. If omitted, the

simulation selected in the Ribbon will be used.

Struc_format: This argument is an optional argument entered as a string. If

omitted, all cube values will be printed in a single column. If “dims” is passed

for this argument, the Psi Statistic function will print all dimensions in the cube

with their lengths so the user can be advised of the size of the cubes. If “vals” is

passed for this argument, the result values will be displayed along with the

Frontline Solvers 2025 Q1 Reference Guide Page 437

dimension elements in the form of a relational or pivot table. Please see the

Simulation example in the Dimensional Modeling chapter in Analytic Solver

User Guide for more information on this function.

It’s also possible to use this argument to return the name of a specific element in

a cube containing one or more structural dimensions. To use this argument to
return the value of a specific element in a 1-dimensional cube (containing a

structural dimension), use the form: “ [StructuralDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element]”.

To use this argument to return the value of a N-dimensional cube (containing

structural dimensions), use the form:

“[StructuralDimension1].[Element],[StructuralDimension2].[Element],…,[Stru

cturalDimensionN].[Element]”.

Param_slice: The param_slice argument is an optional string argument
specifying the desired element “slice” for the parametric dimensions. If omitted

the elements selected in the pane will be used.

It’s also possible to use this argument to return the value of a specific element in

a cube containing one or more parametric dimensions.

To use this argument to return the value of a specific element in a 1-dimensional

cube (containing a parametric dimension), use the form:

“[ParametricDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

parametric dimensions), use the form:

“[ParametricDimension1].[Element],[ParametricDimension2].[Element]”.

To use this argument to return the value of a N-dimensional cube (containing

parametric dimensions), use the form:

“[ParametricDimension1].[Element],[ParametricDimension2].[Element],…,[P

arametricDimensionN].[Element]”.

Function Signatures

One signature is provided for this function.

=PsiXxx(output_cell, [simulation], [struc_format], [param_slice]) where Xxx is

any Psi statistics function except PsiCorrelation and PsiFrequency.

output_cell: (required) A cell reference containing an uncertain function.

Simulation: (optional) An argument specifying the simulation number related

to PsiSimParam() to which the function will be applied. If omitted, the

simulation selected in the Ribbon will be used.

struc_format: (optional) An optional argument entered as a string. If omitted, all

cube values are printed in a single vector.

• If struc_format = “dims”, PsiCubeData() prints all dimensions in the

cube with their lengths.

• If struc_format = “vals”, PsiCubeData() prints all cube elements in the

form of a relational or pivot table. In addition, this argument can also

be used to selectively print only a portion of a cube’s elements or a

“slice” of the data table. (See below for an example.)

Frontline Solvers 2025 Q1 Reference Guide Page 438

param_slice: Argument specifying the desired element “slice” for parametric

dimensions. If omitted, the elements selected for the Dimension’s Current

Value in the Solver Task Pane will be used.

To use this argument to return the value of a specific element in a 1-dimensional

cube (containing a parametric dimension), use the form:
“[ParametricDimisension1].[Element1]”.

To use this argument to return the value of a 2-dimensional cube (containing

parametric dimensions), use the form:

“[ParametricDimension1].[Element],[ParametricDimension2].[Element]”.

To use this argument to return the value of a N-dimensional cube (containing

parametric dimensions), use the form:

“[ParametricDimension1].[Element],[ParametricDimension2].[Element],…,[P

arametricDimensionN].[Element]”.

Examples

=PsiMean(A1, 1, ”dims”) – When entered as an array with size equal to the

number of dimensions included in the A1 cube for the 1st optimization, the

dimension name and number of elements will be returned.

=PsiMean(A1, 2, “vals”) – When entered as an array with size equal to the

number of dimensions included in the A1 cube, the values of the fact table for

the 2nd optimization will be displayed along with the dimension elements in the

form of a relational or pivot table. (Simulations to run must be set to 2 or larger
in the Platform tab of the Solver task pane.)

=PsiMean(A1, 4, ”[Parts].[Chassis], [Products].[TV]”) - When entered as an

array of size 3, the cube elements as well as the element value will be displayed

for the 4th optimization. (Simulations to run must be set to 4 or larger in the

Platform tab of the Solver task pane.)

Cells containing Psi Statistics functions will appear under Simulation Statistic

Functions in the Model tab of the Solver task pane. Expand the range H6:I9 to

display the following.

Frontline Solvers 2025 Q1 Reference Guide Page 439

Address: Displays the cell address range where the Psi Statistic is located (read

– only).

Formula: Displays the array formula located in the Address range (read – only).

Select the F8 cube (under F9) to display the following statistics.

Address: Displays the cell address range where the Cube referenced in the

PsiStatistic located in cells F9 is located (read – only).

Formula: Displays the formula for the cube located in cell F8 (read – only).

Statistics: Simulation results for the first element in the cube located in cell F8.
For a description of the statistic, click the name of the statistic at the bottom of

the task pane.

RASON Conversion Functions

PsiDataSrc

PsiDataSrc (“src_name”, {val_col_names }, (data),

[idx1_name], [idx1_elements], [idx2_name],

[idx2_elem])

When creating a custom visual in Power BI or Tableau, use PsiDataSrc() to

specify the parameters in the Excel model that you would like to be able to edit

or chart in Power BI.

Frontline Solvers 2025 Q1 Reference Guide Page 440

src_name: Required - This argument names the text file that is translated to the

RASON datasource name. (This argument must be surrounded by quotes.)

val_col_names: Required - An array of strings (or a single string). Each string

is translated to the name of a RASON data element, to which a value column of

the datasource will be bound.

Data: Required - A (potentially multi-area) cell reference in the XLL version.

(This argument is limited to a single-area cell reference in Analytic Solver

Cloud.) Each area (cell range) corresponds to one string name in

val_col_names. The size and shape of each cell range provides dimension

information (but not values) for the corresponding RASON data element.

Normally, the Excel model's formulas will also reference cells within these

ranges, so the RASON models' formulas will reference the corresponding

RASON data elements.

idx1_name, idx1_elem, idx2_name, idx2_elem – Idx1_name and idx2_name

are strings and are translated to names of the datasource index columns.
Idx1_elem and idx2_elem are cell references where the cells contain the index

elements. At least one index must be present and at most two.

idx1_name: Required - Enter the name of the 1st index set for the data specified

in the Data argument. The first index set should always be the index set that

describes the row elements. (This argument must be surrounded by quotes.)

idx1_elem: Required - Enter the Excel range containing the data (or elements)

for the 1st index set.

Idx2_name: Optional - Enter the name of the 2nd index set, if present, for the iata

specified in the Data argument. The second index set should always be the

index set that describes the column elements. (This argument must be
surrounded by quotes.)

idx2_elem: Optional - Enter the Excel range containing the data (or elements)

for the 2nd index set, if present.

PsiModelSrc

PsiModelSrc (“src_name”, “data_name”)

PsiModelSrc() defines a data source for the constant range data_name used in
the converted RASON model. This function never takes part in model

evaluation. Content is saved in xml model format.

src_name – Required: A string that is translated to the RASON datasource

name. (This argument must be surrounded by double quotes.)

data_name – Required: A string that is translated to the name of the RASON

data element, to which the full results of reading the datasource will be bound.

This string must be a defined name in the Excel workbook pointing to a model

saved in PMML format. (This argument must be surrounded by double quotes.)

Examples

=PsiModelSrc("pmml_src","pmml_model")

where "pmml_model" is an Excel defined name pointing to the range,

LinReg_Stored!B12:B44. (LinReg_Stored is the name of the worksheet, created

by Analytic Solver Data Science, containing the Linear Regression PMML

model.)

Frontline Solvers 2025 Q1 Reference Guide Page 441

Psi Decision Table Functions
The following functions relate to the use of Decision Tables. PsiCalcValue()

must be used to display the results from a decision table in Excel versions that

do not support Dynamic Arrays. PsiDecTable() creates a Decision Table and

PsiJoin() combines to arrays with headers according to a clause argument. See

the Frontline Solvers User Guide for a complete discussion of decision tables

and a walk through of several examples where all three functions are in use.

• Note: Decision Trees are only supported for licenses of Analytic Solver

Comprehensive. The Decision Table button will be disabled for all

other product licenses and the following functions will return an error.

PsiDecTable

PsiDecTable(table_range, [output], [ret_header],

inputs)

This function defines a decision table over the constant range, table_range, for

the specified inputs.

table_range – (Required) This is the cell range of the decision table in the Excel

worksheet.

output (Optional) – Use this argument to control what is returned in the result.

ret_header (Optional) – Enter TRUE to insert a header at the beginning of each
column of results. Otherwise, enter FALSE or leave blank.

input – Analytic Solver supports anywhere from 1 to 253 input variables in the

decision table.

Example:

=PsiDecTable(G7:K16, "holidays", TRUE, age, service)

• G7:K16 is the location of the decision table on the Excel worksheet,

• "holidays" is passed for output to ensure that the returned results only

include the specified output

• TRUE is passed for ret_header to add a header to the result.

• age and service are the two input variables.

=PsiDecTable(G7:K16, {"holidays", "rule"}, , age, service) where

• G7:K16 is the location of the decision table on the Excel worksheet,

• "holidays" and "rule" are passed for output to ensure that the returned

results only include these two outputs,

• an empty argument is passed for ret_header (this is the same as passing

FALSE),

• age and service are the two input variables.

=PsiDecTable(G7:K16, , , age, service) where

• G7:K16 is the location of the decision table on the Excel worksheet,

• An empty argument is passed for output; the entire result collection will

be returned.

Frontline Solvers 2025 Q1 Reference Guide Page 442

• An empty argument is passed for ret_header; results will not include

headings.

• age and service are the two input variables.

For more information on this Psi function, see the Examples: Decision Table

chapter within the Analytic Solver User Guide.

PsiCalcValue

PsiCalcValue(Output_cell, paramidx)

PsiCalcValue returns the specific value for a call or function of a calculation.

Pass the cell address or defined name of the desired cell for the first argument,

Output_cell. Pass the calculation number for the second argument, paramidx, if

multiple calculations are being run.

Example: =PsiCalcValue(I26,2) returns the results of cell I26 for the 2nd

calculation index.

See the example model DTPsiCalcParam.xlsx (Help – Example Models –

Decision Table and Decision Tree Examples – Calculation Parameter Example)
to see this function in use and the Examples: Decision Tables chapter in the

Analytic Solver User Guide for a complete discussion.

When entered as an array, this function defines an observation output for a given

formula cell. Analytic Solver will only consider the observation outputs in a

pure workbook recalculation.

Example: A1:A3 contains {=PsiCalcValue(I26)} where I26 contains

PsiDecTable(). PsiCalcValue will return the results of PsiDecTable in cells

A1:A3.

PsiJoin

PsiJoin(Table1, Table2, "Clause", return_table)

This function joins two arrays, with headers, according to the clause argument.

Currently, on the inner join option is supported.

Table1 – Enter the cell address of the first decision table.

Table2 – Enter the cell address of the second decision table.

Clause – Specifies how the two arrays, or decision tables, are to be joined, i.e.
which columns are to be matched. This argument must be surrounded by quotes.

Return_table - Enter 0, 1, or 2. If 1, records from Table1 are returned. If 2,

records from Table2 are returned. If 0, records from both tables are returned.

Example:

= PsiJoin('Loan Types'!J13:L15, A2:I8, "loanType = loanType, confType =

confType, downPct >= 'minDown %'")

Where Table1 = 'Loan Types'!J13:L15, Table2 = A2:I8, and Clause = "loanType

= loanType, confType = confType, downPct >= 'minDown %'"

Note: loanType, confType, and downPct are three common features to both
tables.

For more information on this Psi function, see the Examples: Decision Table

chapter within the Analytic Solver User Guide.

Frontline Solvers 2025 Q1 Reference Guide Page 443

Psi Custom Functions
In past versions of Analytic Solver, if a user was unable to calculate a value

using Excel's function library, he/she were driven to define their own VBA

function. However, such functions were not supported by the PSI Interpreter; a
severe limitation. This limitation has been overcome with the implementation of

custom Box functions and the support of Excel's new LAMBDA function. A

Box function is invoked using the Psi function, PsiBoxFunction().

See the LAMBDA function entry in this guide and the chapter Using Custom

Functions within the Analytic Solver User Guide, for more information on

invoking Excel's LAMBDA function within an Analytic Solver optimization or

simulation model.

Custom Functions are only supported for licenses of Analytic Solver

Comprehensive. The Box Function button will be disabled for all other product

licenses and Psi functions related to custom functions will return an error.

PsiBoxFunction

PsiBoxFunction(table_range, Arg1, Arg2, …)

PsiBoxFunction() invokes a custom Box function within the Excel workbook.

This function may be defined within one worksheet and invoked on another.

Table_rangge – The cell address of the Box function. In this example, the cell

address is K23:M27. The cell address does not include the cell containing the

Box Function Name.

Arg1 – The cell address of the 1st argument.

Arg2 – The cell address of the 2nd argument.

ArgN – The cell address of the Nth argument.

• In this example, Arg1 will be the value associated with PrevClose and

Arg2 will be the value associated with NormDist.

• The number of Args must equal the number of Input Parameters in the
Box Function.

Box Function Components

• Function name - (Cell K22) Appears at the top left of the function, in

this example, DailyPrice. (Required)

Frontline Solvers 2025 Q1 Reference Guide Page 444

• Formula Language – (Cell K23) Appears in the cell immediately

below the Function name. This entry can either be EXCEL or FEEL.

This setting determines what syntax is used in the function. (Required)

• Input Parameters – (Cells (L23:M23) Appear in the columns to the

right of the Formula Language. This example uses two input
parameters, PrevClose and NormDist . Arguments must be passed to

PsiBoxFunction() in this order. (Required)

• Result and Input Parameter Types – (Cells K24:M24) contains the

result type for both the Result and Input Parameters, in this example a

number. Although, the types are optional since Formula Language =

Excel, this row must exist, even if empty. (Required if Formula

Language = FEEL, otherwise optional)

• Function Body – (Cells K25:M26) The third row is the start of the

Function body. The body is where intermediary formulas may be

calculated. The first column of the body contains the formula name and
the second, merged column contains the actual formula. In this

example, the 1st formula calculated is Formula1, followed by Formula

2. (Optional)

• Function Result – (Cells K27:M27) The last merged row contains the

Function result.

Invoking a Box Function

The formula below invokes the Box function shown and described above.

=PsiBoxFunction(K23:M27,F12,D13)

where

• K23:M27 is the location of the Box function, as shown in the

illustration above.

• F12 is a cell address containing the previous closing price. This cell

can contain either a constant value, formula, decision variable, recourse

variable, uncertain variable or uncertain function.

• D13 is a cell address containing a normal distribution. This cell can

contain either a constant value, formula, decision variable, recourse

variable, uncertain variable or uncertain function.

Note that the number of arguments must equal the number of input parameters

in the box function.

See the Analytic Solver User Guide for more information on how to use a

custom Box function with Analytic Solver.

PsiBoxIterator

PsiBoxIterator(LocofBoxIterator)

A box iterator establishes a loop within a box function. In earlier editions of

Analytic Solver, loops were confined to usage within VBA or, more recently,

with Python in Excel, both inaccessible to the PsiInterpreter during Problem

Setup. This constraint can now be circumvented by introducing a box iterator.

Use the PsiBoxIterator function to execute the box iterator. The PsiBoxIterator

function must be the only Psi function contained in the cell. Multiple

PsiBoxIterator functions may be contained within the same worksheet. Pass the

Frontline Solvers 2025 Q1 Reference Guide Page 445

address of the box iterator function starting with the cell containing the syntax

and ending with the bottom right most cell containing the return formula. In the

screenshot below, notice that the PsiBoxIterator function in cell E20 includes the

cell address H15:I20).

More information:

A box iterator contains many of the same components of a box function, an
example of box iterator is shown below.

Example 1: Box Iterator Example using Excel Syntax

Name

EXCEL number

 for i

 in 1..rows(amount)

payment (amount[i] * rate[i] / 12) / (1 - (1 + rate [i] / 12) ^ -term[i])

fee 0.01 * payment

return payment + fee

• The (required) name of the box iterator appears above the top-left cell

of the table layout. In this example, the name of the box iterator is

“Name”.

• The (required) formula syntax (FEEL or EXCEL) is passed in the top

upper left hand corner. If syntax is FEEL, syntax must be compliant

with DMN decision modeling specifications. In this example, the

formula syntax is “Excel”.

Note: Box functions defined in FEEL syntax are limited to the internal

box scope. Variables or defined names may not be referenced outside

of the box iterator.

• The (optional) returned value type is specified to the right of the

formula syntax. In this example, the returned value is “number”.

• Below the formula syntax is the (required) loop type, in this case the

loop type is “for”. Analytic Solver supports three loop types: for,

every, and some. In this example, the loop type is “for”.

o A “for” loop behaves the same in a box iterator as in a
programming language, i.e a condition is specified and the

loop continues until the condition is no longer satisfied,

changing the formula on each loop.

o An “every” loop checks whether all elements in the loop are

True. Computed result must be a single Boolean value.

Frontline Solvers 2025 Q1 Reference Guide Page 446

o A “some” loop checks whether at least one computed element

of the loop is True. Computed elements must be Boolean.

• Loop index (required) specifies the variable that will be changing. In

this example, the loop index is “i”.

• Below the loop type, the (optional) operator “in” (short for input)

appears.

• To the right of “in”, the (required) index ranges are listed for each

index either as a list/array or through the range operator “…”. In this

example, the list or array is “1..rows(amount)” indicating from “1 to the

number of rows in the Excel defined name, amount.”

• The (optional) iterator body of formulas appears. This body is

composed of both columns. The first names the formula and the 2nd

contains the formula itself.

• The (required) last row specifies the result of the iterated formula. The
first column names the result and the 2nd column calculates the result.

For more information, see the Box Iterator section within the Analytic Solver

User Guide and/or the Analytic Box Iterator Example at Help – Example

Models – Decision Table and Decision Tree Examples for an illustration.

Frontline Solvers 2025 Q1 Reference Guide Page 447

Solver Reports

Introduction
This chapter will help you use the information in the Solver Reports, which can
be produced when the Solver finds a solution – or when it fails to find a

solution, and instead reports that the linearity conditions are not satisfied, or that

your model is infeasible. We’ll explain how to interpret the values in the

Sensitivity and Limits Reports, available in the standard Excel Solver and the

Analytic Solver products, and how to use the diagnostic Scaling, Structure and

Feasibility Reports and the specialized Structure, Solutions and Population

Reports, which are unique to the Analytic Solver products. To illustrate the

reports, we’ll use the example file, StandardExamples.xlsx. All files can be

opened and examined by clicking Help – Examples on the Analytic Solver

ribbon, then clicking Optimization. For the Solutions Report, we’ll use other

examples including a historically interesting nonlinear equation.

Report Types

Structure and Transformation Reports

In addition to the eight types of reports described in this chapter, Analytic Solver

offers two additional reports that are produced by the Polymorphic Spreadsheet

Interpreter - the Structure and Transformation reports. The Structure Report

analyzes in depth the linear, quadratic, smooth nonlinear, and non-smooth

variables and functions in your model, and helps you find and fix “exceptional”

formulas if you’re having difficulty building a linear or quadratic programming

model. The Transformation Report documents how the Polymorphic

Spreadsheet Interpreter has automatically transformed your model, replacing

non-smooth functions such as IF, MIN, MAX, ABS, AND, OR, and NOT with

equivalent expressions using new variables and linear constraints.

Answer, Sensitivity and Limits Reports

The Answer, Sensitivity and Limits Reports are available when the Solver finds
an optimal solution for your model; they give you additional information about

the solution and its range of applicability.

Note: The Limits Report is not currently supported in Analytic Solver Cloud.

All three reports can be useful, but we recommend that you focus on the

Sensitivity Report. When properly interpreted, this report will tell you a great

deal about your model and its optimal solution, which you could not easily

determine by simply inspecting the final solution values on the worksheet. Using

the Sensitivity Report, you can determine what would happen if you changed

your model in various ways and re-ran the Solver, without your having to

actually carry out these steps.

Frontline Solvers 2025 Q1 Reference Guide Page 448

In Excel VBA (when using Analytic Solver Desktop), you can use the object-

oriented API to access the information in the Answer and Sensitivity Reports via

the properties InitialValue, FinalValue, DualValue, DualUpper, and DualLower

of the Variable and Function objects. (Note: These objects and properties can

also be used in the Solver Platform SDK, outside of Excel.) See the chapter
“VBA Object Model Reference” for further information.

Scaling Report

The Scaling Report helps you find and fix poorly scaled formulas in your model.

It appears as a choice when Reports – Optimization is selected when you get a

result – such as “Solver could not find a feasible solution,” “Solver could not

improve the current solution,” or “The linearity conditions required by this

Solver engine are not satisfied” – that generally indicate other conditions, but

may be due to a poorly scaled model. If you are puzzled by a result, and you see

that the Scaling Report is available, we highly recommend that you select it,

click OK, and then examine the report contents. This takes only a moment, and

it may save you hours of time if it reveals a scaling problem. See “The Scaling

Report” below for a realistic example, using the Markowitz Portfolio

Optimization model in the example workbook, StandardExamples.xlsx.

Structure and Feasibility Reports

The Structure and Feasibility Reports help you diagnose problems in your

models.

With the Structure Report, you can pinpoint and, if desired, eliminate nonlinear

functions from your model, so that it can be solved with a faster and more

reliable linear Solver. Using the object-oriented API (when using Analytic

Solver Desktop), you can access the information in this report by calling the

Model object DependTest method

With the Feasibility Report, you can pinpoint the constraints that interact to

make your model infeasible, and correct them as needed. Using the object-

oriented API (when using Analytic Solver Desktop), you can access the
information in the Feasibility Report via the BoundIndex, BoundStatus,

ConstraintIndex and ConstraintStatus properties of the OptIIS object, which is a

member of each Variable and Function object.

Solutions Report

Where the Answer Report gives you detailed information about the single

“bestsolution” that appears on the worksheet when the Solver has finished, the

Solutions Report gives you objective function and decision variable values for a

number of alternative solutions, found during the optimization process. For

mixed integer problems, the report shows each “incumbent‟ or feasible integer

solution found by the Branch & Bound method. For global optimization

problems solved with the GRG, LSSQP, and Knitro Solver engines, the report

shows each locally optimal solution found by the Multistart method. For the
Evolutionary and OptQuest Solvers, the report shows members of the final

population of solutions. Using the object-oriented API, when using Analytic

Solver Desktop, (after calling the Solver object Optimize method), you can

access the information in the Solutions Report by setting the Solver object

SolutionIndex property to a value between 1 and the NumSolutions property

value, then accessing the Value properties of the Variable and Function objects.

The Solutions Report has a special meaning for the Interval Global Solver. It is

available for problems with no objective function to be maximized or

minimized, and with all equality constraints (a system of equations) or all

Frontline Solvers 2025 Q1 Reference Guide Page 449

inequality constraints (a system of inequalities). For a system of nonlinear

equations, the Answer Report shows only a single solution, but the Solutions

Report shows you all real solutions. For a system of inequalities, the Answer

Report again shows you only a single feasible point, but the Solutions Report

shows you an “inner solution” – a region or set of points where all of the
constraints are satisfied.

Population Report

The Population Report is supported by the Evolutionary Solver; it gives you

summary statistical information about the entire population of candidate

solutions maintained by the Evolutionary Solver at the time the solution process

was terminated. It can give you further insight into the quality of solutions found

by the Evolutionary Solver. All of the reports are Microsoft Excel worksheets,

with grid lines and row and column headings turned off. You can turn the grid

lines and headings back on, if you wish, by clicking the Microsoft button,

clicking Options – Advanced and selecting Show Gridlines in the Display

Options for the Worksheet section. In the Analytic Solver Products, you can

request outlined reports, which are worksheets where certain rows are grouped

together in an outline structure that you can expand or collapse as you wish.
Because the reports are worksheets, you can copy and edit the report

information, perform calculations on the numbers in the reports, or create graphs

directly from the report data. This makes the Analytic Solver’s reports

considerably more useful than those produced by standalone optimization

software packages.

Selecting the Reports

When Reports – Optimization is selected, you’ll be able to select one of the

reports shown. Simply click on the report name to select the report you want.

To produce multiple reports, simply re-click Reports – Optimization to select

the next desired report. The reports are Microsoft Excel worksheets that are

inserted in the current workbook, just before the sheet containing the Solver

model. After the reports are produced, the Solver will return to worksheet
Ready Mode.

If you set “Bypass Solver Reports” to True in the Engine tab on the Solver Task

Pane, Reports -- Optimization will not contain any reports.

When the LP/Quadratic Solver, SOCP Barrier Solver, or GRG Nonlinear Solver

find the solution to a mixed-integer programming problem, Reports –

Optimization will include only the Answer Report – the Sensitivity and Limits

Reports are not meaningful in this situation. If (and only if) the Solver finds

more than one integer feasible solution or incumbent, the Solutions Report will

also be available. Similarly, when the GRG Nonlinear Solver or the Interval

Frontline Solvers 2025 Q1 Reference Guide Page 450

Global Solver finds the solution to a global optimization problem, the Reports

list box includes only the Answer Report.

If the GRG Solver, run with the “Multistart Search” option set to True, finds

more than one locally optimal solution, Reports – Optimization will include

the Solutions Report. The Solutions Report also appears when the Interval
Global Solver solves a system of nonlinear equations or a system of inequalities,

without an objective function. Examples of this report are shown in the section

“The Solutions Report.”

Since the Evolutionary Solver always maintains a population of candidate

solutions,including a “best” solution found so far, it offers the Answer,

Population, and Solutions Reports in all cases – even if it has not found a

feasible solution or has been terminated – for any reason. But since the

Evolutionary Solver has no strict test for optimality, linearity or even feasibility,

the Structure, Feasibility, Limits and Sensitivity Reports are not available.

If you’ve selected LP/Quadratic Engine, but your model contains nonlinear
functions of the decision variables, the Solver will report the error, “The

linearity conditions required by this Solver engine are not satisfied,” via the

Output tab on the Solver Task Pane. The only reports that will be available

under Reports -- Optimization are the Scaling Report (because a poorly scaled

model can give rise to this message – see the final result message “The linearity

conditions required by this Solver engine are not satisfied”) and the Structure

Report, which can help you locate the source of the problem with your model.

An example of the Structure Report is shown later in this chapter.

If the Solver finds your model to be infeasible, three reports will be available

under Reports – Optimization: Scaling (because a poorly scaled model can

give rise to this message), Feasibility Report, and Feasibility – Bounds. In this
case, you can select either version of the Feasibility Report (you

are allowed to select both, but the “Feasibility” report contains all of the

information in the “Feasibility-Bounds” version, and more). “Feasibility”

performs a complete analysis of your model, including bounds on the variables,

to find the smallest possible subset of these constraints that is still infeasible.

This can sometimes take a great deal of computing time (if necessary, you can

interrupt the analysis and production of the report by pressing the ESC key).

“Feasibility-Bounds” performs a similar analysis of the constraints, but does not

attempt to eliminate bounds on the variables, to save computing time.

Comments for constraint or variable blocks can be entered in the Add Constraint

or AddVariable dialogs in any Analytic Solver product, or if the
variables/constraints have already been added, by highlighting the

variable/constraint in the Model tab on the Solver task pane, and entering the

comment in the bottom of the task pane.

Frontline Solvers 2025 Q1 Reference Guide Page 451

The Scaling Report
The effects of poor scaling in a large, complex optimization model can be

among the most difficult problems to identify and resolve. It can cause Solver

engines to return a variety of messages, with results that are suboptimal or

otherwise very different from your expectations. Most Solver engines include an

Automatic Scaling option to deal with scaling problems, but this can only help

with the Solver’s internal calculations – not with poor scaling that occurs in the

middle of your Excel model. For example, if one of your formulas adds or

subtracts two quantities of very different magnitudes, such as a dollar amount in

millions or billions and a return or risk measure in fractions of a percent, the
result will be accurate to only a few significant digits. The effect might not be

apparent given the initial values of the variables, but when the Solver explores

Trial Solutions with very different values for the variables, the effect will be

magnified.

You can see an example of the effects of poor scaling if you open

StandardExamples.xls (click Help – Example, then click the Optimization

link on the Overview tab) and select worksheet EXAMPLE4. Suppose that in

this Portfolio Optimization model, you decide to make a simple change: Instead

of using percentages for the stock allocations, you’d rather see the actual dollars

to be invested, in your $1 billion institutional portfolio. So you change the

constraint TotalPortfolio = 1 (or 100%) to TotalPortfolio = 1000000000.
Simply highlight the constraint, TotalPortfolio = 1 in the Model tab of the Solver

Task Pane, then enter 1E+21 for the Right Hand Side in the bottom of the task

pane, as shown in the screenshot below.

Frontline Solvers 2025 Q1 Reference Guide Page 452

You change the cell formatting to display large numbers instead of percentages,

(CTRL + 1) and you select the Standard GRG Nonlinear Engine (as this engine

is more susceptible to scaling problems when compared to the Standard

LP/Quadratic engine) from the Engine drop down menu on the Engine tab.

When you click Solve, you’re surprised to find that the Solver reports it cannot

find a feasible solution, as shown below.

The “solution” found in the Excel spreadsheet is clearly infeasible as the

constraint Total_Portfolio 1E+24 is clearly violated (not met). Since you’re

familiar with the Solver options, you set Use Automatic Scaling to True on the

Frontline Solvers 2025 Q1 Reference Guide Page 453

Engine tab on the Solver task pane and click the Solve icon (green arrow) on the

Output task pane, but you just get a different infeasible result.

In fact – if you continue to click the Solve icon, (say 7 times) Solver will

continue to stop with an infeasible result while the value in cell H9 grows

exponentially. What’s wrong with the Solver? (Past users of the Solver products
have on occasions wrestled with problems just like this.)

Noticing that the Scaling Report is available under Reports - Optimization,

you select this report. The Scaling Report is inserted into your workbook. The

report indicates that there are scaling problems with the formula at the cell with

defined name, Portfolio_Variance (EXAMPLE4!I7). In a very large model, this

cell might be very hard to find by manual inspection. You can click on the

underlined cell reference to jump to cell I17 on the EXAMPLE4 worksheet. You

see that the Variance is a very large number – 1.19E+26. The Scaling Report has

drawn your attention to a scaling issue in the formulas that calculate your model

–outside of the Solver’s own calculations.

In seeking the optimal solution, the Solver is likely to try extreme values – large

and small – for the variables. This doesn‟t cause problems when the largest

value is 100% or 1 and the smallest is 0, but it does cause problems when the

largest value is greater than a trillion. At this point, calculation of the Portfolio

Variance involves adding a very small value and a very large one (the Stock 5

variance times 1 billion squared) which leads to a loss of accuracy. This loss of

accuracy leads directly to the Solver’s problem in finding a solution.

An Example Model
To illustrate the other reports provided by the Analytic Solver products, we’ll

start with the model on worksheet EXAMPLE1 in the workbook

StandardExamples.xls. You can easily load this model by clicking Help –

Examples on the ASP ribbon, then click the Optimization link on the Overview

tab and click the StandardExamples.xlsx link. First, we’ll solve this model in

its original form, using the LP /Quadratic and GRG Solvers, and produce

Answer, Sensitivity and Limits Reports in Analytic Solver Desktop and Answer

and Sensitivity Reports in Analytic Solver Cloud.

In brief, the Answer Report summarizes the original and final values of the

decision variables and constraints, with information about which constraints are

“binding” at the solution. The Sensitivity Report provides information about

how the solution would change for small changes in the constraints or the

objective function. And the Limits Report shows you the largest and smallest

value each decision variable can assume while satisfying the constraints, while

all other variables are held fixed at their solution values.

Next, we’ll change the available inventory of Chassis at cell B11 to -1. This is

shown in Standard Examples.xlsx on the EXAMPLE2 worksheet. When we

attempt to solve, we receive the message “Solver could not find a feasible

Frontline Solvers 2025 Q1 Reference Guide Page 454

solution,” and we can produce the report shown below in the section “The

Feasibility Report.”

Next, we’ll deliberately introduce a nonlinear function into the model, by

editing the formula at cell C11 to read

=SUMPRODUCT(D11:F11,D9:F9)^0.9. This is shown in
StandardExamples.xls on the EXAMPLE3 worksheet. When we attempt to

solve this model with the LP/Quadratic Solver, we’ll receive the message “The

linearity conditions required by this Solver engine are not satisfied,” and we can

produce the report shown below in “The Structure Report.” Returning to the

unmodified version of EXAMPLE1, we’ll solve the model using the

Evolutionary Solver, waiting until we receive the message “Solver cannot

improve the current solution.” This allows us to produce the report shown below

in “The Population Report.” In V7.0, the Solutions Report was generalized to

report multiple solutions for integer programming problems, global optimization

problems, and non-smooth optimization problems, solved by any of the built-in

or plug-in Solver engines. We’ll illustrate this useful report with additional
examples.

The Solutions Report has a special meaning for the Interval Global Solver,

because it can find multiple solutions for systems of equations and systems of

inequalities. To illustrate this, we’ll return to EXAMPLE 1 and make the Set

Cell blank, removing the objective function from this model. What remains is a

set of <= constraints – a system of inequalities (and bounds on the variables).

When we solve this model with the LP/Quadratic and GRG Solvers, we find

only a single feasible solution, which is not very informative. But when we

solve it with the Interval Global Solver, we get an “inner solution” – an entire

region of feasible solutions. To illustrate the Solutions Report for a system of

equations, we’ll introduce a simple but historically interesting nonlinear
equation mentioned in the Introduction.

The Answer Report
The Answer Report, which is available whenever a solution has been found,

provides basic information about the decision variables and constraints in the

model. It also gives you a quick way to determine which constraints are

“binding” or satisfied with equality at the solution, and which constraints have
slack. The Answer Report includes the message that appears in the Output tab of

the Solver Task Pane, the name of the Solver engine used to solve the problem,

and statistics such as the time, iterations and subproblems required to solve the

problem. An example Answer Report for the worksheet model EXAMPLE1

(when there are no upper bounds on the decision variables) is shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 455

First shown are the objective function and decision variables, with their original

value and final values as well as the variable type. Next are the constraints, with

their final cell values; a formula representing the constraint; a “status” column

showing whether the constraint was binding or non-binding at the solution; and

the slack value – the difference between the final value and the lower or upper

bound imposed by that constraint.

A binding constraint, which is satisfied with equality, will always have a slack
of zero. This example shows the effect of automatic outlining of the Solver

reports, which you can turn on by clicking Reports – Optimization – Reports

are not outlined. The outline groups correspond directly to the blocks of

variables and constraints you entered in the Solver Parameters dialog – one

group per row in the Constraints or Variables list box. Comments entered in the

Add Constraint and Add Variable dialogs for each block appear in the Answer

Report; they are visible whether the outline is expanded or collapsed.

When creating a report, the Solver constructs the entries in the Name column by

searching for the first text cell to the left and the first text cell above each

variable (changing) cell and each constraint cell. If you lay out your Solver

model in tabular form, with text labels in the leftmost column and topmost row,
these entries will be most useful – as in the example above. Also note that the

formatting for the Original Value, Final Value and Cell Value is “inherited”

from the formatting of the corresponding cell in the Solver model.

The Sensitivity Report
The Sensitivity Report provides classical sensitivity analysis information for

both linear and nonlinear programming problems, including dual values (in both
cases) and range information (for linear problems only). The dual values for

(nonbasic) variables are called Reduced Costs in the case of linear programming

problems, and Reduced Gradients for nonlinear problems. The dual values for

binding constraints are called Shadow Prices for linear programming problems,

Frontline Solvers 2025 Q1 Reference Guide Page 456

and Lagrange Multipliers for nonlinear problems. Constraints which are simple

upper and lower bounds on the variables, that you enter in the Constraints list

box of the Solver Parameters dialog, are handled specially (for efficiency

reasons) by both the linear and nonlinear Solver algorithms, and will not appear

in the Constraints section of the Sensitivity report. When an upper or lower
bound on a variable is binding at the solution, a nonzero Reduced Cost or

Reduced Gradient for that variable will appear in the “Adjustable Cells” section

of the report; this is normally the same as a Lagrange Multiplier or Shadow

Price for the upper or lower bound.

Note: The formatting of cells in the Sensitivity Report can make a significant

difference in how the Reduced Gradient, Lagrange Multiplier, Reduced Cost and

Shadow Prices are displayed. Bear this in mind when designing your model and

when reading the report. Since the report is a worksheet, you can always change

the cell formatting with the Format menu.

An example of a Sensitivity Report generated for EXAMPLE1 when the

Solverengine is the Standard LP/Quadratic solver (and there are no upper
bounds on the variables) is shown below.

Interpreting Reduced Costs and Shadow Prices

Reduced Costs are the most basic form of sensitivity analysis information. The

reduced cost for a variable is nonzero only when the variable’s value is equal to

its upper or lower bound at the optimal solution. This is called a nonbasic

variable, and its value was driven to the bound during the optimization process.
Moving the variable’s value away from the bound (or tightening the bound) will

worsen the objective function’s value; conversely, “loosening” the bound will

improve the objective. The reduced cost measures the increase in the objective

function’s value per unit increase in the variable’s value. In the example

Sensitivity Report above, the dual value for producing speakers is -2.5, meaning

that if we were to build one speaker (and therefore less of something else), our

total profit would decrease by $2.50.

The Shadow Price for a constraint is nonzero only when the constraint is equal

to its bound. This is called a binding constraint, and its value was driven to the

bound during the optimization process. Moving the constraint left hand side’s

value away from the bound will worsen the objective function’s value;
conversely, “loosening” the bound will improve the objective. The Shadow Price

measures the increase in the objective function’s value per unit increase in the

Frontline Solvers 2025 Q1 Reference Guide Page 457

constraint’s bound. In the example report above, increasing the number of

electronics units from 600 to 601 will allow the Solver to increase total profit by

$25.

In the case of linear problems, the Shadow Price remains constant over the range

of Allowable Increases and Decreases in the variables’ objective coefficients
and the constraints’ right hand sides, respectively. For example, for each

decision variable, the report shows its coefficient in the objective function, and

the amount by which this coefficient could be increased or decreased without

changing the dual value. In the example below, we’d still build 200 TVs even if

the profitability of TVs decreased up to $5 per unit. Beyond that point, or if the

unit profit of speakers increased by more than $2.50, we’d start building

speakers. For each constraint, the report shows the constraint right hand side,

and the amount by which the RHS could be increased or decreased without

changing the dual value.

In this example, we could use up to 50 more electronics units, which we’d use to

build more TVs instead of stereos, increasing our profits by $25 per unit.
Beyond 650 units, we would switch to building speakers at an incremental profit

of $20 per unit (a new dual value). A value of 1E + 30 in these reports represents

“infinity” In the example above, we wouldn’t build any speakers regardless of

how much the profit per speaker decreased.

Now, select the Standard GRG Nonlinear engine from the Engine tab on the

Solver Task Pane.

Then click the Solve icon (green arrow) on the Output tab. After the GRG

Nonlinear engine stops with the solution, “Solver found a solution,” click

Reports – Optimization – Sensitivity to create a new Sensitivity Report.

Frontline Solvers 2025 Q1 Reference Guide Page 458

Interpreting Reduced Gradients and Lagrange
Multipliers

The main differences between this report (created by the nonlinear GRG engine)

and the report above is that the Reduced Costs and Shadow Prices are referred to

as Reduced Gradients and Lagrange Multipliers, respectively and the Allowable

Increase and Allowable Decrease columns are not present on this report. This is

because Lagrange Multipliers are valid only at the single point of the optimal

solution – if there is any curvature involved, the LaGrange Multipliers begin to

change (along with the constraint gradients) as soon as you move away from the

optimal solution. However, if you compare the Reduced Gradients (for the

Variables) against the Reduced Costs on the report above, you’ll notice they are

identical. This is also true when comparing the LaGrange Multipliers (for the

constraints) against the Shadow Prices. Note: If you were to solve a quadratic

problem (which is a type of nonlinear problem) with the LP/Quadratic engine,
the report would look the same.

The Limits Report
The Limits Report, currently supported only in the Microsoft Excel Solver, was

designed by Microsoft to provide a specialized kind of “sensitivity analysis”

information. It is created by re-running the Solver model with each decision

variable (or Changing Cell) in turn as the objective (both maximizing and
minimizing), and all other variables held fixed. Hence, it shows a “lower limit”

for each variable, which is the smallest value that a variable can take while

satisfying the constraints and holding all of the other variables constant, and an

“upper limit,” which is the largest value the variable can take under these

Frontline Solvers 2025 Q1 Reference Guide Page 459

circumstances. An example of the Limits Report for EXAMPLE1 is shown

below.

The Feasibility Report
The purpose of the Feasibility Report is to help you isolate the source of

infeasibilities in your model. Most often, an infeasible result simply means that

you’ve made a mistake in formulating your model, such as specifying a <=

relation when you meant to use >=. However, if your model contains hundreds

or thousands of constraints, it can be quite challenging to locate an error of this

type. By isolating the infeasibility to a small subset of the constraints, the

Feasibility Report can show you where to look, and hence save you a good deal

of time. To produce the Feasibility Report, the Solver may test many different
variations of your model, each one with different combinations of your original

constraints. This process ultimately leads to a so-called “Irreducibly Infeasible

System ” (IIS) of constraints and variable bounds which, taken together, make

the problem infeasible, but with the property that if any one of the constraints or

bounds is removed from the IIS, the problem becomes feasible.

In a model with many constraints that “interact” with each other in complex

ways, there may be many possible subsets of the constraints and bounds that

constitute an IIS. Often, some of these subsets have many fewer constraints than

others. The Solver attempts to find an IIS containing as few constraints as

possible, trying first to eliminate “formula” constraints and then to eliminate

simple variable bounds – since it is usually easier to understand the effects of
variable bounds on the infeasibility of the resulting IIS.

If we attempt to solve EXAMPLE2 in the StandardExamples.xls workbook –

which is identical to EXAMPLE1 except that cell B11 (the right hand side of the

constraint C11 <= B11) is set to -1 – we receive the message “Solver could not

find a feasible solution.” At this point, we know only that the problem is

somewhere in the set of five constraints (C11:C15 <= B11:B15) and three

bounds on the variables. To pinpoint the problem, we click Reports –

Optimization and select Feasibility from the Reports list, producing a report

like the one shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 460

The Feasibility Report narrows the full set of constraints to the single constraint
C11 <= B11 and bounds on variables D9 and E9. If your model is very large,

computing the IIS may take a good deal of time. The Solver displays an

estimated “% Done” on the Excel status bar as it solves variations of your

model, and you can always interrupt the process by pressing ESC (in which case

no report appears). Instead of the full Feasibility Report, which analyzes both

the constraints and variable bounds in your model and attempts to eliminate as

many of them as possible, you can produce the “Feasibility -Bounds” version of

the report, which analyzes only the constraints while keeping the variable

bounds in force. This report may be sufficient to isolate the source of the

infeasibility, but you must take into account the bounds on all of the variables

when reading it.

In some cases, of course, there may be no error in your model – it may correctly

describe the real-world situation, and the fact that it is infeasible will probably

tell you something important about the situation you are modeling. Even in such

cases, the Feasibility Report can help you focus on the aspects of the real-world

situation that contribute to the infeasibility, and what you can do about them.

The Structure Report
The purpose of the Structure Report is to help you pinpoint the exact cell
formulas throughout your model that are nonlinear.

This report lists each decision variable and constraint according to its cell

reference, or “name”, that is causing the model to be nonlinear or nonsmooth,

depending on the setting for Intended Model Type on the Platform tab of the

Solver Task Pane.

In the example shown below, the Model Type Assumption listed at the top of

the report is "LP". The constraint right hand side in cell C11 contains a

nonlinear formula which depends on the decision variables in cells D9 and E9.

If we were to attempt to solve EXAMPLE3 in the StandardExamples.xls

workbook – which is identical to EXAMPLE1 except that the formula at cell

C11is edited to read =SUMPRODUCT(D11:F11,D9:F9)^0.9, a nonlinear

expression – we receive the message “The linearity conditions required by this

Solver engine are not satisfied.” To pinpoint the problem, we click Reports –

Optimization and select Structure from the Reports list, producing a report like

the one shown below.

Frontline Solvers 2025 Q1 Reference Guide Page 461

Variables D9 and E9 are shown as occurring nonlinearly in the model, and the

constraint at cell C11 (the formula that was edited) is a nonlinear function of the

variables. Although the formula at C11 refers to all three variable cells D9:F9,

the coefficient of F9 in this formula (at cell F11) is 0 – hence cell F9 does not

participate in this function, and only cells D9 and E9 are shown as occurring

nonlinearly in the model.

With this information, it is easy to pinpoint the formula at C11 as the source of
the nonlinearity. In real-world models, where a constraint such as C11 may

depend on many other cell formulas, your next step will be to locate the specific

formulas that are nonlinear, determine whether they are correct for your

problem, and decide whether they can be rewritten as linear functions, or

whether there is an alternative, linear formulation of your problem (see the

chapter “Building Large-Scale Models” in the Analytic Solver User Guide for

ideas

The Population Report
The Population Report gives you summary information about the entire

population of candidate solutions maintained by the Evolutionary Solver at the

end of the solution process. The Population Report can give you insight into the

performance of the Evolutionary Solver as well as the characteristics of your

model, and help you decide whether additional runs of the Evolutionary Solver

are likely to yield even better solutions.

For each variable and constraint, the Population Report shows the best value

found by the Evolutionary Solver, and the mean (average) value, standard

deviation, maximum value, and minimum value of that variable or constraint
across the entire population of candidate solutions at the end of the solution

process. These values will give you an idea of the diversity of solutions

represented by the population.

If we run the Evolutionary Solver on EXAMPLE1 with upper bounds of 200 on

the variables, Solver stops with the result, “Solver cannot improve the current

solution” with a solution of D9 = E9 = 200 and F9 = 0 (the same as the linear

programming optimal solution). Clicking this result message on the Output tab

opens a Help window with the explanation of this result.

When the Evolutionary Solver is being used, this message is much

more common. It means that the Solver has been unable to find a new,

better member of the population whose “fitness” represents a relative
(percentage) improvement over the current best member’s fitness of

more than the Tolerance option in the Task Pane Engine tab, in the

amount of time specified by the Max Time without Improvement

option on the same tab. Since the Evolutionary Solver has no way of

testing for optimality, it will normally stop with either “Solver

converged to the current solution” or “Solver cannot improve the

current solution” if you let it run for long enough. If you believe that

this message is appearing prematurely, you can either make the

Frontline Solvers 2025 Q1 Reference Guide Page 462

Tolerance value smaller (or even zero), or increase the amount of time

allowed by the Max Time without Improvement option.

Since this is the optimal solution, as found by the Standard LP/Quadratic engine,

there is no need to rerun this model. Click: Reports – Optimization –

Population to produce a Population Report like the one below.

You can see that the Best Values of the variables are identical to the Mean

Values across the whole population. In addition, the Best Values are either
identical or very close to both the Maximum and Minimum Values of the

population. Since the solution is feasible, and since the optimization process

tends to drive variable values to extremes, this may indicate that we have found

a globally optimal solution (which is true in this case).

The Standard Deviations are relatively small, but this is not too surprising since

points in the population have not yet converged to the point where we would

receive “Solver has converged to the current solution.”

How you interpret the Population Report depends in part on your knowledge of

the problem, and past experience solving it with the Evolutionary Solver or with

other Solver engines. For example, if the Best Values are similar from run to
run, and if the Standard Deviations are small, this may be reason for confidence

that your solution is close to the global optimum. However, if the Best Values

vary from run to run, small Standard Deviations might indicate a lack of

diversity in the population, suggesting that you should increase the Mutation

Rate and run the Solver again.

The Solutions Report
W here the Answer Report gives you detailed information about the single “best

solution” that appears on the worksheet when the Solver Results dialog is

displayed, the Solutions Report gives you objective function and decision

variable values for a number of alternative solutions, found during the

optimization process.

Frontline Solvers 2025 Q1 Reference Guide Page 463

Integer Programming Problems

For mixed-integer problems, the report shows each incumbent or feasible integer

solution found by the Branch & Bound method during the solution process.

Below is an example of the Solutions Report for the Blending 2 example model

included in the example workbook, Blending(Opt).xlsx. (To open click Help –

Examples, then click the Blending(Opt).xlsx hyperlink on the Optimization tab

within the workbook, Frontline Example Models Overview.xlsx.) This problem
was solved by the LP/Quadratic Solver with the Integer Tolerance set to 0.0 and

all Cuts & Heuristics disabled. (On this problem, with Cuts & Heuristics enabled

(set Preprocessing, Cuts, and Heuristics to “None” on the Engine tab), the

Solver quickly finds the true integer optimal solution as the third incumbent; the

Solutions Report is available only when multiple incumbents are found.) As

shown below, three incumbents were found.

Global Optimization Problems

For global optimization problems, the report shows each locally optimal solution

found by the Multistart method. On the next page is an example of the Solutions

Report for a simple two-variable global optimization problem Branin.xls, solved

by the GRG Nonlinear Solver with the Multistart Search option selected. This

Frontline Solvers 2025 Q1 Reference Guide Page 464

file can be opened by clicking Help – Examples and selecting Branin(Opt).xlsx

from the Optimization tab.

In this problem, the “Branin function” must be minimized for variables x and y,

subject to bounds -5 <= x, y <= 10. (Additional bounds of -100 and 100 were
added as the Multistart Methods perform best when all variables have both

upper and lower bounds.) There are three distinct locally optimal solutions with

objective values, 4.11227 (worse), 2.79118 (better) and 0.397887 (best and

globally optimal). The Solver was started at the point x = -2.5, y = 10, which is

close to the second of the three locally optimal solutions. The Multistart Search

process runs the Solver from representative starting points in “clusters” of

randomly selected points; on this run, it first found a solution close to the worst

locally optimal point, then found a solution at the best and globally optimal

point.

Non-Smooth Optimization Problems

For arbitrary non-smooth optimization problems, the report shows members of

the Solver’s final population of solutions. Below is an example of the Solutions

Report for the global optimization problem Branin.xlsx, solved by the
Evolutionary Solver.

Again the Solver was started at the point x = -2.5, y = 10, and it was given a
limit of only 200 subproblems. Unlike the Solutions Report for gradient-based

nonlinear optimizers like the GRG Nonlinear Solver, the final population of

solutions is not likely to include many distinct locally optimal points. The best

solutions in the Evolutionary Solver’s final population are all in the

neighborhood of the globally optimal solution, which is x = 3.14159, y =

2.2750. But since the Evolutionary Solver doesn’t require gradient information

or test for local optimality, it is unlikely to find the globally optimal solution

with very high accuracy for a smooth nonlinear problem like Branin(Opt).xlsx.

Solutions for Systems of Inequalities

The Solutions Report has a special meaning for the Interval Global Solver. It is

available for problems with no objective function to be maximized or

minimized, and with all equality constraints (a system of equations) or all
inequality constraints (a system of inequalities). For a system of equations, the

report is available only if the number of variables and the number of constraints

Frontline Solvers 2025 Q1 Reference Guide Page 465

are equal. If we remove the objective function from the model (by highlighting

the objective on the Model tab in the Task Pane and clicking the red X) what

remains is a set of <= constraints – a system of inequalities (and bounds on the

variables). When there is no objective, the Solver will simply find a solution that

satisfies the constraints.

If we solve EXAMPLE1with a blank Set Cell using the LP/Quadratic Solver, we

get a solution where all three variables D9, E9 and F9 are 0. This is certainly a

feasible solution, but it’s not very informative. If we solve the model with the

GRG Solver, we get a solution where all three variables are 100 (equal to the

starting values of the variables). This too is a feasible solution, but it’s also not

very informative. Can we learn something more about the range of feasible

solutions?

If we solve the model with the Interval Global Solver, we get a solution where

all three variables are 75. If we select the Solutions Report from the Solver

Results dialog and click OK, a report like the one below will appear.

The report tells us that the problem has an infinite number of solutions, and it

gives us an “inner solution” – a set of ranges or intervals for each decision

variable, such that all points within these ranges satisfy the system of

inequalities. An inner solution is always a “box” with a dimension for each

decision variable (in general, the ranges for each variable may be different), and

this box lies entirely within the feasible region. It does not usually enclose all of

the feasible points – which can form an arbitrary multidimensional “shape” –

and it is also not unique (there can be many possible inner solutions). But it will

give you a much better idea of the range of feasible solutions than you can get

from the Answer Report.

Solutions for Systems of Equations

The Solutions Report for a system of equations can be considerably more
valuable than the Answer Report or the Solutions Report for a system of

inequalities. It relies on the unique ability of the Interval Global Solver to find

all real solutions of a system of nonlinear equations.

We can illustrate the Solutions Report for a system of equations with the

simplest case of a single equation – drawn from the 1983 textbook Numerical

Methods for Unconstrained Optimization and Nonlinear Equations, by Jack E.

Dennis and Robert B. Schnabel. This classic (and still popular) textbook – a key

learning resource for the designers of the Microsoft Excel Solver at Frontline

Systems in 1990 – describes the capabilities and limitations of methods for

nonlinear optimization and solution of nonlinear equations, using an example in

Section 2.1, titled “What Is Not Possible:”

Frontline Solvers 2025 Q1 Reference Guide Page 466

“Consider the problem of finding the real roots of each of the following

nonlinear equations in one unknown:

f1(x) = x4 – 12x3 +47x2 – 60x,

f2(x) = x4 – 12x3 +47x2 – 60x + 24,

f3(x) = x4 – 12x3 +47x2 – 60x + 24.1.

It would be wonderful if we had a general-purpose computer routine that

would tell us: “The roots of f1(x) are x = 0, 3, 4, and 5; the real roots of f2(x)

are x =1 and x ≈ 0.888; f3(x) has no real roots.” It is unlikely that there will

ever be such a routine. In general, the questions of existence and uniqueness

… are beyond the capabilities one can expect of algorithms that solve

nonlinear problems.”

Note that f1(x), f2(x) and f3(x) differ only in the constant term – 0, 24 and 24.1.

Let’s try to solve these equations (for zero roots) in Microsoft Excel. Starting

with a blank worksheet, enter 0 in cell A1 for x, 0 in cell A2 for the constant
term, and in cell A3 enter the equation as =A1^4 - 12*A1^3 + 47*A1^2 - 60*A1

+ A2. In the Model tab on the Solver Task Pane, enter A1as a Variable, and

enter A3 as the Objective with Value Of 0, or else leave the Set Cell blank and

enter A3 = 0 in the Constraints list box. Since the Interval Global Solver

requires bounds on the variables, also add constraints A1 <= 100 and A1 >= -

100. Using A2 = 0 initially, we are solving f1(x).

If you select the Interval Global Solver, click the Solve icon (green arrow) on

the Model tab, and select the Solutions Report under Reports -- Optimization,

a report like the one below will appear.

Frontline Solvers 2025 Q1 Reference Guide Page 467

These are exactly the solutions x = 0, 3, 4, and 5 listed for f1(x) in the textbook.

If we now set cell A2 = 24, click Solve, and select the Solutions Report under

Reports - Optimization, a report like the one below appears, with the solutions

for f2(x) = 0.

Frontline Solvers 2025 Q1 Reference Guide Page 468

Again, these are exactly the solutions x =1 and x ≈ 0.888 listed in the textbook.

If we set A2 = 24.1 and click Solve, the Solver Results dialog appears with

“Solver could not find a feasible solution.”

As this example illustrates, the Interval Global Solver is “ a general-purpose

computer routine” that will tell us: “The roots of f1(x) are x = 0, 3, 4, and 5; the

real roots of f2(x) are x =1 and x ≈ 0.888; f3(x) has no real roots.” And this

capability is not limited to polynomial functions – it is effective for all

continuously differentiable functions.

Frontline Solvers 2025 Q1 Reference Guide Page 469

Dennis and Schnabel’s pessimistic prediction that “It is unlikely that there will

ever be such a routine” was probably correct for classical nonlinear optimization

methods that evaluate functions only over real numbers. But the ability of the

Analytic Solver to evaluate Excel formulas over intervals, combined with
interval methods for global optimization, has made such a routine not only

possible, but easy to use.

Uncertainty Report
An uncertainty report lists the the formulas in the objective or constraints that do

not satisfy the requirements for the uncertainty use that you specify. For

example, if you want to create a stochastic linear programming model with

recourse variables, but without chance constraints, the uncertainty report will

highlight the formulas that are contained in any existing chance constraints.

Use this option to choose the exceptions that should be included in the

Uncertainty Report after analyzing a model. Select from No Uncertainties if

you intended that your model should not depend on any uncertain variables,,
With Recourse Vars if you meant to use uncertainty only in constraints that

depend on recourse decision variables, In Chance Constraints if you meant to

use uncertainty only in chance constraints, or In Psi Stat Functions if you

intended to use uncertainty in several ways, but always summarized through PSI

Statistics functions.

You select your intended use of uncertainty using the Intended Use of

Uncertainty option, located in the Platform tab of the Solver Task Pane. The

Uncertainty Report will then highlight formulas in your objective or constraints

that do not satisfy the requirements for this use of uncertainty. For example, if

you want to create a stochastic linear programming model with recourse, but

without chance constraints, you would choose With Recourse Vars.

If you are using simulation optimization, and you see the Solver Result message

“Formula depends on uncertainties, must be summarized or transformed”, you

can select In Psi Stat Functions here, then select Reports Optimization

Uncertainty Report to identify the formulas in your model that depend on

uncertainty and are not summarized through PSI Statistics functions such as

PsiMean().

To create the example report below, the Platform option, Intended Use of

Uncertainty, was set to With Recourse Variables. The Feed(Stochastic).xlsx

example model (which can be opened by clicking Help – Example Models –

Stochastic Examples) contains 4 decision variables and 3 constraints, one of
which is a chance constraint in cell C30. This constraint is highlighted in the

report because the uncertainty in the model is due to this chance constraint,

rather than any recourse variables.

Note: To product an Uncertainty Report, the model must contain either a chance

constraint or a chance objective.

mk:@MSITStore:C:/Program%20Files/Frontline%20Systems/Risk%20Solver%20Platform/Help/risksolver.chm::/RiskSolver_rtf/Formula_depends_on_uncertainties_must_be_summarized_or_transformed.htm

Frontline Solvers 2025 Q1 Reference Guide Page 470

Frontline Solvers 2025 Q1 Reference Guide Page 471

VBA Object Model Reference

Introduction
This chapter explains how to use the Object-Oriented API in Analytic Solver
Desktop to create, modify and solve optimization and simulation models under

the control of your custom application written in VBA.

Note: Calling the VBA Objective Model is not supported in Analytic Solver

Cloud.

In the simplest case, you can use a few standard lines of VBA code to run an

optimization or simulation, as described below. But you can do much more in

VBA, to create custom applications that use optimization or simulation.

You can define a Problem and instantiate it from the spreadsheet with two lines

of code, then access the elements of your model via Variable and Function

objects. You can perform optimizations or simulations, access the values of
decision variables, constraints and the objective, access trial data and summary

statistics for uncertain variables and functions, and present them the way you

want to your end user. All the power of the Excel object model is available,

including database access, charts and graphs, and custom dialogs and controls.

Analytic Solver’s VBA object model closely resembles the object-oriented API

of Frontline’s Solver SDK – which can run on a PC or server without Excel,

solve an optimization or simulation model in an Excel workbook (only Solver

SDK), or solve a model that is defined entirely in programming language code

(Solver SDK). This makes it very easy to move an application from Excel to a

custom program written in C/C++, Visual Basic, VB.NET, Java or MATLAB.

Adding a Reference in the VBA Editor

To use the new object-oriented API in VBA, you must first add a reference to

the type library for the Analytic Solver COM server. To do this:

1. Press Alt-F11 to open the VBA Editor.

2. Select menu choice Tools References.

3. Scroll down until you find Analytic Solver 2018 Type Library.

4. Check the box next to this entry, and click OK to close the dialog.

5. Use File Save to save your workbook.

Note that this is a different reference from Solver, which is the reference you
add in order to use the “traditional” VBA functions.

You need this reference if your VBA code uses the Event Listener as described

in the next section, or uses other elements of the Analytic Solver VBA object

model, described in later sections of this chapter (or both).

Frontline Solvers 2025 Q1 Reference Guide Page 472

Analytic Solver Object Model

Analytic Solver makes available a hierarchy of objects for describing Monte

Carlo simulation problems, pictured below. This object model is a simplified

subset of the object hierarchy offered by Frontline’s Solver SDK product, which

is used to build custom applications in C/C++, Visual Basic, VB.NET, Java or

MATLAB. Note that the same objects are used for both optimization and

simulation problems.

The Problem object represents the whole problem, and the Model object

represents the internal structure of the model, which in Analytic Solver is

defined by your formulas on the spreadsheet.

The Solver object represents either the optimization process or the simulation

process – you call its Optimize method to perform an optimization, or its

Simulate method to perform a Monte Carlo simulation.

The Engine object represents a Solver Engine for optimization, or Risk Solver

Engine for simulation – it has a collection of EngineParam objects you can set to

control how it performs an optimization or simulation.

A Variable object represents a range of one or more contiguous cells that

contains either decision variables or uncertain variables; a Function object

represents a range of cells that contains the objective, constraints, or uncertain

functions.

A Parameter object represents a cell that is automatically varied when you

perform multiple optimizations, multiple simulations, or sensitivity analysis.

Frontline Solvers 2025 Q1 Reference Guide Page 473

You may have a collection of Variable objects, a collection of Function objects,

and a collection of Parameter objects in one Problem.

Using the VBA Object Browser

You can examine the Analytic Solver objects, properties and methods in the

VBA Object Browser. To do this, press Alt-F11 to open the VBA Editor, and
select menu choice View Object Browser. This displays a child window like the

one pictured below. The dropdown list at the top left corner of the Object

Browser initially displays <All Libraries> – change this to select ASP. Below,

we’ve highlighted the properties of the Statistics object, which is a child of the

Variable and Function objects.

Object-Oriented API Structure
This section summarizes the objects available in the Analytic Solver object-

oriented API (application programming interface). Except for the elements

specific to cells and formulas in a spreadsheet, this section also describes the

API of Solver Platform SDK, Frontline’s “flagship” product for software

developers building applications in a programming language.

Primary Objects

The primary objects in the API represent elements of your optimization or

simulation problem: The entire Problem, the Model (implemented by Excel

formulas on the worksheet), a Solver and a currently selected Engine; a set of

Variable objects and a set of Function objects, each one representing a

contiguous range of cells on the worksheet; and an optional set of Parameter

objects, if you are performing multiple optimizations or simulations.

Frontline Solvers 2025 Q1 Reference Guide Page 474

Class

Name
Description

Problem Represents an entire Problem.

Solver Represents either simulation or optimization.

Engine
Represents a built-in or plug-in Solver Engine for optimization, or

Risk Solver Engine for simulation.

Evaluator
Represents user-written code to be called by an Engine when

various events occur during the solution of a Problem.

Model Defines how the user’s model can be evaluated.

Variable Represents a vector of variables, all of the same type.

Function Represents a vector of functions, all of the same type.

Parameter
Represents a parameter that will be varied when performing

multiple optimizations, simulations, or worksheet evaluations.

A Problem object has members that represent collections of Solvers, Engines,

Evaluators, Variables, Functions and Parameters. You can subscript the name of
a collection to access a specific object – for example one Engine or one Variable

object – using either its (integer) ordinal position in the collection, or its name.

For example:

 MsgBox myProb.Engines(i).Name

 MsgBox myProb.Variables("D9:F9").Value(i)

 MsgBox myProb.Functions("Total Profit").Value(0)

In both Analytic Solver and Solver Platform SDK, you can easily write code that

steps through all of the objects in a collection. For example:

 For i = 0 To myProb.Variables.Count - 1

 MsgBox myProb.Variables(i).Name

 Next i

In VBA, you can also iterate through a collection using a “for each” loop:

 Dim myVar As Variable

 For Each myVar In myProb.Variables

 MsgBox myVar.Name

 Next

Since a Variable object represents a contiguous range of uncertain variable cells

on the worksheet, its properties (for example FinalValue) represent arrays of

numbers. Again you can subscript these properties in your VBA code. For
example:

 For i = 0 To prob.Variables.Count – 1

 For j = 0 To prob.Variables(i).Size - 1

 MsgBox prob.Variables(i).FinalValue(j)

 Next j

 Next i

Frontline Solvers 2025 Q1 Reference Guide Page 475

Secondary Objects

The secondary objects in the API allow you to work with sets of numbers that

are associated with the Model, an Engine, a Variable or Function, or

optimization or simulation results. The ModelParam and EngineParam

objects each represent one parameter for the modeling system (PSI Interpreter)

or a Solver Engine, respectively. The Statistics object groups together, for

convenient access, statistics computed for both Variables and Functions during a
simulation; it is also used by certain Solver Engines for optimization. The

Distribution object represents a probability distribution, and includes methods

to fit a distribution to sample data. The OptIIS object holds the results of an

optimization model infeasibility analysis.

The DoubleMatrix and DependMatrix objects represent sparse matrices – they

can be created in your code with a Dim statement to hold a large matrix of

numbers or dependency information, respectively. A matrix object could be

dimensioned as (say) 1 million rows by 1 million columns, but would reserve

memory only for its nonzero elements; you can use this object much like a two-

dimensional array in assignments statements in your code.

Class Name Description

ModelParam Represents a single Model (PSI Interpreter) parameter.

EngineParam Represents a single Engine parameter.

EngineLimit Represents the problem size limits for an Engine.

EngineStat Represents statistics from the last run of an Engine.

OptIIS
Represents an Irreducibly Infeasible Subset of the constraints

and variable bounds in an optimization problem.

Statistics
Represents statistics for variable and function values across the

trials of a simulation, or population of final solutions.

Distribution
Represents a probability distribution for an uncertain variable,

or a fitted distribution for an uncertain function.

DoubleMatrix
Represents a matrix of double values, of dimension m (rows) by

n (columns).

DependMatrix
Represents a matrix of integers of values drawn from the

Depend_Type enum.

Primary Objects
This section describes the primary objects available in Analytic Solver’s object-

oriented API, and their properties and methods. As noted above, these objects

represent the main elements of your optimization or simulation problem.

Frontline Solvers 2025 Q1 Reference Guide Page 476

Problem Object

The Problem object is created to represent an optimization or simulation

problem, with a VBA statement such as:

 Dim prob As New Problem

Problem Methods

You can use the Init method to instantiate the Problem from a named model or

worksheet – this will create all of the Variable and Function objects for the

problem defined in that model or worksheet. (If you don’t use Init, the Problem

is instantiated from the active worksheet.) You can use the Load method to

load a set of problem specifications, or the Save method to save problem

specifications on the worksheet.

 Problem.Init Worksheet (optimization)

 Problem.Init Workbook (simulation)

 Problem.Load RangeOrModel, Format

 Problem.Save Range, Format

Worksheet is an Excel Worksheet object – an optimization model is based on a

worksheet, though it can include variables and functions from several

worksheets. You can call the following line of code to specify a specific

worksheet.

 Problem.Init Worksheets(“WorksheetName”)

Or this line of code to specify the active worksheet.

 Problem.Init ActiveSheet

Workbook is an Excel Workbook object – a simulation model includes all of the

uncertain variables and functions in a workbook. You can call the following line

of code to specify the active workbook.

 Problem.Init ActiveWorkbook

Or this line of code to specify a specific workbook.

 Problem.Init Workbooks(“WorkbookName”)

The Load and Save methods are used to load or save model specifications in a
cell range. Range is an Excel range object, and RangeOrModel may be either an

Excel Range object or a text string model name. Format is one of the symbolic

constants File_Format_XLStd (a format compatible with the standard Excel

Solver) or File_Format_XLPSI (a format consisting of PSI function calls).

Problem Properties

Property Name Property

Type

Description

Name string
Name of the workbook defining the

problem.

ProblemType Problem_Type

Problem type (linear, nonlinear, etc.,

simulation, or simulation

w/correlations)

Frontline Solvers 2025 Q1 Reference Guide Page 477

ProblemConvex Convex_Type Indicates whether problem is convex.

ProblemStochastic
Stochastic

_Type

Indicates whether problem is

stochastic (depends on uncertainty).

ObjectiveIndex integer
Index of the current objective

function; currently always 0.

Solver Solver
Current Solver – either optimization

or simulation.

Engine Engine
Current Engine for optimization, or

Risk Solver Engine for simulation.

Model Model Current Model.

VarDecision Variable
Current (conventional or first-stage)

decision variable block.

VarRecourse Variable
Current recourse decision variable

block, if recourse decisions are used.

FcnConstraint Function
Current (normal or ‘hard’) constraint

function block.

FcnObjective Function Current objective function block.

FcnSoftConst Function
Current chance (or ‘soft’) constraint

function block, if these are used.

VarUncertain Variable Current uncertain variable block.

FcnUncertain Function Current uncertain function block.

TrialPeriod integer

For a trial license, the number of days

remaining in the trial period. 32767

indicates a permanent license.

Collection Name Object Type Description

Solvers Solver
Two members, for optimization and

simulation.

Engines Engine

Six members – built-in Solver Engines

for optimization, plus Risk Solver

Engine for simulation.

Evaluators Evaluator
User-defined Evaluators – initially

none.

Variables Variable Ranges of contiguous variable cells.

Functions Function Ranges of contiguous function cells.

Frontline Solvers 2025 Q1 Reference Guide Page 478

Parameters Parameter
Optimization, simulation and

sensitivity parameter cells.

Problem_Type Constants

The Problem_Type enum has a set of symbolic constant values that reflect the

type of optimization model or simulation model:

 Problem_Type_NA (0)

 Problem_Type_OptLP (1)

 Problem_Type_OptQP (2)

 Problem_Type_OptQCP (4)

 Problem_Type_OptSOCP (8)

 Problem_Type_OptNLP (16)

 Problem_Type_OptNSP (32)

 Problem_Type_SimIndep (256)

 Problem_Type_SimCorrel (512)

For optimization models, the ProblemType property will be Problem_Type_NA

unless the Model object DependCheck method is called. After this method is

called, the ProblemType property will reflect the diagnosis of the model: LP
(linear program), QP (quadratic program), QCP (quadratically constrained QP),

SOCP (second order code program), NLP (smooth nonlinear program), or NSP

(non-smooth program).

For simulation models, the ProblemType property will be initialized when the

Init method is called. It will be either Problem_Type_SimIndep or

Problem_Type_SimCorrel, depending on the setting of the Use Correlations

check box in the Options dialog Simulation tab.

Convex_Type Constants

The Convex_Type enum has a set of symbolic constant values that reflect the

convexity of optimization model:

 Convex_Type_NA (0)

 Convex_Type_Unknown (1)

 Convex_Type_Convex (2)

 Convex_Type_NonConvex (3)

The value of the ProblemConvex property will be Convex_Type_NA unless a

model analysis (requesting a convexity test) is performed. After model analysis,

the ProblemConvex property will reflect the result of the convexity test:

Convex, Non-Convex, or Unknown (cannot be determined).

To perform a model analysis, you can use either of these statements:

 Prob.Solver.Optimize Solve_Type_Analyze (preferred)

 Prob.Solver.DependCheck Check_Type_Convexity

Stochastic_Type Constants

The Stochastic_Type enum has a set of symbolic constant values that reflect the

dependence of the optimization model on uncertainty:

 Stochastic_Type_NA (0)

 Stochastic_Type_NonStochastic (1)

 Stochastic_Type_Stochastic (2)

Frontline Solvers 2025 Q1 Reference Guide Page 479

The value of the ProblemStochastic property will be Stochastic_Type_NA

unless a model analysis (requesting a structure or convexity test) is performed.

After this method is called, the ProblemStochastic property will reflect the

dependence of the model on uncertain parameters: Stochastic or Non-Stochastic.

Solver Object

The Solver object represents either the optimization process or the simulation

process. For optimization models, you call its method Optimize to solve the

problem, and access its property OptimizeStatus to check the final status (e.g.

optimal, infeasible, unbounded) of the optimization. For simulation models, you

call its method Simulate to solve the problem, and access its property

SimulateStatus to check the final status of the simulation.

There is only one instance of the Solver object in a problem; this is created

automatically when you create a Problem, and is accessible via a reference such

as myProb.Solver.

Solver Methods

The Optimize method runs the currently selected Solver engine to solve the

problem for the current Model, Variables and Functions. The RestoreVariables

method may be called after an optimization to reset the decision variable cells to

their values before the optimization was started. The IISFind method may be

called if the OptimizeStatus property indicates that no feasible solution was

found – it finds an Irreducibly Infeasible Subset (IIS) of the constraints. The

Report method produces a Solver report, in the form of an Excel worksheet
inserted into the active workbook.

 Solver.Optimize

 Solver.RestoreVariables

 Solver.IISFind

 Solver.Report ReportName

ReportName is one of the following text strings: "Scaling", "Answer",

"Sensitivity", "Limits", "Feasibility", "Structure", "Population", "Solutions".

The Simulate method runs the currently selected Solver engine to perform a

Monte Carlo simulation for the current Model, Variables and Functions. The

TrialStep method steps through, and displays on the Excel worksheet, trials
from the most recent simulation. Stepsize is a positive or negative integer

specifying the number of trials to step forward (positive) or back (negative).

Trialtype is 0 to step through all trials, 1 for normal trials (those with no error

values), or 2 for error trials (those where some uncertain function returned an

error value).

 Solver.Simulate

 Solver.TrialStep stepsize, trialtype

Accessing Multiple Solutions

For global optimization and mixed-integer programming problems, most Solver

engines find multiple solutions. The best of these solutions is returned via the

FinalValue property of the Variable and Function objects associated with the

problem. But you can access any of the solutions from your VBA code. To do
this, set the Solver object SolutionIndex property to an integer from 0 to the

Frontline Solvers 2025 Q1 Reference Guide Page 480

value of the NumSolutions property – 1; then access the FinalValue property of

the Variable and Function objects associated with the problem. For example:

 For i = 0 To myProb.Solver.NumSolutions - 1

 myProb.Solver.SolutionIndex = i

 MsgBox myProb.FcnObjective.FinalValue(0)

 Next i

Solver Properties

Property Name Property Type Description

SolverType Solver_Type

Type of solution to find:

Solver_Type_Maximize,

Solver_Type_Minimize, or

Solver_Type_FindFeas for
optimization models, or

Solver_Type_Simulate for

simulation models.

Problem Problem
Problem associated with this

Solver.

Index integer
Index in the Solver

Collection; always 0.

OptimizeStatus Optimize_Status

Status after optimization, for

current SolutionIndex and

OptimizationIndex. See

below for possible values.

OptIIS OptIIS

Retrieves the Irreducibly

Infeasible Subset found by

IISFind.

NumSolutions integer
Number of different

solutions available.

SolutionIndex integer

Index of the current solution;

used to access multiple

solutions.

NumOptimizations integer
Number of different

optimizations to perform.

OptimizationIndex integer

Index of the current
optimization; used to access

multiple optimizations.

SimulateStatus Simulate_Status

Status after simulation, for

current SimulationIndex;

see below for possible

values.

Frontline Solvers 2025 Q1 Reference Guide Page 481

NumTrials integer

Number of trials to perform

in each simulation. Also

used in Robust Counterpart

or Determ Equivalent

transformation.

NumSimulations integer
Number of different

simulations to perform.

SimulationIndex integer

Index of the current

simulation; used to access

multiple simulations.

TrialIndex integer

Index of the trial to display

on the worksheet. If 0,

uncertain variables display

their sample mean values.

TrialDisplay Display_Type

Display_Type_BaseCase,

Disply_Type_Mean,

Display_Type_AllTrial,

Display_Type_NormalTrial,

Display_Type_ErrorTrial

Optimize_Status Constants

The Optimize_Status enum has a set of symbolic constant values that reflect
the results of performing an optimization:

 Optimize_Status_Api_Err

 Optimize_Status_Bad_Dataset

 Optimize_Status_Bbmips_Limit

 Optimize_Status_Bbnode_Limit

 Optimize_Status_Bounds_Conflict

 Optimize_Status_Bounds_Inconsist

 Optimize_Status_Bounds_Missing

 Optimize_Status_Cone_Overlap

 Optimize_Status_Converged

 Optimize_Status_Derivative_Err

 Optimize_Status_Exception

 Optimize_Status_Float_Err

 Optimize_Status_Incumb_Cand

 Optimize_Status_Interpret_Err

 Optimize_Status_Invalid

 Optimize_Status_Iterate_Limit

 Optimize_Status_Lic_Problem

 Optimize_Status_Linear_Invalid

 Optimize_Status_Memory_Dearth

 Optimize_Status_No_Remedies

 Optimize_Status_Optimal

 Optimize_Status_Probable

 Optimize_Status_Time_Out

 Optimize_Status_Unbounded

 Optimize_Status_Unfeasible

 Optimize_Status_User_Abort

Frontline Solvers 2025 Q1 Reference Guide Page 482

For more information about these result codes, see the chapter “Solver Results

Messages.”

Accessing Different Optimizations

You can perform multiple optimizations at once, under the control of your VBA

code when you call prob.Solver.Optimize. You can access the final objective

and variable values and dual values for any of these optimizations in your VBA

code. To do this, set the Solver object OptimizationIndex property to an integer

from 0 to the value of the Problem object NumOptimizations property – 1; then

access the members of each Variable and Function object associated with the

problem.

Simulate_Status Constants

The Simulate_Status enum has a set of symbolic constant values that reflect the

results of performing a simulation:

 Simulate_Status_Complete

 Simulate_Status_User_Abort

 Simulate_Status_Lic_Problem

 Simulate_Status_Memory_Dearth

 Simulate_Status_Interpret_Err

The normal status after a simulation completes is Simulate_Status_Complete.

Simulate_Status_User_Abort indicates that you pressed the ESC key in

interactive mode to abort a simulation, or that your Evaluator in VBA returned

the symbolic value Engine_Action_Stop. Simulate_Interpret_Err indicates
that the PSI Interpreter found an unsupported Excel function or other error when

analyzing the formulas in your model. Simulate_Memory_Dearth indicates

that insufficient memory was available to perform the simulation.

Simulate_Status_Lic_Problem indicates a problem with your license to run

Risk Solver – it may be expired or invalid for this computer; please call

Frontline Systems at 775-831-0300 or email info@solver.com for assistance.

Accessing Different Simulations

You can also perform multiple simulations at once, either via Interactive

Simulation or under the control of your VBA code when you call

prob.Solver.Simulate. You can access the statistics and trials for any of these

simulations in your VBA code. To do this, set the Solver object

SimulationIndex property to an integer from 0 to the value of the Problem object

NumSimulations property – 1; then access the members of the embedded

Statistics object, or the AllTrials property of each Variable and Function object

associated with the problem.

Engine Object

An Engine object represents a single Solver engine for optimization, such as the

LP/Quadratic Solver or the GRG Nonlinear Solver, or it represents Risk Solver

Engine for simulation.

A collection of Engine objects, one for each installed (built-in or plug-in) Solver

engine, is created automatically when you create a Problem, and is accessible

via a reference such as myProb.Engines. You can subscript the Engines

collection, either by an integer index or by a text string name, to access a

specific Engine.

Frontline Solvers 2025 Q1 Reference Guide Page 483

The Problem’s Engine property refers to the currently selected Solver engine.

When the Solver.Optimize method is called, this engine will be run. To select a

different Solver engine, you can either assign a new reference to the Engine

property, for example myProb.Engine = myProb.Engines("Standard

LP/Quadratic"), or you can call the chosen Solver Engine object’s
MakeCurrent method. When the Solver.Simulate method is called, Risk

Solver Engine is always run.

Engine Methods

The MakeCurrent method causes this Solver engine to become the currently

selected Engine; after calling this method, myProb.Engine will refer to this

Solver engine, and myProb.Solver.Optimize will run this Solver engine. The
ParamReset method resets all of the Solver engine parameters (EngineParam

objects) in this Engine’s Params collection to their default values.

 Engine.MakeCurrent

 Engine.ParamReset

Engine Properties

Property Name
Property

Type

Description

Problem Problem Problem associated with this Engine.

ProblemType Problem_Type Type of problem solved by this Engine.

Name string Name of this Solver engine.

FileSpec string

Filename/path of this Engine’s dynamic

link library. For built-in Engines, returns

an empty string and for external engines

it returns the name of the DLL.

Params
EngineParam

Collection

The collection of all parameters for this

Solver engine.

Limit
EngineLimit

array

Engine size limits; indexed by Problem

Type.

Index integer
Index in the EngineCollection of

this Engine object.

Stat EngineStat
Engine statistics from the last Optimize

method call using this Solver engine.

Constant Name Description

LPQPName Name of the built-in LP/QP Solver engine.

LPName
Name of the built-in LP Simplex Solver engine. (Not

present in V2018.)

SOCPName Name of the built-in SOCP Barrier Solver engine.

Frontline Solvers 2025 Q1 Reference Guide Page 484

GRGName Name of the built-in GRG Nonlinear Solver engine.

EVOName Name of the built-in Evolutionary Solver engine.

INTName Name of the built-in Interval Global Solver engine.

Evaluator Object

An Evaluator object represents a “callback function” you have written in VBA,

that Analytic Solver will call at certain times during the optimization or

simulation process. No Evaluators are required, but you may find it useful to

create one or more Evaluators to monitor or report progress – or even stop

Solver, especially if the optimization or simulation takes a long time.

Using an Evaluator to Check the Progress of an

Optimization or Simulation
An evaluator can be used to obtain control from Solver during, before, or after

an optimization or simulation to check the progress of the solution process, to

display a message, etc. For an optimization, there are four such evaluators

available of type: Eval_Type_Iteration, Eval_Type_NewSolution,

Eval_Type_Optimization, and Eval_Type_Subproblem. For a simulation, there
are three such evaluators available of type: Eval_Type_Sample,

Eval_Type_Simulation, and Eval_Type_Trial. Please see the table below for an

explanation of each. Progress information evaluators are always optional.

Optimization/Simulation Progress Information

Evaluators

Eval_Type_Iteration Optimization Called on each optimization

iteration. Can be used to track

the progress (check the objective

function, number of iterations,

etc.) of the optimization.

Eval_Type_NewSolution Optimization Called each time a new solution

is found to a mixed-integer

problem (MIP), or
nonlinear/nonsmooth

optimization model.

Eval_Type_Optimization Optimization Called at the beginning of each

new optimization, when

NumOptimizations > 1

Eval_Type_Sample Simulation Called once, after

Problem.Solver.Simulate, prior

to starting the first (or only)

simulation.

Eval_Type_Simulation Simulation Called at the end of each

simulation - more than once if

you set the
Problem.Solver.NumSimulations

property to a value > 1.

Eval_Type_Trial** Simulation Called at the end of each

simulation trial, on each

simulation.

Frontline Solvers 2025 Q1 Reference Guide Page 485

**Because the PSI Interpreter performs “vectorized evaluation” of Monte Carlo

trials, it is possible that many or even all of the trials of a simulation may have

been completed by the time that an Evaluator of type Eval_Type_Trial is called.

However, this Evaluator will still receive a number of calls equal to the number

of trials you’ve specified.

The evaluator of type Eval_Type_Iteration is the most commonly used of these

"Progress Information" optimization evaluators. As such, we will use this

evaluator in our example below. Note: Each of the evaluators above can be

created with the same steps as shown below. Simply substitute

Eval_Type_Iteration when creating the evaluator with Eval_Type_X where X is

NewSolution, OptBegin, OptEnd, Optimization, Sample, Simulation, or Trial.

First we create the evaluator in the main body of our code in a “standard” VBA

module. In this example, the name of our evaluator of type Eval_Type_Iteration

is MonitorProgress. As mentioned above, this type of evaluator is called at

every iteration of an optimization and can be used to obtain control during the

solution process in order to display a message, check for a user abort action, etc.

Sub testnewapi()

'***create a new problem***

Dim prob As New RSP.Problem

prob.Init ActiveSheet

 '***Get data and set up an optimization problem***

...

'***Pass the number of variables, constraints, pass

constraint upper and lower bounds, variable upper and

lower bounds, etc. ***

 VBA requires an evaluator to reside in a Class module. Therefore, you must

first insert a class module into your VBA project. To do so, click Insert – Class

Module on the VBA menu. A class module is inserted into your project. Click

back to the “standard” module.

The next three lines of code create the MonitorProgress evaluator of type
Eval_Type_Iteration . The first line of code (Set x.MonitorProgress = New

RSP.Evaluator) creates the MonitorProgress evaluator. The second line of code

(Dim x as New Class1) creates an instance of the class, x, in the Class1 module.

Note: If you have renamed your class module from the standard name given by

VBA, for example Class1, to something like “SolverClass”, then the line of code

would change to Dim x as New SolverClass.

The third line of code (prob.Evaluators.Item(Eval_Type_Iteration) =

x.MonitorProgress) assigns the evaluator type (Eval_Type_Iteration) to the

MonitorProgress evaluator.

'***setup evaluators***

 Set x.MonitorProgress = New RSP.Evaluator

 Dim x As New Class1

 prob.Evaluators.Item(Eval_Type_Iteration) =

 x.MonitorProgress

 …

 'Minimize and solve.

Frontline Solvers 2025 Q1 Reference Guide Page 486

prob.Solver.SolverType = Solver_Type_Minimize

prob.Solver.optimize Solve_Type_Solve

End Sub

Click the Class1 module and enter the example code below. This code is an

example of an evaluator of type Eval_Type_Iteration which writes the iteration

number and the current objective function value to a message box. This will

allow the User to keep watch as the Solver progresses to a solution

Public WithEvents MonitorProgress As RSP.Evaluator

Public Function MonitorProgress_Evaluate(ByVal

Evaluator As RSP.IEvaluator) As RSP.Engine_Action

MsgBox "Objective = " &

Evaluator.Problem.FcnObjective.Value & "

Iterations = " &

Evaluator.Problem.Engine.Stat.Iterations

MonitorProgress_Evaluate =

Engine_Action_Continue

End Function

Note: If, for any reason, you want Analytic Solver to stop optimizing the model,

then you should return Engine_Action_Stop inside of a progress evaluator, not

inside an evaluator of type Function, Jacobian or Hessian.

Action Evaluator

An eighth type of evaluator is available in Analytic Solver to gain control of

Solver whenever a new “Trial Solution” value is found (if Show Iterations is

set to True on the Engine tab on the Solver Task Pane) or a limit on the solution

process is exceeded. This type of evaluator is the Eval_Type_Custom evaluator.

This evaluator takes the place of the 2nd function of the “old” API call

SolverSolve, and will be called in place of displaying the Show Trial Solution
dialog box.

In the example evaluator below, Solver is stopped after 60 seconds (60,000

milliseconds) of solving time has passed. One could replace Milliseconds

(Evaluator.Problem.Engine.Stat.Milliseconds) with any other engine statistic

such as iterations (Evaluator.Problem.Engine.Stat.Iterations), subproblems

(Evaluator.Problem.Engine.Stat.Subproblems), feasible solutions

(Evaluator.Problem.Engine.Stat.LocalSolutions), etc. In addition, if Show

Iterations is set to True on the Engine tab of the Solver Task Pane, this evaluator

will be called on each iteration.

Private Function CustomCallback_Evaluate(ByVal

Evaluator As RSP.IEvaluator) As RSP.Engine_Action

'***If 60,000 milliseconds or more have passed, stop

Solver, otherwise continue solving***

If Evaluator.Problem.Engine.Stat.Milliseconds > 60000

Then

 CustomCallback_Evaluate = Engine_Action_Stop

Else

 CustomCallback_Evaluate = Engine_Action_Continue

End If

Frontline Solvers 2025 Q1 Reference Guide Page 487

End Function

Evaluator Properties

Property Name Property Type Description

EvalType Eval_Type

Specifies when to call this

Evaluator: for optimization

models, Eval_Type_Iteration,

Eval_Type_Subproblem,

Eval_Type_Optimization or

Eval_Type_NewSolution; for

simulation, Eval_Type_Sample,

Eval_Type_Trial, or

Eval_Type_Simulation.

Problem Problem
Problem associated with this

Evaluator.

RefUser Variant

Any user data that you wish to

make available to the Evaluator

when it is called.

Model Object

The Model object represents your model, as defined by formulas on an Excel

worksheet. There is one instance of the Model object in a problem; it is created

automatically when you create a Problem, and is accessible via a reference such

as myProb.Model. (Information about your model can be obtained by analyzing

cell formulas containing PSI functions, accessed through the Excel VBA object

model.) The other Model properties are initialized, but are “read-only” – to

modify the model, you must modify the Excel formulas in your workbook.

Model Methods

For optimization models, the DependCheck method performs a dependency

analysis of your model – much like pressing the Check Model button in the

Solver Model dialog. After this method is called, access the Problem object

ProblemType property and the Model object AllGradDepend property for

dependency information about the current model.

 Model.DependCheck Transformed, CheckFor

Transformed is either 0 (Automatic), 1 (Always), or 2 (Never); see
“Transformation Options” in the chapter “Platform Option Reference” for more

information. CheckFor is 1 to check for the ability to compute Gradients, 2 to

check the model Structure, or 3 to check the model’s (Structure and)

Convexity.

 Model.Report ReportName

A call to this method must follow a call to Model.DependCheck, or it has no

effect. ReportName is “Structure”, “Uncertainty” or “Linearization”.

Frontline Solvers 2025 Q1 Reference Guide Page 488

Model Properties

Property Name
Property

Type

Description

Problem Problem Problem associated with this Model.

Params
ModelParam

Collection

The collection of all parameters for the

PSI Interpreter, used when it analyzes

the model.

NumVariables integer array

Index by Variable_Type_Decision to

get the total number of decision

variables; index by
Variable_Type_Uncertain to get the

total number of uncertain variables.

NumFunctions integer array

Index by Function_Type_Constraint to

get the total number of constraint

functions; index by

Function_Type_Uncertain to get the

total number of uncertain functions.

AllLinear DoubleMatrix

For linear models, the matrix of

(constant) LP coefficient values – rows

represent constraints, columns

represent variables.

AllGradValue DoubleMatrix

For nonlinear models, the Jacobian

matrix of gradient (partial derivative)

values at the current point – rows

represent constraints, columns

represent variables.

AllGradDepend DependMatrix

The dependency matrix – rows

represent constraints, columns

represent variables, values are from the

Depend_Type enum.

NumAllGrad integer

Gets the number of elements

(nonzeroes) in the matrix associated

with variable and function type.

IsCertified Boolean

True if the model is Certified – see

discussion in “Mastering simulation

and Risk Analysis Concepts.”

IsCoherent Boolean

True if the model is Coherent – see

discussion in “Mastering Simulation

and Risk Analysis Concepts.”

NumCorrelations integer

The number of nonzero correlations
defined between uncertain variables in

the model.

Frontline Solvers 2025 Q1 Reference Guide Page 489

VarDistribution
Distribution

array

Each Distribution object describes the

properties of one uncertain variable;

not used in Risk Solver V8.0 and later.

FcnDistribution
Distribution

array

Each Distribution object describes the
properties of one uncertain function;

not used in Risk Solver V8.0 and later.

DistCorrelations DoubleMatrix

The matrix of correlation coefficients

for all uncertain variables in the model;

contains all PsiCorrMatrix() matrices.

Depend_Type Constants

The Depend_Type enum has a set of symbolic constant values that reflect the

nature of the dependence between a specific function and decision variable in

the AllGradDepend matrix:

 Depend_Type_None

 Depend_Type_Linear

 Depend_Type_Quadratic

 Depend_Type_Smooth

 Depend_Type_NonSmooth

If a function does not depend at all on a specific variable, the matrix entry for

that function (row) and variable (column) will be Depend_Type_None.

The Model’s ‘Flat Address Space’

In Analytic Solver the Model object is “opaque” – you cannot use several of its

properties. But future releases may make some or all of these properties

available, at least on a ‘read-only’ basis. Since the Model object describes all

variables and functions in the model, whereas Variable and Function objects

describe a single cell range or individual cell, you may want to determine the

correspondence or mapping of individual variable or function cells to positions

in certain Model property arrays.

A good example of this is the Model object DistCorrelations property, which

returns a DoubleMatrix object (described below in the section “Secondary

Objects”) that holds the rank correlation coefficients for each pair of uncertain

variables. This square matrix has as many columns and rows as the total
number of uncertain variables in the model. If you have not defined any

correlations between uncertain variables, all entries in this matrix will be zero.

Each uncertain variable is represented in the object model by a Variable object,

which has a Position property that gives the position of this variable in the

Model’s ‘flat address space’ (which includes all uncertain variables), and hence

its index in the DistCorrelations matrix. If the Variable object represents several

uncertain variables (in a contiguous cell range), the Position property gives the

position of the first variable in the range; the other variables follow sequentially

in the ‘flat address space,’ and hence in the matrix.

For example, if Problem myProb has a Variables collection with
Variables(0).Name = “Sheet1!A1” and Variables(1).Name = “Sheet1!B1:B3”,

then you could display the correlation coefficient between A1 and B2 (in a

future release, where this object is no longer “opaque”) with the VBA code:

 Dim i As Long, j As Long

 i = myProb.Variables(0).Position

Frontline Solvers 2025 Q1 Reference Guide Page 490

 j = myProb.Variables(1).Position + 1

 MsgBox myProb.Model.DistCorrelations(i,j)

The DistCorrelations matrix contains a correlation coefficient for every possible

pair of uncertain variables in your model. Since you may have no correlation

defined between many pairs of variables, this matrix may be quite sparse, with

many zero elements. A DoubleMatrix object efficiently stores a sparse matrix.

In your worksheet model, you define correlations using the PSI Property

functions PsiCorrDepend(), PsiCorrIndep() and PsiCorrMatrix().

PsiCorrDepen() specifies a single correlation coefficient between two PSI

Distribution cells, say A1 and B1; if cell A1 appears at position i and cell B1

appears at position j in the correlation matrix, the coefficient passed as the
second argument of PsiCorrDepen() would appear in the matrix as

Model.DistCorrelations(i,j). Because the correlation matrix must be symmetric,

Model.DistCorrelations(j,i) will have the same value.

If you have several uncertain variables that are correlated as a group, you can

specify this with the property function PsiCorrMatrix(). Its first argument is a

cell range whose rows and columns form a small correlation matrix, covering

only the variables in the group. The correlation coefficients from this cell range

will appear at various positions in the Model.DistCorrelations matrix, depending

on the positions of the various PSI Distribution cells belonging to the group in

the overall matrix for the problem.

Variable Object

A Variable object can represent either a set of decision variables, or a set of

uncertain variables. Each Variable object has a VariableType property, with

symbolic values drawn from the Variable_Type enum (see below).

When you create a Problem, a collection of Variable objects – one for each

block of contiguous decision variable cells and uncertain variable cells on the

Excel worksheet – is created automatically, and is accessible via a reference

such as myProb.Variables. You can subscript the Variables collection, either

by an integer index or by a text string such as “Sheet1!A1” or “Sheet1!Name

to access a specific Variable object.

The Variable objects that are created automatically for a new Problem, based on
the Excel worksheet, have properties that are ‘read only’: You can get, but you

cannot set the Name, Value, LowerBound, UpperBound, IntegerType, etc.

You can create a new Variable object (with a line of code such as Dim myVar

as New Variable), call myVar.Init to associate it with a cell range on the

worksheet, set the other properties of this Variable, then add this new Variable

to the Variables collection of the Problem (with code such as

myProb.Variables.Add myVar).

An example of this for decision variables is shown in “CuttingStock.xls:

Multiple Problems and Dynamically Generated Variables.” An example for

uncertain variables is shown in “Creating Uncertain Variables and SLURPs in
VBA.” After you do this, the cell range for the new Variable will be available in

the Solver Parameters dialog Variable list box, and it will be saved as part of the

model when the workbook is saved. Immediately after you add the object to the

Variables collection, you’ll find that its properties are now ‘read only’.

Frontline Solvers 2025 Q1 Reference Guide Page 491

VarDecision and VarUncertain Properties

The Problem’s VarDecision property initially refers to the first Variable object

in the collection (i.e. the first block of variables in the Variables list box in the

Solver Parameters dialog). To select a different Variable, you can either assign

a new reference to the VarDecision property, for example myProb.VarDecision

= myProb.Variables("A1:A10"), or you can call the chosen Variable

object’s MakeCurrent method.

The Problem’s VarUncertain property initially refers to the first Variable object

in the collection. To select a different Variable, you can either assign a new

reference to the VarUncertain property, with VBA code such as

myProb.VarUncertain = myProb.Variables("Sheet1!A1:A5"), or you
can call the chosen Variable object’s MakeCurrent method.

Variable_Type Constants

The Variable_Type enum has a set of symbolic constant values that reflect the

type of variable(s) being defined:

 Variable_Type_All

 Variable_Type_Decision

 Variable_Type_Recourse

 Variable_Type_Uncertain

Variable_Type_All may be used to index all types of variables at once.

Variable Methods

The Init method causes this Variable object to be associated with a cell range on

the worksheet. Range is an Excel range object. The MakeCurrent method

makes this Variable object the ‘currently selected’ block of variables; after
calling this method, myProb.VarDecision will refer to this Variable object.

The NonNegative method, applicable only to (normal or recourse) decision

variables, provides a quick way to specify that all variables in the block are

nonnegative (LowerBound of 0).

The GetFrequency and GetCorrelation methods, applicable only to uncertain

variables, return summary information about sample values, as explained below.

 Variable.Init Range

 Variable.MakeCurrent

 Variable.NonNegative

 Variable.GetFrequency

 Variable.GetCorrelation

GetFrequency Method

The GetFrequency method returns, for the values sampled during a simulation

for this set of uncertain variables, an array of frequencies with which the values

fall within certain ‘bins’ that you specify. It plays the same role as the

PsiFrequency() function, described in the chapter “PSI Function Reference.”

 Variable.GetFrequency FreqType, BinBounds

FreqType affects the contents of each element of the array result:

0 – Each element contains the frequency of trial values falling into the

corresponding bin (like a probability density function)

Frontline Solvers 2025 Q1 Reference Guide Page 492

1 – Each element contains the cumulative frequency of trial values falling into

the corresponding bin plus all lower bins (like a cumulative distribution

function)

2 – Each element contains the cumulative frequency of trial values falling into

the corresponding bin plus all higher bins (like a reverse cumulative
distribution function)

BinBounds is an array containing the upper limit of trial values that should fall

into the corresponding bin. The values should be in strictly increasing order.

The number of elements in the array result will be one more than the number of

values or cells in this argument; the last element contains the number of trial

values larger than the highest BinBounds value.

GetCorrelation Method

The GetCorrelation method returns product moment correlation coefficients,

computed during the simulation, for this set of uncertain variables with one

other uncertain variable that you specify.

 Variable.GetCorrelation VarIndex

VarIndex is the integer position of another uncertain variable in the Model’s ‘flat

address space’ (which includes all uncertain variables); see the Model object

discussion “Using the Correlation Matrix” for details on the flat address space.

Note: The values returned by the GetCorrelation method are not the same as

the correlation coefficients you specify in the Model’s DistCorrelations matrix.

Numbers in this matrix – obtained from the PsiCorrDepen() and PsiCorrMatrix()

property functions used in your worksheet model – are Spearman rank

correlation coefficients and are used to generate sample values from different
PSI Distribution functions that are properly correlated. Like the PsiCorrelation()

function, the GetCorrelation method computes Pearson product moment

correlation coefficients, computed from the observed results of the simulation

process.

Variable Properties

Property Name Property Type Description

Problem Problem Problem associated with this Variable.

VariableType Variable_Type
Type of the Variable – normal, recourse, or

uncertain.

Name string

Name of the Variable – either a cell range

such as “A1:A10” or a defined name

appearing on the worksheet.

Size integer
Number of elements in this Variable

(vector of decision / uncertain variables).

Index integer
Index of this Variable object in the

Variables Collection.

Position integer
Starting position of this vector of variables

in the Model flat address space.

Frontline Solvers 2025 Q1 Reference Guide Page 493

Enabled Boolean

True if this variable block is enabled (box

is checked in the outlined list in the Task

Pane Model tab).

Comment string
Character string entered in the Comment

field for this block of variables.

PSICell string
Address of cell with a PSI Optimization

function call for this Variable (if used).

Value double Current values of the vector of variables.

Statistics Statistics

Statistics for this vector of variables; set

for uncertain variables at the end of each

simulation, or set for decision variables at

the end of an optimization (only) when the

Evolutionary Solver or the OptQuest

Solver is selected.

Percentiles DoubleMatrix

One row of 99 columns for each uncertain

variable in this object, holding percentile

values (1st to 99th percentile).

AllTrials DoubleMatrix

One row of Solver.NumTrials columns for

each uncertain variable in this object,

holding trial values used in the simulation.

LowerBound double

Lower bounds on the vector of variables.

Currently, lower bounds must be the same

for all variables in one Variable object.

UpperBound double

Upper bounds on the vector of variables.

Currently, upper bounds must be the same

for all variables in one Variable object.

IntegerType Integer_Type
Indicates whether this vector of variables

is continuous, integer, or binary integer.

GroupIndex integer

Index of the alldifferent group to which the

variables belong; 0 if these variables are

not part of any alldifferent group.

ConeType Cone_Type
Indicates whether this vector of variables

belongs to a cone, and the type of cone.

ConeIndex integer

Index of the cone to which the variables

belong; 0 if these variables do not belong

to any cone.

InitialValue double Initial values of the vector of variables.

FinalValue double
Final values of the vector of variables

(after an optimization).

Frontline Solvers 2025 Q1 Reference Guide Page 494

DualValue double
Dual values of the vector of variables (after

an optimization).

DualLower double

Lower bounds of the ranges of the

objective coefficients for which the dual

values are valid (after an optimization).

DualUpper double

Upper bounds of the ranges of the

objective coefficients for which the dual

values are valid (after an optimization).

Using the Statistics Object

Each Variable object has an embedded Statistics object that holds statistics
about the sample values drawn for this variable during the simulation process.

You can access these statistics with VBA code such as

myVar.Statistics.Mean(0).

Since a Variable object can represent one or several uncertain variables (or

decision variables), the statistics properties always return arrays, and should be

subscripted as shown. For example, if myProb.VarUncertain.Name =

“Sheet1!A1:A10”, you can display the mean and variance for each of these

uncertain variables with the following code:

 For i = 0 To myProb.VarUncertain.Size - 1

 MsgBox myProb.VarUncertain.Statistics.Mean(i)

 MsgBox myProb.VarUncertain.Statistics.Variance(i)

 Next i

The Statistics object provides a wide range of statistics and risk measures; for

more information, see the “Statistics Object” below in the section “Secondary

Objects.” Some statistics take arguments and are methods rather than

properties.

Function Object

A Function object can represent the objective function or a block of constraints

in an optimization model, or a set of uncertain functions in a simulation or

stochastic optimization model. Each Function object has a FunctionType

property, with symbolic values drawn from the Function_Type enum (see

below).

When you create a Problem, a collection of Function objects – one for the
objective, and one for each block of contiguous constraint cells or uncertain

function cells on the Excel worksheet – is created automatically, and is

accessible via a reference such as myProb.Functions. You can subscript the

Functions collection, either by an integer index or by a text string such as

“Sheet1!A1:A10”, to access a specific Function object.

The Function objects that are created automatically for a new Problem, based on

the Excel worksheet, have properties that are ‘read only’: You can get, but you

cannot set the Name, Value, Position, etc. of each Function.

You can create a new Function object (with a line of code such as Dim myFunc

as New RSP.Function), call myFunc.Init to associate it with a cell range on the
worksheet, set the other properties of this Function, then add this new Function

to the Functions collection of the Problem (with code such as

myProb.Functions.Add myFunc). After you do this, the cell range for the new

Frontline Solvers 2025 Q1 Reference Guide Page 495

Function will be available in the Solver Parameters dialog Constraint list box,

and it will be saved as part of the model when the workbook is saved.

Immediately after you add the object to the Functions collection, you’ll find that

its properties are now ‘read only’.

FcnObjective, FcnConstraint and FcnUncertain
Properties

The Problem’s FcnObjective property refers to the objective cell, and its
FcnConstraint property initially refers to the first constraint Function object in

the collection (i.e. the first block of constraints listed in the Task Pane Model

tab). To select a different Function, you can either assign a new reference to the

FcnConstraint property, for example myProb.FcnConstraint =

myProb.Functions("A1:A10"), or you can call the chosen Function object’s

MakeCurrent method.

The Problem’s FcnUncertain property initially refers to the first block of

uncertain functions listed in the Task Pane Model tab. To select a different

Function, you can either assign a new reference to the FcnUncertain property,

with VBA code such as myProb.FcnUncertain =

myProb.Functions("Sheet1!A1:A5"), or you can call the chosen Function
object’s MakeCurrent method.

Function_Type Constants

The Function_Type enum has a set of symbolic constant values that reflects the

type of functions defined by this block.

 Function_Type_All

 Function_Type_Objective

 Function_Type_Constraint

 Function_Type_Chance

 Function_Type_Uncertain

Function_Type_All may be used to index all types of functions at once.
Function_Type_Constraint is a block of normal constraints; Function_Type_

Chance is a block of ‘soft’ or chance constraints.

Chance_Type Constants

The Chance_Type enum has a set of symbolic constant values that reflects the

type of chance constraint defined by this block.

 Chance_Type_None

 Chance_Type_ExpVal

 Chance_Type_VaR

 Chance_Type_CVaR

 Chance_Type_USet

Normal (non-chance) constraints will have the value Chance_Type_None.

Chance_Type_ExpValue is used only for the objective function, and reflects an

expected value type objective.

Function Methods

The Init method causes this Function object to be associated with a cell range on

the worksheet. The MakeCurrent method makes this Function object the
‘currently selected’ block of functions of the associated type. The NonNegative

method provides a quick way to specify that all constraints in the block have a

LowerBound of 0. The Relation method lets you specify a relation – <=, =, or

Frontline Solvers 2025 Q1 Reference Guide Page 496

>= – and a right hand side value to be applied to all elements of a block of

constraints.

 Function.Init Range

 Function.MakeCurrent

 Function.NonNegative

 Function.Relation Rel, RHS

Range is an Excel range object. Rel is one of the symbolic constants

Cons_Rel_EQ (=), Cons_Rel_GE (>=) or Cons_Rel_LE (<=). Currently RHS

must be a single numeric value, or an array in which all the numeric values are

the same.

GetFrequency Method

The GetFrequency method applies only to uncertain functions. It returns, for

the values computed during a simulation for this set of functions, an array of

frequencies with which the values fall within certain ‘bins’ that you specify. It

plays the same role as the PsiFrequency() function, described in the chapter “PSI

Function Reference.”

 Function.GetFrequency FreqType, BinBounds

FreqType affects the contents of each element of the array result:

0 – Each element contains the frequency of trial values falling into the

corresponding bin (like a probability density function)

1 – Each element contains the cumulative frequency of trial values falling into

the corresponding bin plus all lower bins (like a cumulative distribution

function)

2 – Each element contains the cumulative frequency of trial values falling into

the corresponding bin plus all higher bins (like a reverse cumulative

distribution function)

BinBounds is an array containing the upper limit of trial values that should fall

into the corresponding bin. The values should be in strictly increasing order.

The number of elements in the array result will be one more than the number of

values or cells in this argument; the last element contains the number of trial

values larger than the highest BinBounds value.

GetCorrelation Method

The GetCorrelation method applies only to uncertain functions. It returns

Pearson product moment correlation coefficients, computed during the

simulation, for this set of uncertain functions with one other uncertain function

that you specify.

 Function.GetCorrelation FcnIndex

FcnIndex is the integer position of another uncertain function in the Model’s

‘flat address space’ (which includes all uncertain functions). To determine the

index, locate the Function object whose Name property includes the cell for this

other uncertain function; its Position property gives the position of this function

in the ‘‘flat address space.’ If this Function object represents more than one

uncertain function (in a contiguous cell range), the Position property gives the
position of the first function in the range, and the other functions follow

sequentially in the ‘flat address space.’

Frontline Solvers 2025 Q1 Reference Guide Page 497

Function Properties

Property Name Property Type Description

Problem Problem Problem associated with this Function.

FunctionType Function_Type

Type of the Function – objective,

normal constraint, ‘soft’ (chance)

constraint, or uncertain function.

Name string

Name of the Function – either a cell

range such as “A1:A10” or a

defined name appearing on the

worksheet.

Size integer

Number of elements in this Function

(vector of constraints or uncertain

functions); always 1 for the objective.

Index integer
Index of this Function object in the

Functions Collection.

Position integer
Starting position of this vector of func-

tions in the Model flat address space.

Enabled Boolean

True if this function block is enabled

(box is checked in the outlined list in the

Task Pane Model tab).

Comment string

Character string entered in the

Comment field for this block of

functions.

PSICell string

Address of cell with a PsiOutput() or

PSI Optimization function call for this

Function (if used).

ChanceType Chance_Type Type of chance constraint.

Chance double
Chance measure: 0-1 for VaR and

CVaR, any positive value for USet.

Value double

Current values of the vector of

functions, from the last simulation or

optimization.

Statistics Statistics

Statistics for this vector of functions; set

for uncertain functions at the end of

each simulation, or set for constraints

and the objective at the end of an

optimization (only) when the

Evolutionary Solver or the OptQuest

Solver is selected.

Frontline Solvers 2025 Q1 Reference Guide Page 498

Percentiles DoubleMatrix

One row of 99 columns for each

uncertain function in this object,

holding percentile values (1st to 99th

percentile).

AllTrials DoubleMatrix

One row of Solver.NumTrials columns

for each uncertain function in this

object, holding trial values used in the

simulation.

LowerBound double

Lower bounds on the vector of

functions. Currently, lower bounds

must be the same for all of the functions

in one Function object.

UpperBound double

Upper bounds on the vector of

functions. Currently, upper bounds
must be the same for all of the functions

in one Function object.

InitialValue double Initial values of the vector of functions.

FinalValue double
Final values of the vector of functions

(after an optimization).

DualValue double
Dual values of the vector of constraint

functions (after an optimization).

DualLower double

Lower bounds of the ranges of the right-

hand sides for which the dual values are

valid (after an optimization).

DualUpper double

Upper bounds of the ranges of the right-

hand sides for which the dual values are

valid (after an optimization).

Using the Statistics Object

Each Function object has an embedded Statistics object that holds statistics
about the values computed for this function during the simulation process. You

can access these statistics with VBA code such as myFcn.Statistics.Mean(0).

Since a Function object can represent one or several uncertain functions (or

constraints in certain cases), the statistics properties always return arrays, and

should be subscripted. For example, if myProb.FcnUncertain.Name =

“Sheet1!A1:A10”, you can display the mean and variance for each of these

uncertain functions with the following code:

 For i = 0 To myProb.FcnUncertain.Size - 1

 MsgBox myProb.FcnUncertain.Statistics.Mean(i)

 MsgBox myProb.FcnUncertain.Statistics.Variance(i)

 Next i

The Statistics object provides a wide range of statistics and risk measures; for
more information, see the “Statistics Object” below in the section “Secondary

Frontline Solvers 2025 Q1 Reference Guide Page 499

Objects.” Some statistics take arguments and are methods rather than

properties.

Secondary Objects
This section describes the secondary objects available in Analytic Solver’s

object-oriented API, and their properties and methods. As noted above, these
objects allow you to work with sets of numbers that are associated with the

Model, an Engine, a Variable or Function, or simulation results.

ModelParam Object

A ModelParam object represents a single parameter or option controlling the

PSI Interpreter. The Model object for a Problem has a property Params which is

a collection of ModelParam objects. As with other collections, you can

subscript the Params collection with an integer index or a string name, for

example myProb.Model.Params("Interpreter") = 1.

ModelParam Properties

Property Name Property Type Description

Name string Name of the parameter.

Value double Current value of the parameter.

Default double Default value of the parameter.

MinValue double Minimum value of the parameter.

MaxValue double Maximum value of the parameter.

ModelParam Names

The ModelParam names for current parameters of the PSI Interpreter are

summarized below:

"CheckFor" 1 = Gradients, 2 = Structure, 3 =

Convexity, 4 = Automatic

"TransformNonSmooth" 1 = Non-Smooth Transformation, 0 =

None

"TransformStochastic"
1 = Deterministic Equivalent
Transformation, 2 = Robust Counterpart

Transformation, 0 = None

"DesiredModel" 1 = Linear, 2 = Quadratic, 3 = Conic, 4 =

Smooth Nonlinear, 5 = Non-smooth

"UseOfUncertainty"
1 = No Uncertainties, 2 = With Recourse

Vars, 3 = In Chance Constraints, 4 = In Psi

Stat Functions

Frontline Solvers 2025 Q1 Reference Guide Page 500

"ChanceConstraintNorm" 1 = L1 Norm, 2 = L2 Norm, 3 = L-Inf

Norm, 4 = D-Norm

"ChanceAutoAdjust" 1 = Auto Adjust Chance Constraints, 0 =

Don’t

"RandomSeed" Random number seed, 0 = use system

clock

"SamplingMethod" 1 = Monte Carlo, 2 = Latin Hypercube, 3 =
Sobol RMQC

"SolveWith" or
"Interpreter"

1 = Use PSI Interpreter, 2 = Use Excel

Interpreter

"SimulationOptimization" 1 = Use Simulation Optimization, 0 =

Don’t

"PsiOptimizationFunctions" 1 = Use PSI Optimization Functions, 0 =

Don’t

"InteractiveOptimization" 1 = Use Interactive Optimization, 0 =

Don’t

"Engines" 1 = All, 2 = Valid, 3 = Good, 4 = Best

"ReqSmooth" 1 = Treat ABS, IF, MAX, MIN, SIGN as

non-smooth, 0 = Treat as smooth

"Sparse" 1 = PSI Interpreter runs in Sparse mode, 0

= Dense mode

"ActiveOnly"
1 = PSI Interpreter analyzes active
worksheet only, 0 = analyzes referenced

cells throughout workbook

The “SimulationOptimization” and “ChanceAutoAdjust” parameters are

effective only when your code calls the Solver.Optimize method. The

“DesiredModel”, “UseOfUncertainty”, and “Engines” parameters are effective

only when your code calls the Model.DependCheck method. Other parameters

affect any use of the PSI Interpreter.

EngineParam Object

An EngineParam object represents a single parameter or option controlling the

behavior of a Solver engine. Each Engine object has a property Params which is

a collection of EngineParam objects. As with other collections, you can

subscript the Params collection with an integer index or a string name. For
example, you can write myProb.Engine.Params("MaxTime") = 600 to set the

maximum optimization or simulation time to 10 minutes (600 seconds).

EngineParam Properties

Property Name Property Type Description

Name string Name of the parameter.

Value double Current value of the parameter.

Frontline Solvers 2025 Q1 Reference Guide Page 501

Default double Default value of the parameter.

MinValue double Minimum value of the parameter.

MaxValue double Maximum value of the parameter.

EngineParam Names

The EngineParam names for current parameters of Risk Solver Engine, the

standard engine for simulation, are summarized below:

"MaxTime" Maximum time (sec) allowed for the

simulation.

"SamplingMethod"
The sampling method: 1 = standard Monte

Carlo (default), 2 = Latin Hypercube, 3 =

Sobol numbers.

"RandomGenerator"

Random number generator: 0 for Park-Miller
with safeguards, 1 for CMRG generator

(default), 2 for WELL generator, 3 for

Mersenne Twister.

"RandomStreams"

1 = Generate independent streams of random

numbers for each distribution function. 0

(default) = Use a single stream for all

distribution functions

"RandomSeed"
Nonzero value sets the random number seed.

0 (default) means that the seed will be

different on every simulation run.

"UseCorrelation"

1 (default) enables rank order correlation for

distribution functions. 0 disables correlation,

causing the PsiCorrDepen, PsiCorrIndep, and
PsiCorrMatrix property functions to be

ignored.

To find EngineParam names for the parameters of different Solver engines for

optimization, consult the “Solver Options” chapters in this Guide (for built-in

Engines) and the Frontline Solver Engines Guide (for plug-in Engines).

EngineLimit Object

An EngineLimit object holds limits on the maximum size or complexity of

problems handled by a Solver engine. These limits are ‘read only’ – you can

access them in your VBA code, which can be useful if your code is written to

work with a variety of Solver engines. Each Engine object contains an

EngineLimit object; the currently selected Solver engine’s limits may be
referenced as myProb.Engine.EngineLimit.

EngineLimit Properties

Property Name Property Type Description

IterationLimit integer Maximum number of iterations.

Frontline Solvers 2025 Q1 Reference Guide Page 502

VarDecisionLimit integer Maximum number of variables.

FcnConstraintLimit integer
Maximum number of constraints,

apart from variable bounds.

VarBoundLimit integer
Maximum number of explicit

bounds on variables.

VarIntegerLimit integer
Maximum number of integer

(including alldifferent) variables.

VarUncertainLimit integer Maximum number of variables.

FcnUncertainLimit integer Maximum number of functions.

CorrelationLimit integer
Maximum number of nonzero

correlations between variables.

EngineStat Object

An EngineStat object holds performance statistics from the last time an Engine
was used to solve a problem, by calling the Solver.Optimize or Solver.Simulate

method. These statistics are ‘read only,’ but you can read, analyze and report

them in your VBA code.

EngineStat Properties

Property Name Property Type Description

Milliseconds integer
Time taken to solve the problem, in

thousands of a second.

Iterations integer Number of iterations performed.

Subproblems integer

Number of subproblems explored, in

a global optimization problem or an

integer programming problem.

LocalSolutions integer

Number of locally optimal solutions

found in a global optimization

problem, or number of improved

incumbents found in an integer

programming problem.

FunctionEvals integer

Number of function evaluations

performed (one for each trial in the

case of simulation).

JacobianEvals integer

Number of Jacobian (1st derivative)

evaluations performed, if used by the

Solver engine.

Frontline Solvers 2025 Q1 Reference Guide Page 503

HessianEvals integer

Number of Hessian (2nd derivative)

evaluations performed, if used by the

Solver engine.

OptIIS Object

An OptIIS object holds information about an Irreducibly Infeasible Subset (IIS)
of the constraints, which is found when you call the Solver.FindIIS method.

You can use myProb.Solver.OptIIS to access the OptIIS information for a

problem.

The FindIIS method may be called for a problem when the result of calling the

Optimize method is an ‘infeasible’ OptimizeStatus. An IIS is a subset of the

constraints such that a problem consisting of just these constraints is still

infeasible, but if any one of the constraints in the IIS is dropped, the problem

becomes feasible. Examining the IIS may help you determine why a problem is

infeasible.

OptIIS Properties

Property Name
Property

Type

Description

NumBounds integer Number of variable bounds in the IIS.

NumConstraints integer Number of constraints in the IIS.

BoundIndex
integer

array

Array of indices of variables (in the
Model’s flat address space) whose bounds

are included in the IIS.

BoundStatus
IIS_Status

array

Array of status values for variable bounds,

corresponding to indices in the

BoundIndex array.

ConstraintIndex
integer

array

Array of indices of constraints (in the

Model’s flat address space) that are

included in the IIS.

ConstraintStatus
IIS_Status

array

Array of status values for constraints,

corresponding to indices in the

ConstraintIndex array.

The IIS_Status values can be any of the symbolic names

IIS_Status_LowerBound, IIS_Status_UpperBound, or IIS_Status_Fixed.

Statistics Object

A Statistics object holds statistics summarizing the values computed for all the

trials in a simulation, or for decision variables and constraints across a popula-

tion of final solutions in an optimization. Each Variable object and Function

object contains one Statistics object, holding statistics for that vector of variables

or functions. The Statistics properties for uncertain variables and functions are

always available after a simulation is performed. Statistics for decision

Frontline Solvers 2025 Q1 Reference Guide Page 504

variables and constraints are set after an optimization, but only when the

Evolutionary Solver or the OptQuest Solver is used.

Statistics Properties

Property Name Property Type Description

NumValues integer
Number of data values (one for each

trial) summarized by these statistics.

NumErrors integer
Number of error values among the data

values, ignored in computing statistics.

Minimum double array Minimum value (see PsiMin function).

Maximum double array Maximum value (see PsiMax function).

Mode double array Mode (see PsiMode function).

Mean double array Mean value (see PsiMean function).

Variance double array Variance (see PsiVariance function).

StdDev double array
Standard deviation (see PsiStdDev

function).

Skewness double array Skewness (see PsiSkewness function).

Kurtosis double array Kurtosis (see PsiKurtosis function).

MeanAbsDev double array
Mean absolute deviation (see

PsiAbsDev function).

Statistics Methods

Property Name Property Type Description

SemiVariance double array
SemiVariance or Lower Partial Moment

(see PsiSemiVar function).

SemiDeviation double array
SemiDeviation or qth root of LPM (see

PsiSemiDev function).

ValueAtRisk double array Value at Risk (see PsiBVar function).

CondValueAtRisk double array
Conditional Value at Risk (see PsiCVar

function).

Target double array
Cumulative frequency of specified target

value (see PsiTarget function)

MeanCI double array
Confidence interval of the mean value

(see PsiMeanCI function).

Frontline Solvers 2025 Q1 Reference Guide Page 505

StdDevCI double array
Confidence interval of the standard

deviation (see PsiStdDevCI function).

CITrials double array

Trials required to achieve a specified

confidence interval (see PsiCITrials

function).

DoubleMatrix Object

A DoubleMatrix object is a flexible and powerful tool for working with large,

sparse matrices of numbers. It automatically allocates and manages memory

only for the nonzero elements of the matrix. So, if you create a matrix with one

million rows and one million columns, it will take very little memory initially.

You can then assign nonzero elements to the matrix by writing assignment

statements, treating the DoubleMatrix object much like an ordinary two-

dimensional array.

DoubleMatrix Methods

The Create method creates a structure for a new matrix of the specified size, but

does not initialize any of its elements. The InitDense method creates a new

matrix whose storage is optimized for the situation where most elements are

non-zero – i.e. the matrix is dense. The InitSparse method creates a new matrix

whose storage is optimized for the situation where most elements are zero – i.e.

the matrix is sparse. In both cases, the matrix is initialized with values from the

Elements array, taking these elements in the ArrayOrder order (initially in

“column major” order). Method Clear removes all non-zeros from the matrix,
but preserves its size; method Destroy removes all non-zeros and also sets the

number of rows and columns to zero.

Methods NZBgn and NZEnd should be called, to save time, if you wish to

assign a large number of non-zeros to the matrix at one time, without accessing

or using these values until all of them have been assigned. First call NZBgn,

then perform the assignments, then call NZEnd. If you need to ‘undo’ the effect

of NZBgn, call NZCancel instead of NZEnd – in this case, all of the

assignments since NZBgn was called will have no effect.

The MakePSD method can be used on a non-positive semidefinite (PSD) matrix

to transform the matrix into a positive semidefinite matrix that is “close to” to
original matrix. This is most often used for correlation matrices in simulation,

but may also be used in certain optimization problems. The Weights argument is

optional; if it is specified, the elements of the transformed matrix with the

largest weights in the corresponding positions of the Weights matrix will be a

close as possible to the original matrix elements, and the elements with the

smallest weights will experience the greatest change in the transformed matrix.

 DoubleMatrix.Create Rows, Columns

 DoubleMatrix.InitDense Rows, Columns, Elements

 DoubleMatrix.InitSparse Rows, Columns, Elements

 DoubleMatrix.Clear

 DoubleMatrix.Destroy

 DoubleMatrix.NZBgn

 DoubleMatrix.NZEnd

Frontline Solvers 2025 Q1 Reference Guide Page 506

 DoubleMatrix.NZCancel

 DoubleMatrix.MakePSD [Weights]

Rows is the number of rows, and Columns is the number of columns in the

matrix. Elements is a one-dimensional VBA array whose elements are assigned

to the matrix.

DoubleMatrix Properties

Property Name Property Type Description

IsEmpty Boolean True if the matrix is empty.

IsSparse Boolean
True if the matrix is stored in sparse

form; False if it is stored in dense form.

IsPSD Boolean
True if the matrix is positive semi-

definite.

ArrayOrder Array_Order

Specifies whether rows or columns are the

major (first) dimension. The default array

order is Array_Order_ByCol; you may

instead specify Array_Order_ByRow.

Changing the ArrayOrder property

transposes the matrix.

MajorDim integer

Retrieves the major (first) dimension

(rows or columns depending on the

ArrayOrder property setting).

MinorDim integer

Retrieves the minor (second) dimension

(rows or columns depending on the

ArrayOrder property setting).

Rows integer

Retrieves the number of rows in the

matrix. Does not depend on the

Array_Order.

Columns integer

Retrieves the number of columns in the
matrix. Does not depend on the

Array_Order.

NumElements integer

In a sparse matrix, the actual number of

non-zero elements stored. In a dense

matrix, this equals (Rows*Columns).

Value double

The value of an element of the matrix –

may appear on either side of an

assignment statement.

A DoubleMatrix object has several other properties, not documented here, that

are primarily useful in cases where the data that will be used to initialize the

matrix is already organized in sparse column-major or row-major form. For

Frontline Solvers 2025 Q1 Reference Guide Page 507

more information, consult the VBA Object Browser or the Solver Platform SDK

documentation, or contact Frontline Systems at info@solver.com.

DependMatrix Object

A DependMatrix object is used to hold information about dependencies of

problem functions (objective and constraints) on decision variables. In the
matrix, rows represent constraints or the objective, and columns represent

variables.

The value of the Model object AllGradDepend property is a DependMatrix.

This matrix is initialized (only) when you call the Model object DependCheck

method. An element of the matrix at position (i, j) has a value from the

Depend_Type enum, that tells you whether constraint i depends in a linear,

quadratic, smooth nonlinear, or nonsmooth way on variable j, or does not

depend on variable j at all.

Depend_Type Constants

The Depend_Type enum has a set of symbolic constant values that reflect the

nature of the dependence between a specific function and decision variable:

 Depend_Type_None

 Depend_Type_Linear

 Depend_Type_Quadratic

 Depend_Type_Smooth

 Depend_Type_NonSmooth

If a function does not depend at all on a specific variable, the matrix entry for

that function (row) and variable (column) will be Depend_Type_None.

DependMatrix Methods

A DependMatrix is created for you as the value of the Model object

AllGradDepend property; you can simply access its elements by subscripting,

for example by writing myProb.Model.AllGradDepend(i, j). Should you need

to create such a matrix, however, you can use the same methods documented

above for a DoubleMatrix: Create, InitDense, InitSparse, Clear, Destroy,

NZBgn, NZEnd and NZCancel.

DependMatrix Properties

A DependMatrix has the same properties as a DoubleMatrix, as documented

above: IsEmpty, IsSparse, ArrayOrder, MajorDim, MinorDim, Rows,

Columns, NumElements and Value. Only the Value property is different:

Where this property is of type double for a DoubleMatrix, it is of type

Depend_Type for a DependMatrix.

A DependMatrix object has several other properties, not documented here, that

are primarily useful in cases where the data that will be used to initialize the
matrix is already organized in sparse column-major or row-major form. For

more information, consult the VBA Object Browser or the Solver Platform SDK

documentation, or contact Frontline Systems at info@solver.com.

Distribution Object

A Distribution object is a flexible tool for working with analytic probability

distributions. The Model object contains two properties, VarDistribution and

mailto:info@solver.com

Frontline Solvers 2025 Q1 Reference Guide Page 508

FcnDistribution (reserved for future use), that represent arrays of Distribution

objects, one for each uncertain variable and uncertain function in the model

respectively.

If you initialize a Distribution object with a type (Uniform, Normal, Beta, etc.)

and parameters, you can generate sample points drawn from the distribution.
Conversely, if you supply a set of sample points, you can automatically fit a

distribution type and parameters to the sample data.

Distribution Methods

In Risk Solver V8.0, the Model object is “opaque” – the VarDistribution and

FcnDistribution properties are not initialized. In future versions, they may

return arrays of Distribution objects that are pre-initialized with types and
parameters drawn from your PSI Distribution functions on the worksheet.

When you create a Distribution object of your own with Dim myDist As New

RSP.Distribution, you can initialize it using the methods listed below. The Init

method accepts a string argument containing a PSI Distribution function call

such as “PsiNormal(0,1)” just as you might type it into a worksheet cell –

including PSI Property functions. Alternatively, you can set the Distribution

Type, Params, and ControlParams properties directly, you wish.

The InitSample method accepts an array of sample values; if there are several

occurrences of many of the sample values, you can include each value just once

in the Sample argument, and supply the Occurs argument, an array of counts of
occurrences of each sample value.

 Distribution.Init PsiFuncString

 Distribution.InitSample Sample [,Occurs]

Once you’ve called the InitSample method, you can fit an analytic distribution

to the data. If you know the type of distribution (Uniform, Normal, Beta, etc.),

call the Fit method and supply the type, a desired significance level, and an
optional True/False value to indicate whether Analytic Solver can shift the

center of candidate distributions to better fit the data. If you don’t know the type

of distribution, you can call the AutoFit method and supply a True/False value

to indicate whether the sample data is continuous or discrete, a desired

significance level, and an optional True/False value to indicate whether to test

only distributions matching the type of data (continuous or discrete), or all

available distributions.

 Distribution.Fit Type, SigLevel, Shift

 Distribution.AutoFit Continuous, SigLevel [,FitAll]

Only the following analytic distributions can be selected by the Fit and AutoFit

methods: PsiBeta, PsiExponential, PsiGamma, PsiLogNormal, PsiNormal,

PsiUniform, and PsiWeibull for continuous distributions, and PsiBernoulli,

PsiBinomial, PsiGeometric, PsiIntUniform, PsiNegBinomial, and PsiPoisson for

discrete distributions.

Once a Distribution object is initialized with either the Init method or the

InitSample and Fit or AutoFit methods, you can generate sample values for the
probability density function (PDF; probability mass function or PMF for discrete

distributions), the cumulative distribution function (CDF), or the inverse of the

cumulative distribution function. When you call the PDF or CDF methods, you

supply a sample (X-axis) value, and the method returns a probability (Y-axis)

value. When you call the CDFInv method, you supply a probability (Y-axis)

value, and the method returns a sample (X-axis) value.

Frontline Solvers 2025 Q1 Reference Guide Page 509

 Distribution.PDF X

 Distribution.CDF X

 Distribution.CDFInv F

Distribution Properties

Property Name Property Type Description

Problem Problem
Problem associated with this

Distribution (if any).

DistType Dist_Type
Specifies the type of distribution

(see Dist_Type enum below).

Name string Name of the distribution.

NumParams integer
Number of parameters allowed for

this distribution type.

NumControlParams integer
Number of control parameters

(shift, truncate, etc.) allowed.

Params double array Parameter values.

ControlParams double array Control parameter values.

Mean double Analytic mean of distribution.

Variance double Analytic variance of distribution.

Skewness double Analytic skewness of distribution.

Kurtosis double Analytic kurtosis of distribution.

Mode double Analytic mode of distribution.

Median double Analytic median of distribution.

Size integer
Number of elements in Sample

property array.

Sample double array Supplied sample data values.

IndepTest double

Result of independence test on

supplied Sample data – smaller

value means more independent.

FitStatistic double

Statistic indicating goodness of fit

for Fit and AutoFit methods:

AIC/BIC and Chi-Squared for

discrete and AIC/BIC, Chi-Sqaure

and Kolmogorov-Smirnof for

continuous distributions.

Frontline Solvers 2025 Q1 Reference Guide Page 510

FitTest double

Fitting statistic independent of

sample size. Generally FitSuccess

= True if FitTest < FitLimit.

FitLimit double Goodness of fit test critical value.

SigLevel double

Fitting significance level, usually

a number between 0.9 and 0.99

(often referred to as 1 -).

FitSuccess Boolean True if distribution fit succeeded.

Note that the Distribution object analytic moment properties (Mean, Variance,

etc.) are not the same as the computed estimates of these moments returned by

the Variable and Function Statistics objects. The Distribution object properties

are computed from the parameters of each distribution type – the formulas used

are shown under each PSI Distribution function in the chapter “PSI Function

Reference.” The Statistics object properties are estimates computed from the

sample values of each trial during a simulation – the formulas used are shown

under each PSI Statistics function, also in the chapter “PSI Function Reference.”

Frontline Solvers 2025 Q1 Reference Guide Page 511

Traditional VBA Function
Reference

Controlling the Solver’s Operation
This chapter explains how to control the Solver using “traditional” VBA

functions, which are upward compatible from the VBA functions supported by

the standard Excel Solver. Analytic Solver also supports a new object-oriented

API that is high-level, easy to use, and compatible with the object-oriented API

offered by Frontline’s Risk Solver for Monte Carlo simulation, and the Solver

SDK, used to build custom applications of optimization and simulation using

C++, C#, VB.NET, Java, MATLAB and other languages.

Note: Calling your model using the Traditional VBA functions is not supported

in Analytic Solver Cloud.

Using traditional VBA functions, you can display or completely hide the Solver

dialog boxes, create or modify the choices of objective, variables and

constraints, check whether an optimal solution was found, and produce reports.

If you need to work with solution values or use report results in your VBA code,

create and solve multiple optimization problems, or ‘port’ your code to run as a

standalone application, you may find that the object-oriented API is a better

choice. Further, the new functionality in Analytic Solver can be controlled only

through the object-oriented API, not with traditional VBA functions.

Running Predefined Solver Models

Controlling the Solver can be as simple as adding one line to your VBA code!
Each worksheet in a workbook may have a Solver problem defined, which is

saved automatically with the workbook. You can create this Solver model

interactively if you wish. If you distribute such a workbook, with a worksheet

containing a Solver model and a VBA module, you can simply add a reference

to the Solver add-in, activate the worksheet, and add one line to call the function

SolverSolve in VBA.

Using the Macro Recorder

If you want to set up a Solver model “from scratch” programmatically, one easy

way to see how to use the object-oriented API is to turn on the Excel Macro

Recorder (click Record Macro on the Developer tab in Excel 2013 and later),

and then set up a Solver model interactively. Microsoft Excel will record a
macro in VBA that calls the object-oriented API to mimic the actions you

perform. You can then edit and customize this macro, and incorporate it into

your application.

Frontline Solvers 2025 Q1 Reference Guide Page 512

Note: You must use the classic Solver dialog to record a macro, rather than the

Solver Task Pane. To open, click Add-ins – Premium Solver. By default, the

Excel Macro Recorder will record calls to the object-oriented API.

Using Microsoft Excel Help

You can learn about the standard Solver functions in Excel’s online Help. In
Excel 2016, and 2013, open the Visual Basic Editor (Alt-F11), select Help -

Microsoft Visual Basic Help, click on the Search field, and type ‘Solver’ to

display an list of the Solver functions.

Referencing Functions in Visual Basic

To use the VBA functions, your Visual Basic module must include a reference

to the Solver add-in (Solver.xla). Press Alt-F11 to open the Visual Basic Editor,

choose Tools References... and make sure that the box next to Solver is

checked.

You can confirm that you are using the desired version of the add-in by

highlighting the word Solver in the list under Tools References… and noting the
file location. The path to Analytic Solver’s Solver.xla is normally C:\Program

Files\Frontline Systems\Analytic Solver\Bin or C:\Program Files (x86)\Frontline

Systems\Analytic Solver\Bin if using 32-bit Excel with a 64-bit operating

system. Note that this is different from a reference to the Analytic Solver

V2018 type library, for example, which you add when you use the new object-

oriented API in VBA.

Note: If running a field – installable engine such as Gurobi Solver, Xpress

Solver, OptQuest Solver, etc., you must also set a reference to that engine. In

order for the engine reference to appear in VBA – Tools – References, you must

first open the Premium Solver classic dialog (Addins – Premium Solver), select

the engine in the engine drop – down menu, then click Options – OK – Close.
For more information, please see the Frontline Solvers Engine User Guide.

Calling the Excel Solver in Visual Basic

If you have the standard Excel Solver installed and you want to use it to solve a

model by calling the Solver through VBA, you must set the correct Solver

reference. You can confirm that you are using the desired version of the add-in

by highlighting the word Solver in the list under Tools References… and noting
the file location. For example, the path to the Standard Excel Solver in Excel

2016 is: C:\Program Files\Microsoft Office 16\Root\Office 16\

Library\Solver\Solver.xlam

Checking Function Return Values

The Solver functions generally return integer values, which you should check in

your VBA code. The normal return value is 0, indicating that the function

succeeded. Other possible return values are given in the descriptions of the

individual functions. If the arguments you supply are invalid, an error condition

can be raised, which you would have to handle via an On Error VBA statement.

Of particular interest is the return value of the SolverSolve function, which

describes the result of the actual optimization step. The return value can range
from -1 to 21 in the Analytic Solver products, with additional values starting at

1000 for the Interval Global Solver and field-installable Solver engines. These

integer values are summarized in the description of the SolverSolve function

Frontline Solvers 2025 Q1 Reference Guide Page 513

below, but for a comprehensive discussion, see the chapter “Solver Results

Messages,” starting with the subsection “Standard Solver Result Messages.”

One group of functions can return a variety of numeric, logical, string or array

values, depending on the arguments you supply. These functions (SolverGet,

SolverOkGet, etc.) may be used to “read” the settings of the current Solver
model, on the active sheet or any other worksheet whose name you supply.

Standard, Model and Premium Macro Functions

The following sections describe each of the VBA function calls supported by the

Analytic Solver products. These functions are a compatible superset of the

function calls available in the standard Excel Solver.

The functions are listed alphabetically in three groups. The first group consists

of functions available in both the standard Excel Solver and the Analytic Solver

products. The second and third groups, Premium VBA Functions and Solver

Model VBA Functions, consists of functions that are available only in the

Analytic Solver products. If you want to write VBA code that will work with
both the standard Solver and Analytic Solver, you should limit yourself to

functions in the first group, and consult the notes on each function call to deter-

mine which arguments are supported by the standard Solver.

Standard VBA Functions
The VBA functions in this section are available in both the standard Excel

Solver and Analytic Solver and subset products. Some of these functions have

extra arguments that are supported only in Analytic Solver and subset products,

as noted in each function description.

SolverAdd (Form 1)

Equivalent to choosing Premium Solver... from the Addins or Tools menu and

pressing the Add button in the classic Solver Parameters dialog box or clicking

Constraints – Normal Constraints on the Analytic Solver ribbon. Adds a

constraint to the current problem.

VBA Syntax

SolverAdd (CellRef:=, Relation:=, FormulaText:=, Comment:=, Report:=)

CellRef is a reference to a cell or a range of cells and forms the left hand side of

the constraint. In standard Excel Solver, all cells must be on the active

worksheet; in Analytic Solver Comprehensive or Analytic Solver Optimization,

they may be on any sheet.

Relation specifies the arithmetic relationship between the left and right hand

sides, or whether CellRef must have an integer value at the solution.

 Relation Relationship

 1 <=

 2 =

 3 >=

 4 int (CellRef is an integer variable)

 5 bin (CellRef is a binary integer variable)

 6 dif (CellRef is an alldifferent group)

 7 soc (CellRef belongs to a second order cone)

 8 src (CellRef belongs to a rotated second order cone)

Frontline Solvers 2025 Q1 Reference Guide Page 514

 9 sem (CellRef is a semi-continuous variable)

FormulaText is the right hand side of the constraint and will often be a single

number, but it may be a formula (as text) or a reference to a range of cells.

Comment is a string corresponding to the Comment field in the Add Constraint
dialog, only in the Analytic Solver and subset products.

Report is no longer used, but is included for compatibility with previous

versions of Premium Solver products.

The standard Excel Solver supports only Relation values 1 to 5. If Relation is 4

to 9, FormulaText is ignored, and CellRef must be a subset of the decision

variable cells.

If FormulaText is a reference to a range of several cells, the number of cells in

the range must match the number of cells in CellRef, although the shape of the

areas need not be the same. For example, CellRef could be a row and

FormulaText could refer to a column, as long as the number of cells is the
same.

Remarks

The SolverAdd, SolverChange and SolverDelete functions correspond to the

Add, Change, and Delete buttons in the classic Solver Parameters dialox box

(Addins – Premium Solver). You use these functions to define constraints. For

many macro applications, however, you may find it more convenient to load the

problem in a single step using the SolverLoad call.

Each constraint is uniquely identified by the combination of the cell reference on

the left and the relationship (<=, =, >=, int, bin, dif, soc, src or sem) between its

left and right sides. This takes the place of selecting the constraint in the Solver
Parameters dialog box. You can manipulate constraints with SolverChange and

SolverDelete.

SolverAdd (Form 2)

Equivalent to choosing Premium Solver... from the Addins or Tools menu,

pressing the Variables button, and then pressing the Add button in the Solver

Parameters dialog box or clicking Decisions – Normal on the Analytic Solver

ribbon. Adds a set of decision variable cells to the current problem. This form

is supported only by the Analytic Solver and subset products.

VBA Syntax

SolverAdd (CellRef:=, Comment:=, Report:=)

CellRef is a reference to a cell or a range of cells and forms a set of decision

variables. In Analytic Solver Comprehensive ir Analytic Solver Optimization,

decision variable cells may be on any sheet.

Comment is a string corresponding to the Comment field in the Add Variable

Cells dialog, only in the Analytic Solver and subset products.

Report is no longer used, but is included for compatibility with previous

versions of the Premium Solver products.

Remarks

The SolverAdd, SolverChange and SolverDelete functions correspond to the

Add, Change, and Delete buttons in the classic Solver Parameters dialog box

(Addins – Premium Solver). In this form, you can use these functions to add or

change sets of decision variables. For many macro applications, however, you

Frontline Solvers 2025 Q1 Reference Guide Page 515

may find it more convenient to load the problem in a single step using the

SolverLoad function.

Note that the SolverOk ByChange:= argument defines the first entry in the

Variable Cells list box in the classic Solver Parameters dialog or the first entry

under Variables on the Task Pane Model tab. Use SolverAdd to define
additional entries in the Variables Cells list box or Task Pane Model tab. Do not

call SolverOk with a different ByChange:= argument after you have defined

more than one set of variable cells.

SolverChange (Form 1)

Equivalent to choosing Premium Solver... from the Addins or Tools menu and

pressing the Change button in the classic Solver Parameters dialog box or

highlighting the constraint in the Task Pane Model tab then changing the value

for the constraint right hand side. Changes the right hand side of an existing

constraint.

VBA Syntax

SolverChange (CellRef:=, Relation:=, FormulaText:=, Comment:=,

Report:=)

For an explanation of the arguments and selection of constraints, see

SolverAdd. In the standard Excel Solver, the CellRef cells must all be on the

active worksheet; in Analytic Solver, they may be on any sheet.

Remarks

If the combination of CellRef and Relation does not match any existing

constraint, the function returns the value 4 and no action is taken.

To change the CellRef or Relation of an existing constraint, use SolverDelete to

delete the old constraint, then use SolverAdd to add the constraint in the form
you want.

SolverChange (Form 2)

Equivalent to choosing Premium Solver... from the Tools or Addins menu,
pressing the Variables button, and then pressing the Change button in the Solver

Parameters dialog box or highlighting the variable entry in the Task Pane Model

tab and changing the cell reference. Changes a set of decision variable cells.

This form is supported only by the Analytic Solver and subset products.

VBA Syntax

SolverChange (CellRef:=, Relation:=, Comment:=, Report:=)

CellRef is a reference to a cell or a range of cells, currently defined in the
Variable Cells list box as a set of decision variable cells.

Relation is a reference to a different cell or range of cells, which will replace

CellRef as a new set of variable cells. In the standard Excel Solver, the CellRef

cells must all be on the active worksheet; in Analytic Solver, they may be on any

sheet.

Comment is a string corresponding to the Comment field in the Change

Variable Cells dialog, only in the Analytic Solver and subset products.

Report is no longer used, but is included for compatibility with previous

versions of the Premium Solver products.

Frontline Solvers 2025 Q1 Reference Guide Page 516

Remarks

If CellRef does not match any existing set of variable cells, the function returns

the value 1 and no action is taken.

SolverDelete (Form 1)

Equivalent to choosing Premium Solver... from the Tools or Addins menu and

pressing the Delete button in the Solver Parameters dialog box or selecting a

constraint entry in the Task Pane Model tab and clicking . Deletes an

existing constraint.

VBA Syntax

SolverDelete (CellRef:=, Relation:=, FormulaText:=)

For an explanation of the arguments and selection of constraints, see

SolverAdd. The FormulaText argument is optional, but if present, it is used to

confirm that the correct constraint block is being deleted.

Remarks

If the combination of CellRef and Relation does not match any existing

constraint, the function returns the value 4 and no action is taken. If the

constraint is found, it is deleted, and the function returns the value 0.

SolverDelete (Form 2)

Equivalent to choosing Premium Solver... from the Tools or Addins menu and

then pressing the Delete button in the Solver Parameters dialog box or selecting

a variable entry in the Task Pane Model tab and clicking . Deletes an

existing set of variable cells. This form is supported only by Analytic Solver

and subset products.

VBA Syntax

SolverDelete (CellRef:=)

CellRef is a reference to a cell or a range of cells, currently defined in the

Variable Cells list box as decision variable cells. In the standard Excel Solver or

Analytic Solver Upgrade, the CellRef cells must all be on the active worksheet;

in Analytic Solver, they may be on any sheet.

Remarks

If CellRef does not match any existing set of variable cells, the function returns

the value 1 and no action is taken. If the variable cells are found, they are

deleted, and the function returns the value 0.

SolverFinish

Equivalent to selecting options and clicking OK in the Solver Results dialog that

appears when the solution process is finished. The dialog box will not be

displayed. (The SolverFinish dialog is not displayed if solving by either

clicking the Optimize icon on the Analytic Solver ribbon or clicking on the

Solver Task Pane.)

Frontline Solvers 2025 Q1 Reference Guide Page 517

VBA Syntax

SolverFinish (KeepFinal:=, ReportArray:=, ReportDesc:=,

OutlineReports:=)

The ReportDesc and OutlineReports arguments are available only in the

Premium Solver products.

KeepFinal is the number 1, 2 or 3 and specifies whether to keep or discard the

final solution. If KeepFinal is 1 or omitted, the final solution values are kept in

the variable cells. If KeepFinal is 2, the final solution values are discarded and

the former values of the variable cells are restored.

If KeepFinal is 3 – which can occur only if you are solving a problem with

integer constraints which has no feasible integer solution – Solver will

immediately re-solve the “relaxation” of the problem, temporarily ignoring the

integer constraints. In this case, SolverFinish will return when the solution
process is complete, and its return value will be one of the integer values

ordinarily returned by SolverSolve.

ReportArray is an array argument specifying what reports should be produced.

If the Solver found a solution, it may have any of the following values:

 If ReportArray is The Solver creates

 Array(1) An Answer Report

 Array(2) A Sensitivity Report

 Array(3) A Limits Report

 Array(4) A Solutions Report

Array(4) is used only for integer programming and global optimization
problems. A combination of these values produces multiple reports. For

example, if ReportArray = Array(1,2), the Solver will create an Answer Report

and a Sensitivity Report.

If you are using the Interval Global Solver engine, you can produce an Answer

Report when SolverSolve returns 0, and a Solutions Report if you successfully

solve a system of inequalities or a square system of equations:

 If ReportArray is The Solver creates

 Array(1) An Answer Report

 Array(2) A Solutions Report

If you are using the Evolutionary Solver engine, you can produce an Answer
Report, a Population Report or a Solutions Report unless SolverSolve returns

18, 19 or 20 (which means that the Solver returned an error before a population

was formed):

 If ReportArray is The Solver creates

 Array(1) An Answer Report

 Array(2) A Population Report

 Array(3) A Solutions Report

If the linearity conditions for the selected Solver engine were not satisfied

(SolverSolve returns 7), you can produce a Stucture Report or a Scaling Report:

 If ReportArray is The Solver creates

 Array(1) A Structure Report

 Array(2) A Scaling Report

If the Solver could not find a feasible solution (SolverSolve returns 5), you can

produce either version of the Feasibility Report, or a Scaling Report:

 If ReportArray is The Solver creates

Frontline Solvers 2025 Q1 Reference Guide Page 518

 Array(1) A Feasibility Report

 Array(2) A Feasibility-Bounds Report

 Array(3) A Scaling Report

If you are using Analytic Solver Comprehensive or Analytic Solver

Optimization and a field-installable Solver engine, it may produce some or all of
the reports mentioned above and/or its own custom reports. To determine what

you should use for the ReportArray argument, solve a problem interactively

with this Solver engine, and examine the Reports list box in the Solver Results

dialog. Then use the ordinal position of the report you want:

 If ReportArray is The Solver creates

 Array(1) The first report listed

 Array(2) The second report listed (and so on)

ReportDesc is an array of character strings that allows you to select reports by

their names, rather than their ordinal positions in the Reports list. For example,

you can select an Answer Report with Array (“Answer”), or both the Answer
Report and the Sensitivity Report with Array (“Answer”, “Sensitivity”). The

possible strings are:

 “Answer” Answer Report

 “Sensitivity” Sensitivity Report

 “Limits” Limits Report

 “Solutions” Solutions Report

 “Population” Population Report

 “Structure” Structure Report

 “Feasibility” Feasibility Report (full version)

 “Feasibility-Bounds” Feasibility Report (w/o bounds)

 “Scaling” Scaling Report

The report names you can include in the array depend on the currently selected

Solver engine and the integer value returned by SolverSolve, as described

above.

OutlineReports is a logical value corresponding to the Outline Reports check

box. If TRUE, any reports you select will be produced in outlined format, and

comments (if any) associated with each block of variables and constraints will

be included in the report; if it is FALSE, the reports will be produced in

“regular” format.

SolverFinishDialog

Equivalent to selecting options in the Solver Results dialog that appears when

the solution process is finished. The dialog box will be displayed, and the user

will be able to change the options that you initially specify. (This dialog is not

displayed if solving by either clicking the Optimize icon on the Analytic Solver

ribbon or clicking on the Solver Task Pane.)

VBA Syntax

SolverFinishDialog (KeepFinal:=, ReportArray:=, ReportDesc:=,

OutlineReports:=)

For an explanation of the arguments of this function, see SolverFinish.

Frontline Solvers 2025 Q1 Reference Guide Page 519

SolverGet

Returns information about the current Solver problem. The settings are

specified in the classic Solver Parameters dialog, on the General tab for Solver

options, on the Platform tab in the Solver Task Pane, or with the other Solver

functions described in this chapter. Values of the TypeNum:= argument from 1

to 18 are supported by the standard Excel Solver.

SolverGet is provided for compatibility with the standard Excel Solver and

earlier versions of the Premium Solver products. For programmatic control of

new features and options included in Version 5.0 or later of the Premium Solver
products, see the dialog-specific “Get” functions in the sections “Solver Model

VBA Functions” and “Premium VBA Functions.”

VBA Syntax

SolverGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The

following settings are specified in the Solver Parameters dialog box or the Task

Pane Model tab.

TypeNum Returns

1 The reference in the Set Cell box or the #N/A error value if

Solver has not been used on the active document

2 A number corresponding to the Equal To option:

 1 = Max

 2 = Min

 3 = Value Of

3 The value in the Value Of box or in the Task Pane Model tab

4 The reference in the Changing Cells box or under Variables in

the Task Pane Model tab (in the Analytic Solvers, only the first

entry in the Variables list box)

5 The number of entries in the Constraints list box or under

Constraints in the Task Pane Model tab

6 An array of the left hand sides of the constraints as text

7 An array of numbers corresponding to the relations

 between the left and right hand sides of the constraints:

 1 = <=

 2 = =

 3 = >=

 4 = int

 5 = bin

 6 = dif

 7 = soc

 8 = src

 9 = sem

8 An array of the right hand sides of the constraints as text

The following settings are specified on the General tab for Solver options or on

the Task Pane Engine tab:

TypeNum Returns

9 The Max Time value (as a number in seconds)

10 The Iterations value (max number of iterations)

11 The Precision value (as a decimal number)

Frontline Solvers 2025 Q1 Reference Guide Page 520

12 The integer Tolerance value (as a decimal number)

13 In the standard Solver: TRUE if the Assume Linear Model

 check box is selected; FALSE otherwise. In the Analytic

 Solvers: TRUE if the linear Simplex (only in Excel Solver) or

 LP/Quadratic Solver is selected; FALSE if any other Solver is

selected

14 TRUE if the Show Iteration Result check box is selected in

Solver Parameters or set to True in the Task Pane Engine tab;

FALSE otherwise,

15 TRUE if the Use Automatic Scaling check box is selected in

Solver Parameters or set to True in the Task Pane Engine tab;

FALSE otherwise

16 A number corresponding to the type of Estimates:

 1 = Tangent

 2 = Quadratic

17 A number corresponding to the type of Derivatives:

 1 = Forward

 2 = Central

18 A number corresponding to the type of Search:

 1 = Newton

 2 = Conjugate

The following settings are supported by Analytic Solver and subset products:

TypeNum Returns

19 The Convergence value (as a decimal number) in the

nonlinear GRG Solver

20 TRUE if the Assume Non-Negative check box is selected in

Solver Parameters or set to True in the Task Pane Engine

tab; FALSE otherwise

21 The Integer Cutoff value (as a decimal number)

22 TRUE if the Bypass Solver Reports check box is selected

in Solver Parameters or set to True in the Task Pane

Engine tab; FALSE otherwise

23 An array of the entries in the Variables list box or in

the Task Pane Model tab as text

24 A number corresponding to the Solver engine dropdown list

 for the currently selected Solver engine:

 1 = Nonlinear GRG Solver

 2 = Simplex LP or LP/Quadratic Solver

 3 = Evolutionary Solver

 4 = Interval Global Solver

 5 = SOCP Barrier Solver

In the Analytic Solver Comprehensive and Analytic Solver

Optimization, other values may be returned for field-

installable Solver engines

25 The Pivot Tolerance (as a decimal number) in the

 Linear Simplex Solver (For backwards compatibility only)

26 The Reduced Cost Tolerance (as a decimal number) in the

 Linear Simplex Solver (For backwards compatibility only)

27 The Coefficient Tolerance (as a decimal number) in the

 Large-Scale LP Solver. This option is no longer used.

28 The Solution Tolerance (as a decimal number) in the

 Large-Scale LP Solver. This option is no longer used.

Frontline Solvers 2025 Q1 Reference Guide Page 521

29 TRUE if the Estimates option in the GRG Solver is set to

Tangent; FALSE if the Estimates option is set to

Quadratic

30 This function is included for backward compatibility

only; a number corresponding to the type of Scaling in

the

 Large-Scale LP Solver:

 1 = None

 2 = Row Only

 3 = Row & Col

SheetName is the name of a worksheet that contains the Solver problem for

which you want information. If SheetName is omitted, it is assumed to be the

active sheet.

SolverLoad

Equivalent to choosing Premium Solver... from the Tools menu, choosing the

Options button from the Solver Parameters dialog box, and choosing the Load

Model... button on the General tab or clicking the Save/Load button on the
Analytic Solver ribbon. Loads Solver model specifications that you have previ-

ously saved on the worksheet. The Format and ModelName arguments are

supported only in Version 7.0 or later of the Premium Solver products.

VBA Syntax

SolverLoad (LoadArea:=, Merge:=, Format:=, ModelName:=)

LoadArea is a reference to a range of cells from which you want to load a

complete model specification. In Solver versions prior to V7.0, LoadArea must
be a reference on the active worksheet; in Version 7.0 or later it can be on any

worksheet.

Merge is a logical value corresponding to either the Merge button or the

Replace button in the dialog that appears after you select the LoadArea

reference and click OK. If it is TRUE, the variable cell selections and

constraints from the LoadArea are merged with the currently defined variables

and constraints. If FALSE, the current model specifications and options are

erased (equivalent to a call to the SolverReset function) before the new

specifications are loaded.

Format corresponds to the Format dropdown list in the Load Model dialog: 1

for “Classic” format and 2 for “PSI Function” format.

In “Classic” format, the first cell in LoadArea contains a formula for the Set

Cell edit box; the second cell contains a formula for the variable cells;

subsequent cells contain additional variable selections and constraints in the

form of logical formulas. The final cells optionally contain an array of Solver

option values.

In “PSI Function” format, the cells contain calls to functions such as PsiVar(),

PsiCon(), PsiObj() and PsiOption(). For details on these functions, see “Using

Psi Optimization Functions” in the chapter “Psi Function Reference.”

ModelName is used only when Format = 2, it overrides the LoadArea

argument and specifies either the name of a worksheet containing the model to
be loaded, or the name of a model previously saved in PSI function format.

Frontline Solvers 2025 Q1 Reference Guide Page 522

SolverOk

Equivalent to choosing Premium Solver... from the Tools menu and specifying

options in the Solver Parameters dialog. Specifies basic Solver options. The

dialog box will not be displayed. (Options specified here will also be displayed

in the Task Pane Model tab.)

VBA Syntax

SolverOk (SetCell:=, MaxMinVal:=, Valueof:=, ByChange:=,

Engine:=, EngineDesc:=)

SetCell corresponds to the Set Cell box in the standard Solver Parameters

dialog, and to the cell in the Objective dialog for the Analytic Solver products.

In the standard Excel Solver, SetCell must be a cell on the active worksheet; in

Analytic Solver, it can be on any sheet. If you enter a cell, you must enter a

value for MaxMinVal.

MaxMinVal corresponds to the options Max, Min and Value Of in the standard

Solver Parameters dialog, and in the Objective dialog for the Analytic Solver

products. Use this option only if you entered a reference for SetCell.

 MaxMinVal Option specified

 1 Maximize

 2 Minimize

 3 Value Of

ValueOf is the number that becomes the target for the cell in the Set Cell box if

MaxMinVal is 3. ValueOf is ignored if the cell is being maximized or

minimized.

ByChange indicates the changing cells (decision variables), as entered in the By

Changing Variable Cells edit box in the standard Solver Parameters dialog, and

the first entry in the Variables list for the Analytic Solver products. In the

standard Excel Solver, ByChange must be a cell reference (usually a cell range
or multiple reference) on the active worksheet; in Analytic Solver cells can be

on any sheet. In the Analytic Solver products, you can add more changing cell

references using Form 2 of the SolverAdd function.

Engine corresponds to the engine dropdown list in the Solver Parameters dialog.

See the EngineDesc argument for an alternative way of selecting the Solver

“engine.”

 Engine Solver engine specified

 1 Nonlinear GRG Solver

 2 Simplex LP (Excel Solver) or LP/Quadratic Solver

 3 Evolutionary Solver
 4 Interval Global Solver

 5 SOCP Barrier Solver

 6 Gurobi Solver

 7 Knitro Solver

 8 Large-Scale GRG Solver

 9 Large-Scale LP Solver

 10 Large-Scale SQP Solver

 11 MOSEK Solver Engine

 12 OptQuest Solver

 13 XPRESS Solver Engine

Frontline Solvers 2025 Q1 Reference Guide Page 523

In Analytic Solver Comprehensive and Analytic Solver Optimization other

values for Engine may be specified to select field-installable Solver engines.

However, these values depend on the ordinal position of the Solver engine in the

dropdown list, which may change when additional Solver engines are installed.

EngineDesc, which is supported only by the Analytic Solver products, provides
an alternative way to select the Solver engine from the dropdown list in the

Solver Parameters dialog. EngineDesc allows you to select a Solver engine by

name rather than by ordinal position in the list:

 EngineDesc Solver engine specified

 “Standard GRG Nonlinear” Nonlinear GRG Solver

 “Standard LP/Quadratic” LP/Quadratic Solver

 “Standard Evolutionary” Evolutionary Solver

 “Standard Interval Global” Interval Global Solver

 “Standard SOCP Barrier” SOCP Barrier Solver

 “Gurobi Solver” Gurobi Solver

 “Knitro Solver” Knitro Solver
 “Large-Scale GRG Solver” Large-Scale GRG Solver

 “Large-Scale LP Solver” Large-Scale LP Solver

 “Large-Scale SQP Solver” Large-Scale SQP Solver

 “MOSEK Solver Engine” MOSEK Solver Engine

 “OptQuest Solver” OptQuest Solver

 “XPRESS Solver Engine” XPRESS Solver Engine

SolverOkDialog

Equivalent to choosing Premium Solver... from the Tools menu and specifying

options in the Solver Parameters dialog. The Solver Parameters dialog box will

be displayed, and the user will be able to change the options you initially

specify.

VBA Syntax

SolverOkDialog (SetCell:=, MaxMinVal:=, Valueof:=, ByChange:=,

Engine:=, EngineDesc:=)

For an explanation of the arguments of this function, see SolverOk.

SolverOptions

Equivalent to choosing Premium Solver... from the Tools menu, then choosing

the Options button in the Solver Parameters dialog box or clicking the Task

Pane Engine tab. Specifies Solver algorithmic options. Arguments supported

by the standard Excel Solver include MaxTime, Iterations, Precision,

AssumeLinear, StepThru, Estimates, Derivatives, SearchOption,

IntTolerance, Scaling, Convergence and AssumeNonNeg.

SolverOptions is provided for compatibility with the standard Excel Solver and

early versions of the Premium Solver products. For programmatic control of
new features and options included in the Premium Solver products, see the

functions in the sections “Solver Model VBA Functions” and “Premium VBA

Functions.”

VBA Syntax

SolverOptions (MaxTime:=, Iterations:=, Precision:=, AssumeLinear:=,

StepThru:=, Estimates:=, Derivatives:=, SearchOption:=, IntTolerance:=,

Scaling:=, Convergence:=, AssumeNonNeg:=, IntCutoff:=, BypassReports:=,

Frontline Solvers 2025 Q1 Reference Guide Page 524

PivotTol:=, ReducedTol:=, CoeffTol:=, SolutionTol:=, Crash:=,

ScalingOption:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If

any of the arguments are of the wrong type, the function returns the #N/A error
value. If all arguments are of the correct type, but an argument has an invalid

value, the function returns a positive integer corresponding to its position. A

zero return value indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time

option.

Iterations must be an integer greater than zero. It corresponds to the Iterations

option.

Precision must be a number between zero and one, but not equal to zero or one.

It corresponds to the Precision option.

AssumeLinear is a logical value corresponding to the Assume Linear Model

option. This argument is included for compatibility with the standard Microsoft

Excel Solver. It is ignored by the Analytic Solver products, which use the

Engine or EngineDesc argument of SolverOk or SolverOkDialog instead.

StepThru is a logical value corresponding to the Show Iteration Results option

setting. If TRUE, Solver pauses at each trial solution; if FALSE it does not. If

you have supplied SolverSolve with a valid VBA function argument, your

function will be called each time Solver pauses; otherwise the standard Show

Trial Solution dialog box will appear.

Estimates is the number 1 or 2 and corresponds to the Estimates option: 1 for

Tangent and 2 for Quadratic.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1

for Forward and 2 for Central.

SearchOption is the number 1 or 2 and corresponds to the Search option: 1 for

Newton and 2 for Conjugate.

IntTolerance is a number between zero and one, corresponding to the Tolerance

option. This argument applies only if integer constraints have been defined.

Scaling is a logical value corresponding to the Use Automatic Scaling option. If

TRUE, then Solver rescales the objective and constraints internally to similar

orders of magnitude. If FALSE, Solver uses values directly from the worksheet.
In early Excel versions, this option affects the nonlinear GRG Solver only; in

Excel 2013 and the Analytic Solver products, this option affects all Solver

engines.

Convergence is a number between zero and one, but not equal to zero or one. It

corresponds to the Convergence option.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative

option setting. If TRUE, Solver supplies a lower bound of zero for all variables

without explicit lower bounds in the Constraint list box. If FALSE, no action is

taken.

IntCutoff is a number corresponding to the Integer Cutoff option. This
argument applies only if integer constraints have been defined.

BypassReports is a logical value corresponding to the Bypass Solver Reports

option setting. If TRUE, the Solver will skip preparing the information needed

to create Solver Reports. If FALSE, the Solver will prepare for the reports. For

Frontline Solvers 2025 Q1 Reference Guide Page 525

large models, bypassing the Solver Reports can speed up the solution process

considerably.

PivotTol is a number between zero and one, corresponding to the Pivot

Tolerance options for the Simplex LP Solver (For backwards compatibility only)

ReducedTol is a number between zero and one, corresponding to the Reduced

Tolerance option for the Simplex LP Solver in Analytic Solver Upgrade. (For

backwards compatibility only)

CoeffTol is no longer used, but is included for compatibility with previous

versions of the Premium Solver products.

SolutionTol is no longer used, but is included for compatibility with previous

versions of the Premium Solver products.

Crash is no longer used, but is included for compatibility with previous versions

of the Premium Solver products.

ScalingOption is no longer used, but is included for compatibility with previous

versions of the Premium Solver products.

SolverReset

Equivalent to choosing Premium Solver... from the Tools menu and choosing

the Reset All button in the Solver Parameters dialog box or clicking Reset All on

the Analytic Solver ribbon. Erases all cell selections and constraints from the

Solver Parameters dialog box, and restores all the settings on the Solver Options,

Limit Options and Integer Options dialog tab or the Task Pane Model, Platform
and Engine tabs to their defaults. The SolverReset function may be

automatically performed when you call SolverLoad.

VBA Syntax

SolverReset

SolverSave

Equivalent to choosing Premium Solver... from the Tools menu, choosing the

Options button from the Solver Parameters dialog box, and choosing the Save

Model... button in the Solver Options dialog box or clicking the Load/Save icon

on the Analytic Solver ribbon. Saves the model specifications on the worksheet.

The Format and ModelName arguments are supported only in Version 7.0 or

later of the Premium Solver products.

VBA Syntax

SolverSave (SaveArea:=, Format:=, ModelName:=)

SaveArea is a reference to a range of cells or to the topmost cell in a column of

cells where you want to save the current model’s specifications. In Solver

versions prior to V7.0, SaveArea must be a reference on the active worksheet;

in Version 7.0 or later it can be on any worksheet

Format corresponds to the Format dropdown list in the Load Model dialog: 1
for “Classic” format and 2 for “PSI Function” format.

In “Classic” format, the first cell in SaveArea contains a formula for the Set

Cell edit box; the second cell contains a formula for the changing cells;

subsequent cells contain additional variable selections and constraints in the

form of logical formulas. The final cells optionally contain an array of Solver

option values.

Frontline Solvers 2025 Q1 Reference Guide Page 526

In “PSI Function” format, the cells contain calls to functions such as PsiVar(),

PsiCon(), PsiObj() and PsiOption(). For details on these functions, see

“Defining Your Model with PSI Functions” in the chapter “Building Solver

Models.”

ModelName is used only when Format = 2, and specifies a text name for the
model. This name is saved as the last argument of each PSI Function call in the

saved model specifications.

Remarks

If you specify only one cell for SaveArea, the area is extended downwards for

as many cells as are required to hold the model specifications.

If you specify more than one cell and the area is too small for the problem, the

model specifications will not be saved, and the function will return the value 2.

SolverSolve

Equivalent to choosing Premium Solver... from the Tools menu and choosing

the Solve button in the Solver Parameters dialog box or clicking the Optimize

icon on the Analytic Solver ribbon. If successful, returns an integer value

indicating the condition that caused the Solver to stop, as described below.

VBA Syntax

SolverSolve (UserFinish:=, ShowRef:=)

UserFinish is a logical value specifying whether to show the standard Solver

Results dialog box.

If UserFinish is TRUE, SolverSolve returns its integer value without displaying

anything. Your VBA code should decide what action to take (for example, by

examining the return value or presenting its own dialog box); it must call
SolverFinish in any case to return the worksheet to its proper state.

If UserFinish is FALSE or omitted, Solver displays the standard Solver Results

dialog box, allowing the user to keep or discard the final solution values, and

optionally produce reports.

ShowRef is a VBA function to be called in place of displaying the Show Trial

Solution dialog box. It is used when you want to gain control whenever Solver

finds a new “Trial Solution” value, the user presses the ESC key, or a limit on

the solution process is exceeded. Here is an example of defining and using the

argument ShowRef:

Sub Test

 answer = SolverSolve(True, ″ShowTrial″)

End Sub

Function ShowTrial(Reason As Integer)

 Msgbox Reason

 ShowTrial = 0

End Function

The argument Reason, which must be present, is an integer value from 1 to 5:

1. Function called (on every iteration) because the Show Iteration

Results box in the Solver Options dialog was checked, or function
called because the user pressed ESC to interrupt the Solver.

Frontline Solvers 2025 Q1 Reference Guide Page 527

2. Function called because the Max Time limit in the Solver Options

dialog was exceeded.

3. Function called because the Max Iterations limit in the Solver

Options dialog was exceeded.

4. Function called because the Max Subproblems limit on the Integer

Options or Limit Options dialog tab was exceeded (Analytic

Solver products only).

5. Function called because the Max Integer Sols limit on the Integer

Options dialog tab or the Max Feasible Sols limit on the Limit

Options dialog tab was exceeded (Analytic Solver products only).

The function must return 0 if the Solver should stop (same as the Stop button in

the Show Trial Solution dialog), 1 if it should continue running (same as the

Continue button), or 2 if it should restart the solution process (same as the

Restart button). Note: In the standard Excel Solver and the Premium Solver

prior to V5.0, the function should return FALSE instead of 0 to stop, or TRUE
instead of 1 to continue running; the restart alternative is not available.

Your VBA function can inspect the current solution values on the worksheet, or

take other actions such as saving or charting the intermediate values. However,

it should not alter the values in the variable cells, or alter the formulas in the

objective and constraint cells, as this could adversely affect the solution process.

In Analytic Solver, if the PSI Interpreter is used, the worksheet is not updated

with new variable values until the end of the solution process; you cannot use

the traditional VBA functions to inspect variable values on each Trial Solution,

but you can use the object-oriented API to do this. See “Evaluators Called

During the Solution Process” in the chapter “Using the Object-Oriented API”
for details.

Remarks

If a Solver problem has not been completely defined, SolverSolve returns the

#N/A error value. Otherwise the Solver engine is started, and the problem

specifications are passed to it. When the solution process is complete,

SolverSolve returns an integer value indicating the stopping condition. The

standard Excel Solver returns values from 0 to 13; the Analytic Solver products

return values from –1 to 21. When the Interval Global Solver or field-installable

Solver engines are used, Analytic Solver may return engine-specific values for

custom stopping conditions, starting at 1000.

Value Stopping Condition

-1 A licensing problem was detected, or your trial license

 has expired.

0 Solver found a solution. All constraints and optimality

 conditions are satisfied.

1 Solver has converged to the current solution. All constraints

 are satisfied.

2 Solver cannot improve the current solution. All constraints are

 satisfied.

3 Stop chosen when the maximum iteration limit was reached.

4 The Set Cell values do not converge.

5 Solver could not find a feasible solution.

6 Solver stopped at user’s request.

Frontline Solvers 2025 Q1 Reference Guide Page 528

7 The linearity conditions required by this Solver engine are

 not satisfied.

8 The problem is too large for Solver to handle.

9 Solver encountered an error value in a target or constraint

 cell.

10 Stop chosen when the maximum time limit was reached.

11 There is not enough memory available to solve the problem.

12 Error condition at cell address (Analytic Solver only).

13 Error in model. Please verify that all cells and constraints

 are valid.

14 Solver found an integer solution within tolerance. All

 constraints are satisfied.

15 Stop chosen when the maximum number of feasible [integer]

 solutions was reached.

16 Stop chosen when the maximum number of feasible [integer]

 subproblems was reached.

17 Solver converged in probability to a global solution.

18 All variables must have both upper and lower bounds.

19 Variable bounds conflict in binary or alldifferent constraint.

20 Lower and upper bounds on variables allow no feasible solution.

21 Solver encountered an error computing derivatives (Analytic

 Solver only).

1000 Interval Global Solver requires Solve With Automatic and strictly

 smooth functions (Analytic Solver only).

1001 Function cannot be evaluated for given real or interval

 arguments (Analytic Solver only).

1002 Solution found, but not proven globally optimal (Analytic Solver

 only).

Solver Model VBA Functions
The VBA functions in this section are available only in Analytic Solver. You

can use these functions to programmatically use the Polymorphic Spreadsheet
Interpreter to check your model for Gradients, Structure and Convexity, obtain

model statistics, produce the Structure Report and Transformation Report,

determine whether and how the Interpreter will be used when you call

SolverSolve, and control the Interpreter’s advanced options.

SolverModel

Equivalent to choosing Premium Solver... from the Tools menu, choosing the

Model button in the Solver Parameters dialog, setting options in the Solver

Model dialog, and clicking Close or setting the individual options on the Task

Pane Platform tab. Specifies options for the Polymorphic Spreadsheet

Interpreter.

Frontline Solvers 2025 Q1 Reference Guide Page 529

VBA Syntax

SolverModel (Interpreter:=, CheckFor:=, SolveTransformed:=,

ShowTransformations:=, ShowExceptions:=, DesiredModel:=,

Interactive:=, UsePsiFunctions:=, Engines:=, ReqSmooth:=, FastSetup:=,

Sparse:=, ActiveOnly:=)

The arguments correspond to the options in the Solver Model dialog box. The

Check For option appears on all four tabs of this dialog; the Interpreter option

appears on the Options tab; the Solve Transformed Problem option appears on

the Model tab; the Desired Model option appears on the Diagnosis tab; and the

remaining options appear on the Options tab.

In the Task Pane Platform tab, the CheckFor options is labeled as Supply Engine

With and appears in the Advanced section, Interpreter appears in the both the

Optimization and Simulation sections, Solver Transformed is labled as

Nonsmooth Model Transformation and appears in the Transformation section,
Show Transformations has been removed and is no longer used, Show

Exceptions has been removed and is no longer used, Desired Model has been

renamed to Intended Model Type and appears in the Diagnosis section,

Interactive and Use PsiFunctions appear in the Optimization section,

ReqSmooth (labeled as Use Internal Sparse Representation) and ActiveOnly

(labeled asOnly Parse Active Sheet) both appear in the Advanced section.

If an argument is omitted, the Solver maintains the current setting for that

option. If any of the arguments are of the wrong type, the function returns the

#N/A error value. If all arguments are of the correct type, but an argument has

an invalid value, the function returns a positive integer corresponding to its

position. A zero return value indicates that all options were accepted.

Interpreter is a number corresponding to the option selected in the Solve With

option group on the Original tab or the option setting for Interpreter on the Task

Pane Model tab:

 Interpreter Action on SolverSolve

 1 Use PSI Interpreter

 2 Use Excel Interpreter

Note: On the Model Task Pane, this option includes an alternative Automatic

setting, see the chapter Platform Option Reference for more information.

CheckFor is a number corresponding to the option selected in the Check For
option group or for the Supply Engine with option on the Task Pane Platform

tab:

 CheckFor Option Selected

 1 Gradients

 2 Structure

 3 Convexity

 4 Automatic

SolveTransformed is a logical value corresponding to the Solve Transformed

Problem check box on the Transformed tab. If TRUE, the Solver solves the

Transformed problem when the SolverSolve function is called. If FALSE, the
Solver solves the Original problem when the SolverSolve function is called.

ShowTransformations This function is included for backward compatibility

only; a logical value corresponding to the Show Transformations check box on

the Transformed tab. If TRUE, the Solver produces a Transformation Report

when the SolverModelCheck function is called. If FALSE, the report is not

produced.

Frontline Solvers 2025 Q1 Reference Guide Page 530

ShowExceptions This function is included for backward compatibility only; a

logical value corresponding to the Show Exceptions to Desired Model check

box on the Options tab. If TRUE, the Solver produces a Structure Report when

the SolverModelCheck function is called. If FALSE, the report is not produced.

DesiredModel is a number corresponding to the option selected in the Desired
Model option group.

 DesiredModel Desired Model Type

 1 Linear

 2 Quadratic

 3 Nonlinear

 4 For Backward Compatibility Only

 5 For Backward Compatibility Only

Interactive is a logical value corresponding to the Use Interactive Optimization

check box on the Options tab or in the Optimization section of the Task Pane

Platform tab. If TRUE, Interactive Optimization is enabled when Excel is in
worksheet Ready mode. If FALSE, Interactive Optimization is disabled.

UsePsiFunctions is a logical value corresponding to the Use PSI Functions

check box on the Options tab or in the Optimization section of the Task Pane

Platform tab . If TRUE, the Solver recognizes PSI functions such as PsiVar(),

PsiCon(), PsiObj(), etc. that define the model. If FALSE, the Solver ignores any

PSI functions it finds on the worksheet.

Engines is a number corresponding to the option selected in the Select Solver

Engines Based on Model Type on the Options dialog:

 Engines Engines Shown in List

 1 All
 2 Valid

 3 Good

 4 Best

ReqSmooth is a logical value corresponding to the Req Smooth check box in

the Advanced options group on the Options tab. If TRUE, the Solver treats the

special functions ABS, IF, MAX, MIN, and SIGN as non-smooth. If FALSE,

the Solver treats these functions as smooth nonlinear.

FastSetup This function is included for backward compatibility only; is a

logical value corresponding to the Fast Setup check box in the Advanced options

group on the Options tab. If TRUE, the Solver attempts to use old-style Fast

Problem Setup before using the Polymorphic Spreadsheet Interpreter. If
FALSE, the Solver uses the Interpreter directly. If the Interpreter option is set to

Excel Interpreter, this option is ignored and the Solver will always attempt to

use old-style Fast Problem Setup.

Sparse is a logical value corresponding to the Sparse check box in the

Advanced options group on the Options tab and in the Advanced section of the

Task Pane Platform tab. If TRUE, the Polymorphic Spreadsheet Interpreter will

operate internally in its own Sparse mode. If FALSE, the Interpreter operates in

Dense mode.

ActiveOnly is a logical value corresponding to the Active Only check box in the

Advanced options group on the Options tab and in the Advanced section of the
Task Pane Platform tab. If TRUE, the Polymorphic Spreadsheet Interpreter will

analyze objective and constraint function formulas only on the active sheet. If

FALSE, the Interpreter analyze all objective and constraint function formulas in

the workbook.

Frontline Solvers 2025 Q1 Reference Guide Page 531

SolveWith is included for compatibility with the Premium Solver Platform V6.0

– V6.5. In V7.0, it corresponds to the Interpreter and Check For options, as

follows:

 SolveWith Equivalent To

 1 Interpreter = Excel
 2 Interpreter = PSI, CheckFor = Gradients

 3 Interpreter = PSI, CheckFor = Structure

 4 Interpreter = PSI, CheckFor = Convexity

 5 Interpreter = PSI, CheckFor = Automatic

SolverModelCheck

Equivalent to choosing Premium Solver... from the Tools menu, choosing the

Model button in the Solver Parameters dialog box, and clicking the Check

Model button in the Solver Model dialog or clicking the down arrow on the

Optimize icon and selecting Analyze Original Model or Analyze Transformed

Model. The type of analysis performed is determined by the current setting of

the SolverModel CheckFor argument.

VBA Syntax

SolverModelCheck (Transformed:=)

Transformed is a logical value that corresponds to the tab (Original or

Transformed) active when the Check Model button is pressed. If TRUE, the

Polymorphic Spreadsheet Interpreter checks the Transformed model. If FALSE,

the Interpreter checks the Original model.

SolverModelGet

Returns Solver Model option settings for the current Solver problem on the

specified sheet. These settings are entered in the Solver Model dialog. The

available settings include the “read-only” edit boxes on the Model tab of the

Solver Model dialog; these values are valid only after you call

SolverModelCheck (FALSE) and SolverModelCheck (TRUE) respectively.

SolverModelGet(28) will return the type of model (Original or Transformed) as
determined by the most recent call to SolverModelCheck.

VBA Syntax

SolverModelGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The

following settings are specified in the Solver Model dialog box.

TypeNum Returns

1 The All Variables value on the Original tab

2 The Smooth Variables value on the Original tab

3 The Quadratic Variables value on the Original tab

4 The Linear Variables value on the Original tab

5 The Bounds value on the Original tab

6 The Integers value on the Original tab

7 The All Functions value on the Original tab

Frontline Solvers 2025 Q1 Reference Guide Page 532

8 The Smooth Functions value on the Original tab

9 The Quadratic Functions value on the Original tab

10 The Linear Functions value on the Original tab

11 The All NonZeroes value on the Original tab

12 The Smooth NonZeroes value on the Original tab

13 The Quadratic NonZeroes value on the Original tab

14 The Linear NonZeroes value on the Original tab

15 The Sparsity % value on the Original tab

16 The Total Cells value on the Original tab

17 A number corresponding to the Check For option: 1 for

 Gradients, 2 for Structure, or 3 for Convexity

18 TRUE if the Solve Transformed Problem check box is

selected; FALSE otherwise

19 This function is included for backward compatibility

only; TRUE if the Show Transformations check box is

selected; FALSE otherwise

20 A number corresponding to the Desired Model option: 1 for

Linear, 2 for Quadratic, 3 for Nonlinear, 4 included for

backward compatibility only, or 4 included for backward

compatibility only

21 A number corresponding to the V6 Solve With option: 1 for No

 Action (Excel Interpreter), 2 for Gradients, 3 for Structure,

 4 for Convexity, or 5 for Automatic

22 A number corresponding to the Engines option: 1 for All,

 2 for Valid, 3 for Good, or 4 for Best

23 TRUE if the Req Smooth option is set True or selected;

FALSE otherwise

24 TRUE if the Fast Setup option is selected or set to True;

FALSE otherwise

25 TRUE if the Sparse option is selected or set to True;

FALSE otherwise

26 TRUE if the Active Only option is selected or set to

True; FALSE otherwise

27 This function is included for backward compatibility

only; TRUE if the Show Exceptions to Desired Model check
box is selected; FALSE otherwise

28 A string corresponding to the type of model: "LP", "QP",

"QCP", "NLP", "NSP", or "Unknown". "LP", "QP", "QCP", or

"NLP" may be followed by a space and "Convex" or

"NonCvx".

29 TRUE if the Interactive Optimization option is selected

or set to True; FALSE otherwise

30 TRUE if the Use PSI Functions option is selected or set

to True; FALSE otherwise

31 The All Variables value on the Model tab or on the Task

Pane Model tab

Frontline Solvers 2025 Q1 Reference Guide Page 533

32 The Smooth Variables value on the Model tab or on the

Task Pane Model tab

33 Included for backward compatibility only; The Quadratic

Variables value on the Original

34 The Linear Variables value on the Model tab or on the

Task Pane Model tab

35 The Bounds value on the Model tab or on the Task Pane

Model tab

36 The Integers value on the Model tab or on the Task Pane

Model tab

37 The All Functions value on the Model tab or on the Task

Pane Model tab

38 The Smooth Functions value on the Model tab or on the

Task Pane Model tab

39 Included for backward compatibility only; The Quadratic

Functions value on the Original tab

40 The Linear Functions value on the Model tab or on the

Task Pane Model tab

41 Included for backward compatibility only; The All

NonZeroes value on the Model tab or on the Task Pane

Model tab

42 Included for backward compatibility only; The Smooth

NonZeroes value on the Original tab

43 Included for backward compatibility only; The Quadratic

NonZeroes value on the Original tab

44 Included for backward compatibility only; The Linear

NonZeroes value on the Original tab

45 The Sparsity % value on the Model tab or on the Task Pane

Model tab

46 Included for backward compatibility only; The Total Cells

value on the Original tab

SolverDependents

This function is included for backward compatibility only; use the SolverModel-

Check function in new applications. Equivalent to choosing Premium Solver...
from the Tools menu, choosing the Model button in the Solver Parameters

dialog box, selecting the Structure option in the Check For option group, and

clicking the Check Model button in the Solver Model dialog.

VBA Syntax

SolverDependents

SolverFormulas

This function is included for backward compatibility only; use the SolverModel-

Check function in new applications. Equivalent to choosing Premium Solver...

from the Tools menu, choosing the Model button in the Solver Parameters

dialog box, selecting the Gradients option in the Check For option group, and

clicking the Check Model button in the Solver Model dialog.

Frontline Solvers 2025 Q1 Reference Guide Page 534

VBA Syntax

SolverFormulas

Premium VBA Functions
The VBA functions in this section were first introduced in Version 3.0 of the

Premium Solver products, and expanded in later versions. To control most of

the new features and options in the Analytic Solver products, you’ll need to use

these functions – notably, the SolverEVOptions, SolverIGOptions,

SolverLimOptions and SolverIntOptions functions. (Or, in Version 7.0 and

later, you can use the new object-oriented API to control these features and

options; see the Analytic Solver User Guide chapter, “Automating Optimization

in VBA” for help.) If you want to write VBA code that can be used with both

the standard Solver and the Premium or Analytic Solver products, you should

use only functions in the section “Standard VBA Functions.”

SolverEVGet

Returns Evolutionary Solver option settings for the current Solver problem on

the specified sheet. These settings are entered on the General tab for Solver

options or on the Task Pane Engine tab when the Evolutionary Solver is

selected in the Solver Engine dropdown list.

Several additional options can only be set when using the Obect – Oriented API,

see the Analytic Solver User Guide chapter, “Automating Optimation in VBA”

and the “Solver Engine Option Reference” chapter in this guide for more

information.

VBA Syntax

SolverEVGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The

following settings are specified in the Evolutionary Solver Options dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 The Population Size value (as a decimal number)

6 The Mutation Rate value (as a decimal number)

7 TRUE if the Require Bounds on Variables option is

 selected or set to True; FALSE otherwise

8 TRUE if the Show Iteration Result option is selected or

set to True; FALSE otherwise

9 TRUE if the Use Automatic Scaling option is selected or set to

True; FALSE otherwise

10 TRUE if the Assume Non-Negative option is selected or set to

True; FALSE otherwise

Frontline Solvers 2025 Q1 Reference Guide Page 535

11 TRUE if the Bypass Solver Reports option is selected or set to

True; FALSE otherwise

12 The Random Seed value (as a decimal number)

13 A number corresponding to the Local Search option: 1 for

Randomized Local Search, 2 for Gradient Local, 3* for SQP with

Gradient Strategy, or 4 for Automatic Choice.

14 TRUE if the Fix Nonsmooth Variables check box is selected;

 FALSE otherwise

*If using Analytic Solver Upgrade, 3 = Deterministic Pattern Search.

SheetName is the name of a worksheet that contains the Solver problem for

which you want information. If SheetName is omitted, it is assumed to be the

active sheet.

SolverEVOptions

Equivalent to choosing Premium Solver... from the Tools menu and then

choosing the Options button in the Solver Parameters dialog box when the

Evolutionary Solver is selected in the Solver Engine dropdown list. Specifies

options for the Evolutionary Solver.

VBA Syntax

SolverEVOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,

PopulationSize:=, MutationRate:=, RandomSeed:=, RequireBounds:=,

StepThru:=, Scaling:=, AssumeNonNeg:=, BypassReports:=, LocalSearch:=

FixNonSmooth:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If

any of the arguments are of the wrong type, the function returns the #N/A error

value. If all arguments are of the correct type, but an argument has an invalid

value, the function returns a positive integer corresponding to its position. A

zero return value indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time

option.

Iterations must be an integer greater than zero. It corresponds to the Iterations

option.

Precision must be a number between zero and one, but not equal to zero or one.

It corresponds to the Precision option.

Convergence is a number between zero and one, but not equal to zero or one. It

corresponds to the Convergence option.

PopulationSize must be an integer greater than or equal to zero. It corresponds

to the Population Size option.

MutationRate must be a number between zero and one, but not equal to zero or

one. It corresponds to the Mutation Rate option.

RandomSeed must be an integer greater than zero. It corresponds to the

Random Seed option.

RequireBounds is a logical value corresponding to the Require Bounds on

Variables option. If TRUE, the Evolutionary Solver will return immediately

from a call to the SolverSolve function with a value of 18 if any of the variables

Frontline Solvers 2025 Q1 Reference Guide Page 536

do not have both lower and upper bounds defined. If FALSE, the Evolutionary

Solver will attempt to solve the problem without bounds on all of the variables.

StepThru is a logical value corresponding to the Show Iteration Results option.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function, your function will be called
each time Solver pauses; otherwise the standard Show Trial Solution dialog box

will appear.

Scaling is a logical value corresponding to the Use Automatic Scaling option. If

TRUE, then Solver rescales the objective and constraints internally to similar

orders of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative

option. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports

option. If TRUE, the Solver will skip preparing the information needed to
create Solver Reports. If FALSE, the Solver will prepare for the reports. For

large models, bypassing the Solver Reports can speed up the solution

considerably.

LocalSearch is a number corresponding to the option selected in the Local

Search option group:

 LocalSearch Local Search Strategy

 1 Randomized Local Search

 2 Gradient Local Search

 3 SQP with Gradient Sampling*

 4 Automatic Choice

*If using Analytic Solver Upgrade, 3 = Deterministic Pattern Search.

In the Premium Solver Platform V5.5 and later, a value of 4 selects the

Automatic Choice option; this allows the Solver to choose a local search method

automatically – Randomized Local Search, Gradient Local Search, or Linear
Local Gradient Search, depending on the characteristics of the problem.

FixNonSmooth is a logical value corresponding to the Fix Nonsmooth

Variables option. If TRUE, the Solver will fix the non-smooth variables to their

current values during each local search, and allow only smooth and linear

variables to be varied. If FALSE, the Solver will allow all of the variables to be

varied.

SolverGRGGet

Returns GRG Solver option settings for the current Solver problem on the

specified sheet. These settings are entered on the General tab for Solver options

or on the Task Pane Engine tab when the GRG Solver is selected in the Solver

Engine dropdown list.

VBA Syntax

SolverGRGGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The

following settings are specified on the General tab in the GRG Solver Options

dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

Frontline Solvers 2025 Q1 Reference Guide Page 537

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 TRUE if the Show Iteration Result option is selected or

set to True; FALSE otherwise

6 TRUE if the Use Automatic Scaling option is selected or set to

True; FALSE otherwise

7 TRUE if the Assume Non-Negative option is selected or set to

True; FALSE otherwise

8 TRUE if the Bypass Solver Reports option is selected or set to

True; FALSE otherwise

9 TRUE if the Recognize Linear Variables option is selected or set

to True; FALSE otherwise

10 A number corresponding to the type of Estimates:

 1 = Tangent

 2 = Quadratic

11 A number corresponding to the type of Derivatives:

 1 = Forward

 2 = Central

12 A number corresponding to the type of Search:

 1 = Newton

 2 = Conjugate

13 The Population Size value (as a decimal number)

14 The Random Seed value (as a decimal number)

15 TRUE if the Multistart Search option is selected or set to True;

FALSE otherwise

16 TRUE if the Topographic Search option is selected or set to

True; FALSE otherwise

17 TRUE if Require Bounds on Variables option is selected or set to

True; FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for

which you want information. If SheetName is omitted, it is assumed to be the

active sheet.

SolverGRGOptions

Equivalent to choosing Premium Solver... from the Tools menu and then

choosing the Options button in the Solver Parameters dialog box or selecting the

Task Pane Engine tab when the GRG Nonlinear Solver is selected in the Solver

Engines dropdown list. Specifies options for the GRG Solver.

VBA Syntax

SolverGRGOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,

PopulationSize:=, RandomSeed:=, StepThru:=, Scaling:=,

,AssumeNonNeg:=, BypassReports:=, RecognizeLinear:=, MultiStart:=,

TopoSearch:=, RequireBounds:=, Estimates:=, Derivatives:=,

SearchOption:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If

Frontline Solvers 2025 Q1 Reference Guide Page 538

any of the arguments are of the wrong type, the function returns the #N/A error

value. If all arguments are of the correct type, but an argument has an invalid

value, the function returns a positive integer corresponding to its position. A

zero return value indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time
option.

Iterations must be an integer greater than zero. It corresponds to the Iterations

option.

Precision must be a number between zero and one, but not equal to zero or one.

It corresponds to the Precision option.

Convergence is a number between zero and one, but not equal to zero or one. It

corresponds to the Convergence option.

PopulationSize must be an integer greater than or equal to zero. It corresponds

to the Population Size option.

RandomSeed must be an integer greater than zero. It corresponds to the

Random Seed option.

StepThru is a logical value corresponding to the Show Iteration Results option.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function, your function will be called

each time Solver pauses; otherwise the standard Show Trial Solution dialog box

will appear.

Scaling is a logical value corresponding to the Use Automatic Scaling option. If

TRUE, then Solver rescales the objective and constraints internally to similar

orders of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative

option. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports

option. If TRUE, the Solver will skip preparing the information needed to

create Solver Reports. If FALSE, the Solver will prepare for the reports. For

large models, bypassing the Solver Reports can speed up the solution

considerably.

RecognizeLinear is a logical value corresponding to the Recognize Linear

Variables option. If TRUE, the Solver will recognize variables whose partial
derivatives are not changing during the solution process, and assume that they

occur linearly in the problem. If FALSE, the Solver will not make any

assumptions about such variables. See the chapter “Solver Engine Option

Reference” for a further discussion of this option.

MultiStart is a logical value corresponding to the Multistart Search option. If

TRUE, the Solver will use Multistart Search, in conjunction with the GRG

Solver, to seek a globally optimal solution. If FALSE, the GRG Solver alone

will be used to search for a locally optimal solution.

TopoSearch is a logical value corresponding to the Topographic Search option.

If TRUE, and if Multistart Search is selected, the Solver will construct a

topography from the randomly sampled initial points, and use it to guide the
search process.

RequireBounds is a logical value corresponding to the Require Bounds on

Variables option. If TRUE, the Solver will return immediately from a call to the

SolverSolve function with a value of 18 if any of the variables do not have both

Frontline Solvers 2025 Q1 Reference Guide Page 539

lower and upper bounds defined. If FALSE, then Multistart Search (if selected)

will attempt to find a globally optimal solution without bounds on all of the

variables.

Estimates is the number 1 or 2 and corresponds to the Estimates option: 1 for

Tangent and 2 for Quadratic.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1

for Forward and 2 for Central.

SearchOption is the number 1 or 2 and corresponds to the Search option: 1 for

Newton and 2 for Conjugate.

SolverIGGet

Returns Interval Global Solver option settings for the current Solver problem on

the specified sheet. These settings are entered on the General tab for Solver

options or on the Task Pane Engine tab when the Interval Global Solver is

selected in the Solver Engine dropdown list.

VBA Syntax

SolverIGGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The

following settings are specified on the General tab in the Interval Global Solver

Options dialog box and on the Task Pane Model tab when the Interval Global

Solver is selected in the Solver Engine dropdown list.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Accuracy value (as a decimal number)

4 The Resolution value (as a decimal number)

5 The Max Time w/o Improvement value (as a decimal number)

6 TRUE if the Show Iteration Result check box is selected;

 FALSE otherwise

7 TRUE if the Assume Non-Negative check box is selected;

 FALSE otherwise

8 TRUE if the Bypass Solver Reports option is selected or set to

TRUE; otherwise

9 TRUE if the Abs vs. Relative Stop option is selected or set to

TRUE; FALSE otherwise

10 TRUE if the Assume Stationary option is selected or set to TRUE;

FALSE otherwise

11 A number corresponding to the type of Method:

 1 = Classic Interval

 2 = Linear Enclosure

12 TRUE if the Second Order option is selected or set to TRUE;

FALSE otherwise

13 TRUE if the LP Test option is selected or set to TRUE heck box

is selected; FALSE otherwise

Frontline Solvers 2025 Q1 Reference Guide Page 540

14 TRUE if the LP Phase II option is selected or set to TRUE; FALSE

otherwise

SolverIGOptions

Equivalent to choosing Premium Solver... from the Tools menu and then

choosing the Options button in the Solver Parameters dialog box or clicking
Task Pane Engine tab when the Interval Global Solver is selected in the Solver

Engines dropdown list. Specifies options for the Interval Global Solver.

VBA Syntax

SolverIGOptions (MaxTime:=, Iterations:=, Accuracy:=, Resolution:=,

MaxTimeNoImp:=, StepThru:=, AssumeNonNeg:=, BypassReports:=,

AbsRelStop:=, AssumeStationary:=, Method:=, SecondOrder:=, LPTest:=,

LPPhaseII:=)

The arguments correspond to the options in the Solver Options dialog box. If an

argument is omitted, the Solver maintains the current setting for that option. If

any of the arguments are of the wrong type, the function returns the #N/A error

value. If all arguments are of the correct type, but an argument has an invalid

value, the function returns a positive integer corresponding to its position. A

zero return value indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time

option.

Iterations must be an integer greater than zero. It corresponds to the Iterations

option.

Accuracy must be a number between zero and one, but not equal to zero or one.

It corresponds to the Accuracy option.

Resolution is a number greater than zero. It corresponds to the Resolution

option.

MaxTimeNoImp is a number corresponding to the Max Time w/o Improvement

option. This argument determines when the Interval Global Solver will stop with

the message “Solver cannot improve the current solution.”

StepThru is a logical value corresponding to the Show Iteration Results option.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function, your function will be called
each time Solver pauses; otherwise the standard Show Trial Solution dialog box

will appear.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative

option. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports

option. If TRUE, the Solver will skip preparing the information needed to

create Solver Reports. If FALSE, the Solver will prepare for the reports. For

large models, bypassing the Solver Reports can speed up the solution

considerably.

AbsRelStop is a logical value corresponding to the Abs vs. Relative Stop

option. If TRUE, the Solver will use the absolute difference when comparing

the current solution’s objective to the best bound. If FALSE, the Solver will use

the relative difference when making the comparison.

Frontline Solvers 2025 Q1 Reference Guide Page 541

AssumeStationary is a logical value corresponding to the Assume Stationary

option. If TRUE, the Solver will assume that the optimal solution is a stationary

point and is not at a decision variable bound. If FALSE, the Solver will search

for optimal solutions at all points, including those where variables are at their

bounds.

Method is the number 1 or 2 and corresponds to the Method option: 1 for

Classic Interval and 2 for Linear Enclosure.

SecondOrder is a logical value corresponding to the Second Order option. This

option is used only if the Method option is 1. If TRUE, the Solver will use

second order (Interval Newton) methods. If FALSE, the Solver will use only

first order methods.

LPTest is a logical value corresponding to the LP Test option. This option is

used only if the Method option is 2. If TRUE, the Solver will use a Simplex

method Phase I test to eliminate boxes that contain no feasible solutions. If

FALSE, the Solver will not use this test.

LPPhaseII is a logical value corresponding to the LP Phase II option. If TRUE,

the Solver will use a Simplex method Phase II procedure to seek an improved

bound on the objective in a box. If FALSE, the Solver will not use this

procedure.

SolverIntGet

Returns integer (Branch & Bound) option settings for the current Solver

problem on the specified sheet. These settings are entered on the Integer dialog

tab or on the Task Pane Engine tab for any of the Solver engines.

VBA Syntax

SolverIntGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The

following settings are specified on the Integer dialog tab box.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Feasible Sols value (as a decimal number)

3 The (Integer) Tolerance value (as a decimal number)

4 The Integer Cutoff value (as a decimal number)

5 TRUE if the Solve Without Integer Constraints option is

 selected or set to True; FALSE otherwise

6 TRUE if the Use Dual Simplex for Subproblems option is

selected or set to True in the Standard LP Simplex

Engine; FALSE otherwise. (For backwards compatibility

only)

7 TRUE if the Probing / Feasibility option is

selected or set to True in the Standard LP Simplex Engine;

FALSE otherwise (For backwards compatibility only)

8 TRUE if the Bounds Improvement option is selected or set

to True in the Standard LP Simplex Engine; FALSE

otherwise (For backwards compatibility only)

Frontline Solvers 2025 Q1 Reference Guide Page 542

9 TRUE if the Optimality Fixing option is selected or set

to True in the Standard LP Simplex Engine; FALSE

otherwise. (For backwards compatibility only)

10 TRUE if the Variable Reordering option is selected or set

to True; FALSE otherwise. This option is no longer used.

11 TRUE if the Primal Heuristic option is selected or set to

True; FALSE otherwise. This option is no longer used.

12 The Max Gomory Cuts value (as a decimal number) in the

Standard LP Simplex Engine. (For backwards compatibility

only)

13 The Max Gomory Passes value (as a decimal number) in the

Standard LP Simplex Engine (For backwards compatibility

only)

14 The Max Knapsack Cuts value (as a decimal number) in the

Standard LP Simplex Engine (For backwards compatibility

only)

15 The Max Knapsack Passes value (as a decimal number) in

the Standard LP Simplex Engine (For backwards

compatibility only)

16 The Max Cut Passes at Root value (as a decimal number).

This option is no longer used.

17 The Max Cut Passes in Tree value (as a decimal number).

This option is no longer used.

18 TRUE if the Use Strong Branching check box is selected;

 FALSE otherwise. This option is no longer used.

19 TRUE if the Lift and Cover (Cuts) check box is selected;

 FALSE otherwise. This option is no longer used in

 Version 8.0 or later.

20 TRUE if the Rounding (Cuts) check box is selected;

 FALSE otherwise. This option is no longer used in

 Version 8.0. This option is no longer used.

21 TRUE if the Knapsack (Cuts) check box is selected;

 FALSE otherwise. This option is no longer used.

22 TRUE if the Gomory (Cuts) check box is selected;

 FALSE otherwise. This option is no longer used.

23 TRUE if the Probing (Cuts) check box is selected;

 FALSE otherwise. This option is no longer used.

24 TRUE if the Odd Hole (Cuts) check box is selected;

 FALSE otherwise. This option is no longer used in

 Version 8.0 or later.

25 TRUE if the Clique (Cuts) check box is selected;

 FALSE otherwise. This option is no longer used.

26 TRUE if the Rounding Heuristic check box is selected;

 FALSE otherwise. This option is no longer used.

27 TRUE if the Local Search Heuristic check box is selected;

 FALSE otherwise. This option is no longer used.

28 TRUE if the Flow Cover (Cuts) check box is selected;

 FALSE otherwise. This option is no longer used.

29 TRUE if the Mixed Integer Rounding (Cuts) check box

is selected; FALSE otherwise. This option is no longer

used.

Frontline Solvers 2025 Q1 Reference Guide Page 543

30 TRUE if the Two Mixed Integer Rounding (Cuts) check

box is selected; FALSE otherwise. This option is no

longer used.

31 TRUE if the Reduce and Split (Cuts) check box is

selected; FALSE otherwise. This option is no longer

used.

32 TRUE if the Special Ordered Sets check box is selected;

 FALSE otherwise. This option is no longer used.

33 TRUE if the Preprocessing check box is selected;

 FALSE otherwise. This option is no longer used.

34 TRUE if the Feasibility Pump (Heuristic) box is selected;

0 FALSE otherwise. This option is no longer used.

35 TRUE if the Greedy Cover Heuristic check box is selected;

 FALSE otherwise. This option is no longer used.

36 TRUE if the Local Tree check box is selected;

 FALSE otherwise. This option is no longer used.

Return values 10, 11, 16 through18, and 21 through 36 are no longer supported

and are included only to avoid breaking macros written for older versions of

Premium Solver. Of the supported values for TypeNum, 6 through 9 and 12

through 15 are included for backward compatibility. To set integer options for

the LP/Quadratic Solver Engine use the object – oriented API as described in the
Analytic Solver User Guide chapter, “Automating Optimation in VBA” and the

chapter, “Solver Engine Option Reference” in this guide. SheetName is the

name of a worksheet that contains the Solver problem for which you want

information. If SheetName is omitted, it is assumed to be the active sheet.

SolverIntOptions

The first five options apply to the LP/Quadratic Solver. The next 10 options are

specific to the LP Simplex Solver which is no longer included in Analytic

Solver. To set additional integer options for the LP/Quadratic Solver, you must

use the object – oriented API. See the Analytic Solver User Guide chapter,

“Automating Optimization in VBA” and the “Solver Engine Option Reference”

chapter in this guide for help.

Equivalent to choosing Premium Solver... from the Tools menu, choosing the

Options button in the Solver Parameters dialog box, and then choosing the

Integer tab. Options are also included on the Task Pane Engine tab. Specifies
options for the integer (Branch & Bound) Solver.

VBA Syntax

SolverIntOptions (MaxSubproblems:=, MaxIntegerSols:=, IntTolerance:=,

IntCutoff:=, SolveWithout:=, UseDual:=, ProbingFeasibility:=,

BoundsImprovement:=, OptimalityFixing:=, VariableReordering:=,

UsePrimalHeuristic:=, MaxGomoryCuts:=, GomoryPasses:=,

MaxKnapsackCuts:=, KnapsackPasses:=; MaxRootCutPasses:=,

MaxTreeCutPasses:=, StrongBranching:=, LiftAndCoverCuts:=,

RoundingCuts:=, KnapsackCuts:=, GomoryCuts:=, ProbingCuts:=,

OddHoleCuts:=, CliqueCuts:=, RoundingHeur:=, LocalHeur:=,

FlowCoverCuts:=, MirCuts:=, TwoMirCuts:=, RedSplitCuts:=, SOSCuts:=,

PreProcess:=, FeasibilityPump:=, GreedyCover:=, LocalTree:=)

If an argument is omitted, the Solver maintains the current setting for that

option. If any of the arguments are of the wrong type, the function returns the

#N/A error value. If all arguments are of the correct type, but an argument has

Frontline Solvers 2025 Q1 Reference Guide Page 544

an invalid value, the function returns a positive integer corresponding to its

position. A zero return value indicates that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the

Max Subproblems option.

MaxIntegerSols must be an integer greater than zero. It corresponds to the Max

Integer Sols (Solutions) options.

IntTolerance is a number between zero and one, corresponding to the Tolerance

option.

IntCutoff is a number (any value is possible) corresponding to the Integer

Cutoff option.

SolveWithout is a logical value corresponding to the Solve Without Integer

Constraints option included in the Solve dropdown menu on the Solver

Parameters dialog or in the Optimize drop down menu on the Analytic Solver

ribbon. If TRUE, the Solver ignores any integer constraints and solves the
“relaxation” of the mixed-integer programming problem. If FALSE, the Solver

uses the integer constraints in solving the problem.

UseDual is a logical value corresponding to the Use Dual Simplex for

Subproblems option in the LP Simplex Engine. If TRUE, the Solver uses the

Dual Simplex method, starting from an advanced basis, to solve the

subproblems generated by the Branch & Bound method. If FALSE, the Solver

uses the Primal Simplex method to solve the subproblems. This option is no

longer used.

ProbingFeasibility is a logical value corresponding to the Probing / Feasibility

option in the LP Simplex Engine. If TRUE, the Solver attempts to derive

settings for binary integer variables, and implications for feasibility of the
subproblem, from the subproblem’s bounds on binary integer variables. If

FALSE, the Solver does not employ these strategies. This option is no longer

used.

BoundsImprovement is a logical value corresponding to the Bounds

Improvement option in the LP Simplex Engine. If TRUE, the Solver attempts to

tighten the bounds of non-binary integer variables, based on the initial or

derived settings of binary integer variables in the subproblem. If FALSE, the

Solver does not employ this strategy.

OptimalityFixing is a logical value corresponding to the Optimality Fixing

option in the LP Simplex Engine. If TRUE, the Solver attempts to fix the values
of binary integer variables based on their coefficients in the objective function

and constraints, and on the initial or derived settings of other binary integer

variables. If FALSE, the Solver does not employ this strategy. This option is no

longer used.

VariableReordering is a logical value corresponding to the Variable

Reordering check box. In Version 5 and later of the Premium and Analytic

Solver products, this option is no longer used and its value is ignored.

UsePrimalHeuristic is a logical value corresponding to the Primal Heuristic

check box. If TRUE, the Solver uses heuristic methods to attempt to discover an

integer feasible solution at the beginning of the Branch & Bound process. If

FALSE, the Solver does not employ this strategy. This option is no longer used
and its value is ignored.

MaxGomoryCuts must be an integer greater than or equal to zero. It

corresponds to the Max Gomory Cuts option in the LP Simplex Engine. This

option is no longer used.

Frontline Solvers 2025 Q1 Reference Guide Page 545

GomoryPasses must be an integer greater than or equal to zero. It corresponds

to the Max Gomory Passes option in the LP Simplex Engine. This option is no

longer used.

MaxKnapsackCuts must be an integer greater than or equal to zero. It

corresponds to the Max Knapsack Cuts option in the LP Simplex Engine. This
option is no longer used.

KnapsackPasses must be an integer greater than or equal to zero. It

corresponds to the Max Knapsack Passes option in the LP Simplex Engine. This

option is no longer used.

MaxRootCutPasses must be an integer greater than or equal to zero. It

corresponds to the Max Root Cut Passes edit box. This option is no longer used

and its value is ignored.

MaxTreeCutPasses must be an integer greater than or equal to zero. It

corresponds to the Max Tree Cut Passes edit box. This option is no longer used

and its value is ignored.

StrongBranching is a logical value corresponding to the Use Strong Branching

check box. If TRUE, Strong Branching takes a few steps towards a solution for

a number of different candidate integer variables, and selects the one showing

the most rapid improvement in the objective as the actual variable for branching.

If FALSE, no action is taken. This option is no longer used and its value is

ignored.

LiftAndCoverCuts is a logical value corresponding to the Lift and Cover check

box. If TRUE, Lift and Cover cuts are generated. If FALSE, no cuts of this

type are generated. In Version 8.0 and later, this option is no longer used and its

value is ignored.

RoundingCuts is a logical value corresponding to the Lift and Cover check

box. If TRUE, Rounding cuts are generated. If FALSE, no cuts of this type are

generated. In Version 8.0 and later, this option is no longer used and its value is

ignored.

KnapsackCuts is a logical value corresponding to the Knapsack check box. If

TRUE, Knapsack cuts are generated. If FALSE, no cuts of this type are

generated. This option is no longer used and its value is ignored.

GomoryCuts is a logical value corresponding to the Gomory check box. If

TRUE, Gomory cuts are generated. If FALSE, no cuts of this type are

generated. This option is no longer used and its value is ignored.

ProbingCuts is a logical value corresponding to the Probing check box. If

TRUE, Probing cuts are generated. If FALSE, no cuts of this type are

generated. This option is no longer used and its value is ignored.

OddHoleCuts is a logical value corresponding to the Odd Hole check box. If

TRUE, Odd Hole cuts are generated. If FALSE, no cuts of this type are

generated. In Version 8.0 and later, this option is no longer used and its value is

ignored.

CliqueCuts is a logical value corresponding to the Clique check box. If TRUE,

Clique cuts are generated. If FALSE, no cuts of this type are generated. This

option is no longer used and its value is ignored.

RoundingHeur is a logical value corresponding to the Rounding Heuristic

check box. If TRUE, the Rounding Heuristic is used. If FALSE, no action is

taken. This option is no longer used and its value is ignored.

Frontline Solvers 2025 Q1 Reference Guide Page 546

LocalHeur is a logical value corresponding to the Local Search Heuristic check

box. If TRUE, the Local Search Heuristic is used. If FALSE, no action is

taken. This option is no longer used and its value is ignored.

FlowCoverCuts is a logical value corresponding to the Flow Cover check box.

If TRUE, Flow Cover cuts are generated. If FALSE, no cuts of this type are
generated. This option is no longer used and its value is ignored.

MirCuts is a logical value corresponding to the Mixed Integer Rounding check

box. If TRUE, Mixed Integer Rounding cuts are generated. If FALSE, no cuts

of this type are generated. This option is no longer used and its value is ignored.

TwoMirCuts is a logical value corresponding to the Two Mixed Integer

Rounding check box. If TRUE, Two Mixed Integer Rounding cuts are

generated. If FALSE, no cuts of this type are generated. This option is no

longer used and its value is ignored.

RedSplitCuts is a logical value corresponding to the Reduce and Split check

box. If TRUE, Reduce and Split cuts (variants of Gomory cuts) will be
generated. This option is no longer used and its value is ignored.

SOSCuts is a logical value corresponding to the Special Ordered Sets check

box. If TRUE, cuts for Special Ordered Sets will be generated. This option is

no longer used and its value is ignored.

PreProcess is a logical value corresponding to the Preprocessing check box. If

TRUE, Preprocessing will be performed. If FALSE, no Preprocessing will be

done. This option is no longer used and its value is ignored.

FeasibilityPump is a logical value corresponding to the Feasibility Pump check

box. If TRUE, the Feasibility Pump Heuristic is used. If FALSE, no action is

taken. This option is no longer used and its value is ignored.

GreedyCover is a logical value corresponding to the Greedy Cover Heuristic

check box. If TRUE, the Greedy Cover Heuristic is used. If FALSE, no action

is taken. This option is no longer used and its value is ignored.

LocalTree is a logical value corresponding to the Local Tree check box. If

TRUE, the Local Tree algorithm is used to search for further solutions. If

FALSE, no action is taken. This option is no longer used and its value is

ignored.

SolverLimGet

Returns Limit Option settings for the Evolutionary Solver problem (if any)

defined on the specified sheet. These settings are entered on the Limits tab in

the Solver Options dialog for the Evolutionary Solver or in the Limits section on

the Task Pane Engine tab when the Evolutionay Engine is selected in the Solver

Engine dropdown menu.

VBA Syntax

SolverLimGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The

following settings are specified on the Limits tab.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Feasible Sols value (as a decimal number)

Frontline Solvers 2025 Q1 Reference Guide Page 547

3 The Tolerance value (as a decimal number)

4 The Max Time w/o Improvement value (as a decimal number)

5 Set to TRUE to solve the relaxation of a mixed integer

model; equivalent to choosing Solve without Integer

Constraints on the Solve dropdown menu on the Solver

Parameters dialog or Optimize icon on the Analytic Solver

ribbon.

SheetName is the name of a worksheet that contains the Solver problem for

which you want information. If SheetName is omitted, it is assumed to be the

active sheet.

SolverLimOptions

Equivalent to choosing Premium Solver... from the Tools menu, choosing the

Options button in the Solver Parameters dialog box when the Evolutionary

Solver is selected in the Solver Engine dropdown list, then choosing the Limits

tab. Options also appear in the Limits section on the Task Pane Engine tab when

the Evolutiony Solver is selected in the Solver Engines dropdown menu.

Specifies Limit Options for the Evolutionary Solver.

VBA Syntax

SolverLimOptions (MaxSubproblems:=, MaxFeasibleSols:=, Tolerance:=,

MaxTimeNoImp:=, SolveWithout:=)

The arguments correspond to the options on the Limits tab. If an argument is

omitted, the Solver maintains the current setting for that option. If any of the

arguments are of the wrong type, the function returns the #N/A error value. If

all arguments are of the correct type, but an argument has an invalid value, the
function returns a positive integer corresponding to its position. A zero return

value indicates that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the

Max Subproblems option.

MaxFeasibleSols must be an integer greater than zero. It corresponds to the

Max Feasible Sols (Solutions) option.

Tolerance is a number between zero and one, corresponding to the Tolerance

option. This argument works in conjunction with the MaxTimeNoImp argument

below.

MaxTimeNoImp is a number corresponding to the Max Time w/o Improvement
option. This argument works in conjunction with the Tolerance argument above

to determine when the Evolutionary Solver will stop with the message “Solver

cannot improve the current solution.”

SolveWithout is a logical value corresponding to the Solve Without Integer

Constraints option included in the Solve dropdown menu on the Solver

Parameters dialog or in the Optimize drop down menu on the Analytic Solver

ribbon. If TRUE, the Evolutionary Solver ignores any integer constraints and

solves the “relaxation” of the problem. If FALSE, the Solver uses the integer

constraints in solving the problem.

SolverLPGet

Returns Simplex LP or LP/Quadratic Solver option settings for the current

Solver problem on the specified sheet. These settings are entered on the General

Frontline Solvers 2025 Q1 Reference Guide Page 548

tab in the Solver Options dialog when the LP/Quadratic Solver is selected in the

Solver Engine dropdown list or on the Task Pane Engine tab when the

LP/Quadratic Solver is selected in the Solver Engine dropdown list.

The arguments correspond to the options in the Solver Options dialog box. The

PivotTol and ReducedTol options are available only for the Simplex LP Solver
which are included only for backward compatibility as this engine is no longer

included in Analytic Solver; the Derivatives, PrimalTolerance, DualTolerance,

and Presolve options are available only for the LP/Quadratic Solver.

VBA Syntax

SolverLPGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The

following settings are specified on the General tab in the LP/Quadratic Solver
Options dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The LP Simplex Pivot Tolerance (No longer used.)

5 The LP Simplex Reduced Cost Tolerance (No longer used)

6 TRUE if the Show Iteration Result option is selected;

 FALSE otherwise

7 TRUE if the Use Automatic Scaling option is selected;

 FALSE otherwise

8 TRUE if the Assume Non-Negative option is selected;

 FALSE otherwise

9 TRUE if the Bypass Solver Reports option is selected;

 FALSE otherwise.

10 A number corresponding to the Derivatives group

selection:

 1 = Forward

 2 = Central

11 The LP/Quadratic Primal Tolerance (as a decimal number)

12 The LP/Quadratic Dual Tolerance (as a decimal number)

13 TRUE if the Presolve check box is selected; FALSE

 otherwise.

14 TRUE if the Classic Search check box is selected; FALSE

 otherwise.

The return value for TypeNum = 4 and 5 is supported only included for

backward compatibility as the Simplex LP Solver is no longer included in

Analytic Solver. The return value for TypeNum = 10 through 13 is supported

only for the LP/Quadratic Solver. SheetName is the name of a worksheet that

contains the Solver problem for which you want information. If SheetName is

omitted, it is assumed to be the active sheet.

Frontline Solvers 2025 Q1 Reference Guide Page 549

SolverLPOptions

Equivalent to choosing Premium Solver... from the Tools menu and then

choosing the Options button in the Solver Parameters dialog box when the

LP/Quadratic Solver is selected in the Solver Engine dropdown list or on the

Task Pane Engine tab when the LP/Quadratic Solver is selected in the Solver

Engine dropdown list. Specifies options for the LP/Quadratic Solvers.

VBA Syntax

SolverLPOptions (MaxTime:=, Iterations:=, Precision:=, PivotTol:=,

ReducedTol:=, StepThru:=, Scaling:=, AssumeNonNeg:=, BypassReports:=,

Derivatives:=, PrimalTolerance:=, DualTolerance:=, Presolve:=,

ClassicSearch:=)

The arguments correspond to the options in the Solver Options dialog box. The

PivotTol and ReducedTol options are available only for the Simplex LP Solver

and are included in V2018 only for backward compatibility; the Derivatives,

PrimalTolerance, DualTolerance, and Presolve options are available only for the

LP/Quadratic Solver.

If an argument is omitted, the Solver maintains the current setting for that
option. If any of the arguments are of the wrong type, the function returns the

#N/A error value. If all arguments are of the correct type, but an argument has

an invalid value, the function returns a positive integer corresponding to its

position. A zero return value indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time

option.

Iterations must be an integer greater than zero. It corresponds to the Iterations

option.

Precision must be a number between zero and one, but not equal to zero or one.

It corresponds to the Precision option.

PivotTol is a number between zero and one, but not equal to zero or one. It

corresponds to the Pivot Tolerance option for the Simplex LP Solver. This

option is no longer used.

ReducedTol is a number between zero and one, but not equal to zero or one. It

corresponds to the Reduced Cost Tolerance option for the Simplex LP Solver.

This option is no longer used.

StepThru is a logical value corresponding to the Show Iteration Results option.

If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have

supplied SolverSolve with a valid VBA function, your function will be called

each time Solver pauses; otherwise the standard Show Trial Solution dialog box
will appear.

Scaling is a logical value corresponding to the Use Automatic Scaling option. If

TRUE, then Solver rescales the objective and constraints internally to similar

orders of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative

option. If TRUE, Solver supplies a lower bound of zero for all variables without

explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports

option. If TRUE, the Solver will skip preparing the information needed to

create Solver Reports. If FALSE, the Solver will prepare for the reports. For

Frontline Solvers 2025 Q1 Reference Guide Page 550

large models, bypassing the Solver Reports can speed up the solution

considerably.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option

group for the LP/Quadratic Solver: 1 for Forward and 2 for Central.

PrimalTolerance is a number between zero and one, but not equal to zero or

one. It corresponds to the Primal Tolerance option for the LP/Quadratic Solver.

DualTolerance is a number between zero and one, but not equal to zero or one.

It corresponds to the Dual Tolerance option for the LP/Quadratic Solver.

Presolve is a logical value corresponding to the Presolve option. If TRUE, the

Solver performs a presolve step before starting the Simplex method that detects

singleton rows and columns, removes fixed variables and redundant constraints,

and tightens bounds. If FALSE, no action is taken. This option is no longer

used.

ClassicSearch is a logical value corresponding to the Classic Search check box.
If TRUE, then Solver will use the same search methods as previous releases for

problems with integer variables and quadratically constrained problems

(QCPs). If FALSE then Solver will use the new (default) search methods.

SolverOkGet

Returns variable, constraint and objective selections and settings for the current

Solver problem on the specified sheet. These settings are entered in the standard

Solver Parameters dialog, and its Add and Change dialogs.

VBA Syntax

SolverOkGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want:

TypeNum Returns

1 The reference in the Set Cell box or the #N/A error value if

 Solver has not been used on the active document

2 A number corresponding to the Objective Sense option

 1 = Max

 2 = Min

 3 = Value Of

3 The value in the Value Of box

4 The reference in the Changing Cells box or under Variables in

the Task Pane Model tab (in the Analytic Solvers, only the first

entry in the Variables list box)

5 The number of entries in the Constraints list box

6 An array of the left hand sides of the constraints as text

7 An array of numbers corresponding to the relations

 between the left and right hand sides of the constraints:

 1 = <=

 2 = =

 3 = >=

 4 = int

 5 = bin

 6 = dif

 7 = soc

 8 = src

 9 = sem

Frontline Solvers 2025 Q1 Reference Guide Page 551

8 An array of the right hand sides of the constraints as text

9 An array of the entries in the Variables list box or under

Variables in the Task Pane Model tab as text

10 A number corresponding to the Solver engine dropdown list

 for the currently selected Solver engine:

 1 = Nonlinear GRG Solver

 2 = LP/Quadratic Solver

 3 = Evolutionary Solver

 4 = Interval Global Solver

 5 = SOCP Barrier Solver

 In Analytic Solver other values may be returned

for field-installable Solver engines

11 A string identifying the currently selected Solver engine:

 "Standard GRG Nonlinear" = Nonlinear GRG Solver

 "Standard LP/Quadratic" = LP/Quadratic Solver

 "Standard Evolutionary" = Evolutionary Solver

 "Standard Interval Global" = Interval Global Solver

 "Standard SOCP Barrier" = SOCP Barrier Solver

 "Gurobi Solver" = Gurobi Solver

 "Knitro Solver" = KnitroF Solver

 "Large-Scale GRG Solver" = Large-Scale GRG Solver

 "Large-Scale LP Solver" = Large-Scale LP Solver

 "Large-Scale SQP Solver" = Large-Scale SQP Solver

 "MOSEK Solver Engine" = MOSEK Solver Engine

 "OptQuest Solver" = OptQuest Solver

 "XPRESS Solver Engine" = XPRESS Solver Engine

12 An array of strings corresponding to the comments associated

 with each block of constraints

13 An array of logical values corresponding to the Report check

 box associated with each block of constraints (TRUE if the

 box is checked, FALSE otherwise); no longer used in V8.0

14 An array of strings corresponding to the comments associated

 with each block of variables

15 An array of logical values corresponding to the Report check

 box associated with each block of variables (TRUE if the

 box is checked, FALSE otherwise); no longer used in V8.0

SheetName is the name of a worksheet that contains the Solver problem for

which you want information. If SheetName is omitted, it is assumed to be the

active sheet.

SolverSizeGet

Returns statistics about the size of the currently defined Solver problem, and the

problem size limits supported by the currently selected Solver engine. The

following settings are “read-only” and appear on the Task Pane Engine tab or on

the Problem tab on the Analytic Solver Options dialog (click the Options icon

on the Analytic Solver ribbon).

VBA Syntax

SolverSizeGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want:

TypeNum Returns

1 The number of decision variables in the current problem

2 The number of constraints in the current problem

3 The number of variable bounds in the current problem

Frontline Solvers 2025 Q1 Reference Guide Page 552

4 The number of integer variables in the current problem

5 The maximum number of decision variables supported by the

 currently selected Solver engine

6 The maximum number of constraints supported by the

 currently selected Solver engine

7 The maximum number of variable bounds supported by the

 currently selected Solver engine

8 The maximum number of integer variables supported by the

 currently selected Solver engine

SheetName is the name of a worksheet that contains the Solver problem for

which you want information. If SheetName is omitted, it is assumed to be the

active sheet.

Frontline Solvers 2025 Q1 Reference Guide Page 553

RASON Error Codes

Introduction
This chapter documents the RASON Error messages that can be returned when
you optimize a model, run a simulation or perform a data science function using

Rason Server.

Error Messages

General JSON Error Indicates that an unexpected internal errors has occurred.

Missing model file or string Indicates that an internal error has occurred by can appear

when a user attempts to solve an empty model string.

Model type (Simulation, optimization,

data science) mismatch

Indicates that the User has used the wrong RASON end

point to solve the current model. For example, clicking

Simulate in the RASON IDE rather than Solve when

solving an optimization model, or calling Get

rason.net/api/model/id/optimize when

running a simulation model.

Improper engine selected for the

particular model

Indicates that an appropriate engine has not been selected to

solve the model.

Invalid Json token Not in use in RASON 2.0 and later versions.

Unrecognized Json identifier Indicates that a name of a section or a property has been

used which is not part of the RASON syntax. For example,

if a user misspells a section heading such as

“modelSetings” or a non-existent property name is passed.

Invalid Json data type Indicates that the user has entered a different type than

expected. For example, if a number is required, but a string

is passed, or if an array is required, but a scaler has been

passed. This error message may also be returned when an

Excel type not presented in RASON is attempted in

conversion (for example, Excel errors #N/A, #NUM, etc.).

Missing name definition in Json object All objects must be named. If the “name” property is
missing, this error will appear.

When using the syntax:

Variables:{

 x:{value:0}

 }

Frontline Solvers 2025 Q1 Reference Guide Page 554

the variable is implicitly named “x”.

However, when using the syntax below, you must specify

the name of the object by using the name property.

Variables:[

 { name: “x”, value: 0}

]

Expecting ':' Missing “:”

Expecting '{' or '['

Missing an expected opening bracket

Expecting '}' or ']' Missing an expected closing bracket

Incompatible Json assignment When a property or object with the ‘:’ operator. Examples

may include, the dimensions of the right hand side of an

optimization constraint not matching the dimensions of the

left hand side of the constraint.

Duplicated Json assignment Indicates that an object has been defined twice.

Incorrect Json array dimensions Indicates that the definition of dimensions: [r,c] is not

correct. Note: Although [r][c] is correct C++ syntax, it is

not correct RASON syntax.

Incorrect Json data array Indicates a mistake in any array definition through the []

operator, for example, [1, 2]].

Incorrect assignment to a Json ‘type’

identifier

Indicates that “type:” property has been assigned an invalid

value. For example, “type: “bynari”” rather than “type:

binary”” when applied to a decision variable or passing

“type: “maximum”” to a variable or constraint instead of

the objective function.

Missing Json Variable Definition Indicates that in a conic constraint definition, an identifier

has been used, which is not a decision variable.

Index [] misused or out of range Indicates that the application of the range operator [] to an

array is invalid. For example, x[6] while x has length 5.

Incompatible model block definition Could indicate that a two sided constraint has been passed.

For example, a constraint block with a lower bound of 1
and an upper bound of 10.

Invalid binding source definition Indicates an error in a data source definition or the related

index sets. If using PsiDataSrc() fumction in an Excel

model, confirm that there are no trailing or leading spaces

in any of the argument definitions in either the excel cells

or the function definition.

Formulas not allowed in this definition Indicates that a formula has been entered for an object that

should not have a formula, for example, a decision variable

object.

Invalid parameter definition Indicates that PsiOptParam() or PsiSimParam() has been

misspelled or entered improperly

Inconsistent Table Indicates that an invalid table definition has been used in

the functions SELECT or PIVOT; the index operator [] has

been applied to the identifier, which is an invalid table; or

Frontline Solvers 2025 Q1 Reference Guide Page 555

something is wrong in the table definition either inline (in

the table) or through binding.

Inconsistent Data source definition Indicates an error in the PsiDataSrc() function in Excel

during the RASON conversion. If not using Excel, then

this error indicates that a data source definition and /or the

datasets associated with the data source definition are

invalid.

Inconsistent arguments to SELECT

function

Indicates that the is an error in the syntax for the SELECT

function.

Inconsistent arguments to PIVOT

function

Indicates that the is an error in the syntax for the PIVOT

function.

Misused equal/valueof property If the “equal:” property is used outside of the Constraints

section.

Inconsistent index or index column Indicates an invalid index set definition or the usage of an

index set in a table.

Incorrect loop definition Indicates a syntax mistake in a loop/for definition.

Array bounds not allowed in a table

assignment

Not in use in RASON 2.0 and later versions.

Loop table/array definition mismatch A for/loop may define an array or table implicitly though

the assigned expressions. If there is a mismatch in shape,

indices or index sets which prevents the creation of
structural arrays on the left hand side of expressions, this

error will appear.

RASON can’t handle worksheets in

names

RASON does not support the use of worksheet names. For

example,

Con: {formula: “2 * SUM(sheet1!A1:A5)”, equal: 2}

The use of “sheet1!” is not supported.

RASON can’t handle dimensions/cubes RASON does not support the use of dimensions or cubes.

RASON can’t handle Excel TABLE &

structured references

RASON does not support the use of Excel tables and Excel

structured references. (A combination of table and column

names is referred to as a structured reference in Excel, i.e.

=SUM(Products[Parts].)

RASON can’t handle OFFSET,

INDIRECT, VBA functions etc. that
required Excel at run-time

RASON does not support the use of the Excel functions

OFFSET and INDIRECT or any VBA functions designed
by the user.

The error messages below are specific to RASON Data Science.

Invalid datasource type. Supported types:

csv, xml

Indicates data source is an unsupported type. Currently,

RASON Data Science supports the following file types:
"csv", "json", "xml", "excel", "odbc", "access", "msaccess",
"mssql", "oracle", "odata".

Invalid estimator/transformer type Indicates an error in the estimator or transformer type.

Currently, RASON Data Science supports the following

estimator/transformer types: "affinityAnalysis",

Frontline Solvers 2025 Q1 Reference Guide Page 556

"bigData", "classification", "clustering",

"featureSelection",

 "regression", "textMining", "timeSeries",

"transformation".

Invalid algorithm name
The supported names for each algorithm are listed

below.

"affinityAnalysis"-- "associationRules"

"bigData" -- "sampling"or "summarization"

"classification" -- "bagging", "boosting",

"decisionTree", "nearestNeighbors",

"linearDiscriminantAnalysis",

"logisticRegression", "naiveBayes", "neuralNetwork",

or "randomTrees"

"clustering" --"hierarchical" or "kMeans"

"featureSelection" -- "linearWrapping",

"logisticWrapping", or "univariate"

"regression" -- "bagging", "boosting", "decisionTree",

"linearRegression", "nearestNeighbors",

"neuralNetwork", or "randomTrees"

"textMining" -- "latentSemanticAnalysis" or "tfIdf"

"timeSeries" -- "addHoltWinters", "autocorrelation",
"autocovariance", "difference", "lagAnalysis",

"partialAutocorrelation", "arima", "doubleExponential",

"exponential", "movingAverage", "mulHoltWinters", or

"noTrendHoltWinters"

"transformation" -- "binning", "intervalBinning",

"CountBinning", "canonicalVariateAnalysis",

"categoryReduction", "factorization", "imputation",

"oneHotEncoding", "oversamplePartitioning",

"partitioning", "principalComponentAnalysis",

"rescaling", "sampling", or "stratifiedSampling"

Invalid use of trainData or validData This error appears when the trainData and validData

properties are used incorrectly. Contact Frontline

Solvers Support for more information related to your

specific model at support@solver.com.

Invalid or missing action property This error appears when an invalid action property is

passed or when an action property is missing. Contact

Frontline Solvers Support for more information related

to your specific model at support@solver.com.

Invalid enumeration value assigned to

parameter or property

If an invalid enumeration value is assigned to a

parameter or property, this error will appear.

Frontline Solvers 2025 Q1 Reference Guide Page 557

The following properties/parameters accept only the

values in their sets. If a user enters something different,

this error message appears.

"aggregationType" has values { "avg", "max", "min",

"stddev", "sum" }

"binningTypeFeatures" and "binningTypeTarget” have

values { "equal_count", "equal_interval", "none" }

"dataForErrorComputation" has values { "only_train",

"only_valid", "train_and_valid" }

"dataFormat" has values { "csv", "parquet" }

"dissimilarity" has values { "euclidean", "jaccard",

"matching" }

"hiddenLayerActivation" and “outputLayerActivation"

have values { "logistic_sigmoid", "softmax", "tanh" }

"imputationStrategy" has values { "delete_record",

"mean", "median", "mode", "value" }

"inputDataType" has values { "distance_matrix",

"raw_data" }

"learningOrder" has values { "original", "random" }

"linkage" has values { "centroid", "complete_linkage",

"group_average", "mcquitty", "median",

"single_linkage", "ward" }

"matrixMethod" has values { "correlation", "covariance"

}

"metric" has values { "chi2", "cramersv", "fisher",

"ftest", "gainratio", "gini", "kendall", "mutualinfo",

"pearson", "spearman", "welch" }

"normType" has values { "l1", "l2" }

"partitionMethod" has values { "manual", "random",

"sequential" }

"priorProbMethod" has values { "empirical", "manual",

"uniform" }

"prunedTreeType" has values { "full_grown",

"best_pruned", "min_error", "manual" }

"samplingType" has values { "approximate", "exact" }

"sortOrder" has values { "descending", "ascending" }

Frontline Solvers 2025 Q1 Reference Guide Page 558

"stratificationMethod" has values { "equal_size",

"proportional" }

"technique" has values { "adjusted_normalization",

"normalization", "standardization",

"unit_normalization" }

"weightingScheme" has values { "equal",

"inverse_distance" }

"weightingSchemeDocument" has values { "binary",

"entropy", "gf_idf", "inverse", "normal", "prob_idf" }

"weightingSchemeNormalization" has values {

"cosine", "none" }

"weightingSchemeTerm" has values { "augnorm",

"boolean", "logarithmic", "raw_frequency" }

Invalid use of selectedCols or excludedCols This error appears when the selectedCols and

excludedCols properties are used incorrectly. Contact

Frontline Solvers Support for more information related

to your specific model at support@solver.com.

Frontline Solvers 2025 Q1 Reference Guide Page 559

Appendix: Differences between
Analytic Solver Desktop and
Analytic Solver Cloud

Introduction
The overwhelming majority of features in Analytic Solver Desktop are also

included in Analytic Solver Cloud. However, there are a few variations between

the two products. This Appendix lists the key differences between the two.

These differences are also noted where applicable within the Analytic Solver

User and Reference Guides.

Differences

General

• In Analytic Solver Cloud, worksheets must be saved in the .xlsx format

(which was “new” back in 2007). If you have a workbook in .xls format,

open it, choose "Save As" in .xlsx format, then close and re-open it – your

model will then be recognized by Analytic Solver Cloud.

• Analytic Solver Cloud currently requires that variable, constraint, and the

objective cells be defined on a single worksheet. Analytic Solver Desktop

supports models defined on one worksheet, but with variable, constraint,

and/or the objective cells on other worksheets.

• In Analytic Solver Cloud, the Solver Task Pane must be opened before an

optimization or simulation model can be solved.

• To create a Tableau extension or a Power BI custom visual, simply solve
your optimization or simulation model then click Deploy Model–

Tableau/Power BI on the Analytic Solver Cloud ribbon. (Neither the

Tableau nor Power BI icon is present on the Output tab, of the Solver task

pane, in the Cloud app.)

• The Workflow tab is not included in the Solver task pane of the Analytic

Solver Cloud app. The Model, Platform and Output tabs are not included in

the Data Science Cloud task pane.

• Calling Analytic Solver Cloud through a programming language such as

VBA is not supported.

Frontline Solvers 2025 Q1 Reference Guide Page 560

• The Platform tab for Analytic Solver Cloud includes options relevant only

to Analytic Solver Cloud.

• The following functions are not supported in Analytic Solver Cloud:

MSOLVE, MTRACE, MNORM, MEIGENVEC, and MEIGENVAL.

• The Analytic Solver Parameters tab, accessed by clicking Addins –

Premium Solver in Desktop Excel, is not supported in Analytic Solver

Cloud.

• SolverServer, which allows you to solve your optimization or simulation

model on a corporate server, is currently not supported.

• A "welcome" worksheet will not appear upon logging in to the Cloud app.

• Neither the Data Science nor Solver apps support formulas in a call to any

Psi function. For example, the formula = PsiTarget(A1, A2 * A3) is not

supported.

• When entering Psi functions manually (i.e. simply typing the function into

an Excel cell) in Analytic Solver Cloud or Data Science Cloud apps, the

taskpane must be refreshed before performing an optimization, simulation,
data science task or parameter analysis report.

• Parameter Analysis is limited to 121 "runs". If using PsiOptParam, a run is

defined as the number of optimizations. If using PsiSimParam, a run is

defined as the number of simulations and if using PsiSenParam, a run is

defined as the number of different values the parameter can take on (i.e. the

number of major and minor axis points in the Sensitivity Parameter dialog).

Dimensional Modeling

• Double Clicking a Dimension in the Model tab of the Solver Task Pane

o Analytic Solver Desktop: When a dimension is double clicked in the

task pane, the dimensional modeling grid does not open.

o Analytic Solver Cloud: When a dimension is double clicked in the task
pane, the dimensional modeling grid opens and displays the contents of

the dimension.

• Opening a Cube

1. Analytic Solver Desktop: Double click the cell in the worksheet or task

pane to open the cube.

2. Analytic Solver Cloud: Click the cell entry in the task pane to open the

cube.

• Analtyic Solver Cloud: PsiOptData() and PsiCubeData() behave the same

in Analytic Solver Cloud. Both simply display the data in the cube. If the
data has been computed, then both functions display the computed data. If

data has been optimized, then both functions display the optimized data.

• Analytic Solver Cloud: Dimensional calculation option is not supported in

Analytic Solver Cloud. Calculation of the PsiOptData() and PsiCubeData()

is completed on every optimization or simulation or when a manual

recalculation is performed (Model – Dimensional Modeling – Cube Result

– Calculate).

• Analytic Solver Cloud: Any cell formula that references a cube are

displayed under Cubes in the Model pane of the Solver Task Pane. In

Frontline Solvers 2025 Q1 Reference Guide Page 561

Analytic Solver Desktop, only the cell containing the PsiCube() function is

listed in the Task Pane under Cubes.

• Analytic Solver Cloud: When the Current Value of a dimension is changed,

Analytic Solver Cloud users must trigger a worksheet recalculation. This

can be done in 2 ways.
1. Refresh the worksheet by click the Refresh icon on the Model tab of the

Solver Task Pane.

2. Manually initiate a recalculation by clicking Analytic Solver – Model –

Dimensional Modeling – Cube Result – Calculate.

• Analytic Solver Desktop: When performing a Parameter Analysis (Charts –

Multiple Optimizations – Parameter Analysis) in Analytic Solver Desktop,

variable cells are not listed under Results.

• Analytic Solver Cloud does not support sparse cubes.

• Only one PsiReduce() function per cell is supported in Analytic Solver

Cloud.

Simulation

Several minor simulation features are not currently supported in Analytic

Solver Cloud . These include:

• Interactive Simulation is not supported in Analytic Solver Cloud, but

multiple parameterized simulations are supported. To run a simulation,

press the green arrow in the Solver Task Pane, or click the Simulate button

on the Ribbon. If you’ve specified a number of Simulations to Run (in the

Platform tab of the Solver Task Pane), all the simulations will be run at one

time.

• Opening the Uncertain Variable dialog by double clicking a cell containing

an uncertain variable is not supported in the Cloud app. Double-click an

Uncertain Variable cell in the Model tab of the Solver task pane to display

the Uncertain Variable dialog. This dialog displays a chart of the

distribution and allows you to change the distribution type and parameters,

fit a distribution to your data, and view statistics and percentiles. You can
also open this dialog by selecting the uncertain variable cell and clicking

Distributions from the Analytic Solver Cloud ribbon.

• Opening the Uncertain Function dialog by double clicking a cell containing

an uncertain function is not supported in the Cloud app. Double-click an

Uncertain Function cell in the Model tab of the Solver task pane to display

the Uncertain Function dialog. This dialog which displays a chart of

simulation results and sensitivity analysis, and allows you to adjust bounds,

fit an analytic distribution to the results, and view statistics and percentiles.

• Analytic Solver Cloud supports all the same functionality related to

correlations as Analytic Solver Desktop, but it is imperative that the Solver

Task Pane is opened before the Correlations Matrices or Correlations

Fitting dialogs are opened (Correlations – Matrices).

Each time the Save button is clicked on the Correlations dialog, the matrix

is checked for consistency (positive semi-definite). If the matrix is not

consistent, you will be asked if you would like Analytic Solver to modify

the matrix. Click yes, to accept Analytic Solver's modifications; adjusted

matrix elements will be kept as close to their original values, as possible.

Click No to save the matrix without any modifications. Click Cancel to go

back to the matrix.

Frontline Solvers 2025 Q1 Reference Guide Page 562

Neither scatter plots nor distribution histograms are supported in the

correlation window.

• Analytic Solver Cloud does not support printing or copying to the clipboard

from the Distributions dialog or switching to 3-D view/rotating the

Uncertain Variable or Uncertain Function charts.

• In Analytic Solver Cloud, neither Markers nor Axis Options menus, in the

Uncertain Variable dialog, are supported.

• Conditional Mean is not supported for the Sensitivity Chart on the

Uncertain Function dialog.

• Multiple Variables menu does not appear on the Scatter Plots tab in the

Uncertain Function dialog.

• Clustering information is not available for uncertain functions.

• Fit icon does not appear on the Uncertain Function dialog. To Fit a

distribution, simply use the Fit option on the Tools menu.

• The Uncertain Variable Title Bar does not appear in Analytic Solver Cloud.
As a result, the following buttons are not available in Analytic Solver

Cloud: Overlay of Variables, Save, Print, Copy, and Uncertain Function

(where applicable).

• The Uncertain Function Title Bar does not appear in Analytic Solver Cloud.
As a result, the following buttons are not available in the Cloud app:

Overlay of Uncertain Functions, Save, Print, Copy and Uncertain Variable

(where applicable), Fit a Distribution, Export to Power BI or Export to

Tableau.

• Help hyperlinks in the uncertain variable or uncertain function dialogs are

not supported.

• The ability to fit a distribution through the uncertain variable dialog is not

supported in the Cloud app. To fit a distribution, simply highlight your

historical data and click Tools – Fit.

• In Analytic Solver Desktop, when an uncertain variable is not part of the

simulation (i.e. no uncertain function depends on it), the analytic mean is
displayed in the cell. In Analytic Solver Cloud, a random value will be

displayed.

• All three arguments must be present for the PsiMetalog and PsiMetalogSPT

distributions in Analytic Solver Cloud. In Desktop Analytic Solver, the first

two arguments are optional.

• Popup charts for uncertain variables/functions are not supported.

• In Analytic Solver Cloud, the Trial to Display option is not present on the

Platform tab of the task pane or on the Ribbon.

• When a simulation is performed on a model containing more than one

output function, only output functions will be displayed on the multiple

output function dialog.

• The 95th and 5th percentile marker values may not be edited in the

uncertain variable dialog. These markers may be moved. It is not yet

Frontline Solvers 2025 Q1 Reference Guide Page 563

possible to edit the Axis options or to add Markers to the distribution in the

App.

• PsiForecast() is not recognized as an uncertain function in the Cloud apps.

If the simulation argument is set to "True", the Analytic Solver App will

generate a single random point around the actual forecast according to the

forecast and its standard deviation.

• PsiTSLen is a property supported by the time series functions (PsiMA1,

PsiMA2, etc.) enforcing the length of the process result; length must be an

integer greater than 0. Note: This property only applies to the Analytic

Solver Cloud App and is not supported in the Analytic Solver COM addin.

• Alternative Formulations of the Psi Distribution functions are not supported

in Analytic Solver Cloud app. For example PsiNormalAlt, PsiLevyAlt, etc
are not supported in Analytic Solver Cloud.

Optimization

There are also several small differences when it comes to performing an

optimization in Analytic Solver Cloud.

• The Constraint Wizard is not yet supported in Analytic Solver Cloud.

• Since cloud add-ins cannot have “cascading submenus”, the Min and Max

choices for Objective have been combined in the Add/Change Objective

dialog, and the Normal, Chance and Variable Type options have been

combined in the Add Constraint dialog.

• Stochastic Decomposition for optimization of models with uncertainly is

not yet available (but coming soon) in Analytic Solver Cloud.

• Optimization models may only be saved in Classic Format when using

Analytic Solver Cloud. Saving the model as an .lp file or using Psi

functions is not supported.

• Engine size limits are not posted on the ending tab.

• PsiOptimization functions are not supported.

• The Structure report generated by Analytic Solver Cloud does not include

the Name or Cell Value columns.

• The Auto Adjust icon does not appear on the task pane.

• Although loading/saving an optimization model is supported in both

Analytic Solver Desktop and Analytic Solver Cloud, a model saved using

Classic Format in Analytic Solver Desktop may not be loaded in Analytic

Solver Cloud and vice-versa.

• Optimization option names are slightly different in the Cloud Addin. See

their COM addin equivalent in the chart below.

Analytic Solver Desktop Option Analytic Solver Cloud Option

Assume Non-Negative AssumeNonNeg

Bypass Solver Reports Bypass Reports

Max Time MaxTime

Frontline Solvers 2025 Q1 Reference Guide Page 564

Maximum Subproblems MaxSubProblems

Maximum Feasible Solutions MaxFeasibleSols

Use Automatic Scaling Scaling

N/A SolveWithout

Integer Tolerance IntTolerance

Integer Cutoff IntCutoff

Show Iterations N/A

Dual Tolerance DualTolerance

Primal Tolerance PrimalTolerance

Gap Tolerance GapTolerance

Step Size Factor StepSizeFactor

Feasibility Tolerance FeasibilityTolerance

Search Direction SearchDirection

Recognize Linear Variables RecognizeLinear

Relax Bounds on Variables RelaxBounds

Multistart Search Multistart

Topographic Search TopoSearch

Require Bounds on Variables RequireBounds

Population Size PopulationSize

Random Seed RandomSeed

Max Time w/o Improvement MaxTimeNoImp

Absolute vs. Relative Stop AbsRelStep

Assume Stationary AssumeStationary

Method Options Group Method

Population Size PopulationSize

Mutation Rate MutationRate

Random Seed RandomSeed

Require Bounds on Variables RequireBounds

Local Search LocalSearch

Fix Nonsmooth Variables FixNonSmooth

Global Search GlobalSearch

Model Based Search ModelBasedSearch

Feasibility Pump FeasibilityPump

• Turn on Guided Mode under Help – Operating Mode, rather than from the

Platform tab on the task pane.

Frontline Solvers 2025 Q1 Reference Guide Page 565

• Model variables, constraints, and objective are not editable in the bottom

portion of the Model task pane.

Parameters

When Sensitivity, Optimization or Simulation menu choices are selected

under Parameters in the App, the appropriate formula is inserted into the

selected cell with default lower and upper bounds. (In Desktop Analytic

Solver a dialog opens.)

Deploy Model for Rason

In Analytic Solver Cloud, you can convert your Excel model to a RASON

model with a “destination” of either Rason.com or a newly-created Web

page, but not a “destination” of the desktop RASON IDE. You can use
Deploy Model – Tableau and Deploy Model – Power BI in Analytic Solver

Cloud.

Tools

Additional items are not supported in Analytic Solver Cloud including:

• Uploading or downloading certified distributions. Certified Distributions

are not supported in Analytic Solver Cloud.

Frontline Solvers 2025 Q1 Reference Guide Page 566

Appendix: @Risk to Analytic
Solver Psi Function Conversion
Table

Introduction
This Appendix describes how to convert an @Risk function to an equivalent

Analytic Solver Psi function.

1. If the @Risk function name is not included under Risk Name in the table, no

equivalent Psi function exists. Please contact Frontline's Technical Support

Department (support@solver.com) with the @Risk function name so that it

may be considered for a future release of Analytic Solver.

2. If the Psi function name is missing under Psi Name, no equivalent Psi

function exists.

3. If no parameter information is available under Psi parameters, simply

replace Risk name with Psi name. For example, to use the RiskBernoulli

distribution in Analytic Solver, replace "RiskBernoulli" with

"PsiBernoulli". No other changes are required.

4. If parameter information does exist under Psi parameters for the desired

function, compose the Psi signature according to the material displayed. For

example, to use the RiskSeed parameter in Analytic Solver, replace

"RiskSeed" with "PsiSeed" and enter only the "a2" argument.

5. The following Psi functions support the use of the optional Prop_fcn

argument in order to comply with @RISK: PsiMean, PsiKurtosis, PsiMax,

PsiMedian, PsiMin, PsiMode, PsiPercentile, PsiPercentileCI,

PsiPercentileD, PsiPercentiles, PsiPtoX, PsiQtoX, PsiRange, PsiSkewness,

PsiStdDev, PsiTarget, PsiTargetCI, PsiTargetD, PsiVariance, PsiXtoP and

PsiXtoQ. Two property functions may be entered for Prop_fcn:

PsiTruncate or PsiTruncateP. For more information on these functions and

properties, see the Psi Functions chapter that occurs previously in this

guide.

Distribution Functions
Risk name Psi name Risk parameters Psi parameters

RiskBernoulli PsiBernoulli

RiskBeta PsiBeta

RiskBetaGeneral PsiBetaGen

RiskBetaGeneralAlt PsiBetaGenAlt alpha1, alpha2, min, max shape1, shape2, min, max

RiskBetaSubj PsiBetaSubj

mailto:support@solver.com

Frontline Solvers 2025 Q1 Reference Guide Page 567

RiskBinomial PsiBinomial

RiskBurr12 PsiBurr12

RiskCauchy PsiCauchy

RiskCauchyAlt PsiCauchyAlt gamma, beta mu, lambda

RiskChiSq PsiChiSquare

RiskCompound PsiMakeInput dist1, dist 2, deduct, limit freq, expr, deduct, limit

RiskCumul PsiCumul

RiskCumulD PsiCumulD

RiskDagum PsiDagum

RiskDiscrete PsiDiscrete

RiskDoubleTriang PsiDblTriang

RiskDUniform PsiDisUniform

RiskErf PsiErf

RiskErlang PsiErlang

RiskExpon PsiExponential

RiskExponAlt PsiExponentialAlt beta, loc stdev, mean

RiskExtValue PsiMaxExtreme

RiskExtValueAlt PsiMaxExtremeAlt alpha, beta mode, scale

RiskExtValueMin PsiMinExtreme

RiskExtValueMinAlt PsiMinExtremeAlt alpha, beta mode, scale

RiskF PsiFdist

RiskFatigueLife PsiFatigueLife

RiskFatigueLifeAlt PsiFatigueLifeAlt alpha, beta, gamma loc, scale, shape

RiskFrechet PsiFrechet

RiskFrechetAlt PsiFrechetAlt alpha, beta gamma loc, scale, shape

RiskGamma PsiGamma

RiskGammaAlt PsiGammaAlt alpha, beta, loc shape, scale, mean

RiskGeneral PsiGeneral

RiskGeomet PsiGeometric

RiskHistogrm PsiHistogram

RiskHypergeo PsiHyperGeo

RiskHypSecant PsiHypSecant

RiskHypSecantAlt PsiHypSecantAlt gamma, beta loc, scale

RiskIntUniform PsiIntUniform

RiskInvgauss PsiInvNormal

RiskInvgaussAlt PsiInvNormalAlt mu, lambda mean, scale

RiskJohnsonMoments PsiMomentFit mean, stdev, skewness, kurtosis mean, stdev, skewness, kurtosis

RiskJohnsonSB PsiJohnsonSB

RiskJohnsonSU PsiJohnsonSU

RiskKumaraswamy PsiKumaraswamy

RiskLaplace PsiLaplace

RiskLaplaceAlt PsiLaplaceAlt mu, sigma mean, scale

RiskLevy PsiLevy

RiskLevyAlt PsiLevyAlt a, c loc, scale

RiskLogistic PsiLogistic

RiskLogisticAlt PsiLogisticAlt alpha, beta mean, scale

RiskLogLogistic PsiLogLogistic

RiskLogLogisticAlt PsiLogLogisticAlt gamma, beta, alpha loc, scale, shape

RiskLognorm PsiLogNormal

RiskLognormAlt PsiLogNormalAlt mu, sigma mean, stdev

RiskLognorm2 PsiLogNorm2

RiskMakeInput PsiMakeInput dist1, dist 2, deduct, limit freq, expr, deduct, limit

RiskNegbin PsiNegBinomial

Frontline Solvers 2025 Q1 Reference Guide Page 568

RiskNormal PsiNormal

RiskNormalAlt PsiNormalAlt mu, sigma mean, stdev

RiskPareto PsiPareto

RiskParetoAlt PsiParetoAlt theta, alpha shape, scale

RiskPareto2 PsiPareto2

RiskPareto2Alt PsiPareto2Alt b, q scale, shape

RiskPearson5 PsiPearson5

RiskPearson5Alt PsiPearson5Alt alpha, beta shape, scale

RiskPearson6 PsiPearson6

RiskPert PsiPert

RiskPertAlt PsiPertAlt min, m.likely, max min, likely, max

RiskPoisson PsiPoisson

RiskReyleigh PsiReyleigh

RiskReyleighAlt PsiReyleighAlt beta, loc scale, mean

RiskReciprocal PsiReciprocal

RiskStudent PsiStudent

RiskTriang PsiTriangular

RiskTriangAlt PsiTriangularAlt min, m.likely, max min, likely, max

RiskTrigen PsiTriangGen

RiskUniform PsiUniform

RiskUniformAlt PsiUniformAlt min, max lower, upper

RiskWeibull PsiWeibull

RiskWeibullAlt PsiWeibullAlt alpha, beta, loc shape, scale, mean

Distribution Property Functions
Risk name Psi name Risk parameters Psi parameters

RiskCategory PsiCategory

RiskCollect PsiCollect

RiskCorrmat PsiCorrMatrix

RiskDepC PsiCorrDepen

RiskIndepC PsiCorrIndep

RiskLock PsiLock

RiskName PsiName

RiskSeed PsiSeed a1,a2 a2

RiskShift PsiShift

RiskStatic PsiStatic

RiskTruncate PsiTruncate

RiskTruncateP PsiTruncateP

RiskTruncateP(lb,ub,3) PsiTruncate(lb, ub, 3) ub, lb ub, lb

RiskUnits PsiUnits

Statistics Functions
Risk name Psi name Risk parameters Psi parameters

RiskOutput PsiOutput a1 or ,a2,a3 a1 or a2 & a3

RiskCIMean PsiMeanCIB

RiskCoeffOfVariation PsiCoeffVar

Frontline Solvers 2025 Q1 Reference Guide Page 569

RiskCurrentIter PsiCurrentTrial

RiskCurrentSim PsiCurrentSim

RiskData PsiData

RiskKurtosis PsiKurtosis

RiskMax PsiMax

RiskMean PsiMean

RiskMeanAbsDev PsiAbsDev

RiskMin PsiMin

RiskMode PsiMode

RiskPercentile PsiPercentile

RiskPercentileD PsiPercentileD

RiskPtoX PsiPtoX

RiskQtoX PsiQtoX

RiskRange PsiRange

RiskSemiStdDev PsiSemiDev2

RiskSemiVariance PsiSemiVar2

RiskSkewness PsiSkewness

RiskStdDev PsiStdDev

RiskStdErrOfMean PsiStdErr

RiskTarget PsiTarget

RiskTargetD PsiTargetD

RiskXtoP PsiXtoP

RiskXtoQ PsiXtoQ

RiskVariance PsiVariance

RiskTheoKurtosis PsiTheoKurtosis

RiskTheoMax PsiTheoMax

RiskTheoMean PsiTheoMean

RiskTheoMin PsiTheoMin

RiskTheoMode PsiTheoMode

RiskTheoPercentile PsiTheoPercentile

RiskTheoPercentileD PsiTheoPercentileD

RiskTheoPtoX PsiTheoPtoX

RiskTheoQtoX PsiTheoQtoX

RiskTheoRange PsiTheoRange

RiskTheoSkewness PsiTheoSkewness

RiskTheoStdDev PsiTheoStdDev

RiskTheoTarget PsiTheoTarget

RiskTheoTargetD PsiTheoTargetD

RiskTheoXtoP PsiTheoXtoP

RiskTheoXtoQ PsiTheoXtoQ

RiskTheoVariance PsiTheoVariance

RiskTheoXtoY PsiTheoXtoY

Frontline Solvers 2025 Q1 Reference Guide Page 570

Six Sigma Statistics
Risk name Psi name Risk parameters Psi

parameters

RiskCp PsiSigmaCP a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,a2

RiskCpk PsiCPK a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,a2

RiskCpkLower PsiCPKLower a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,a2

RiskCpkUpper PsiCPKUpper a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p2,a2

RiskCpm PsiSigmaCPM a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,p3,a2

RiskDPM PsiSigmaDefectPPM a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,a2

RiskK PsiSigmaK a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,a2

RiskLowerXBound PsiSigmaLowerBound a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p5,a2

RiskPNC PsiSigmaProbDefectShift a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,p4,a2

RiskPNCLower PsiSigmaProbDefectShiftLower a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p4,a2

RiskPNCUpper PsiSigmaProbDefectShiftUpper a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p2,p4,a2

RiskSigmaLevel PsiSigmaSigmaLevel a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,p4,a2

RiskUpperXBound PsiSigmaUpperBound a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p5,a2

RiskYV PsiSigmaYield a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,p4,a2

RiskZlower PsiZLower a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,a2

RiskZMin PsiZMin a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p1,p2,a2

RiskZUpper PsiZUpper a1,a2,RiskSixSigma(p1,p2,p3,p4,p5) a1,p2,a2

Time Series Functions
Risk name Psi name Risk parameters Psi parameters

RiskAR1 PsiAR1

RiskAR2 PsiAR2

RiskMA1 PsiMA1

RiskMA2 PsiMA2

RiskARMA11 PsiARMA11

RiskARCH1 PsiARCH1

RiskGARCH11 PsiGARCH11

RiskEGARCH11 PsiEGARCH11

RiskAPARCH11 PsiAPARCH11

RiskTSTransform PsiTSTransform

RiskTSIntegrate PsiTSIntegrate

RiskTSSeasonality PsiTSSeasonality

RiskTSSync

